Randomized-acceptance MCMC and the separation of chains

Colin Fox fox@physics.otago.ac.nz Geoff Nicholls, Alexis Muir Watt

Outline

How to compute approximately, and get exactly the right answer ...

- Prelude
 - MCMC for IP
 - One history of inexact MCMC
- MCMC with randomized (estimated) acceptance probability
 - approximate evaluation of the forward map
 - standard- randomized- naïve- exact- approximate-MCMC
- (1/) Separation time as a 'distance' between Markov chains

 $- \tau_{sep} \gg \tau_{IACT} \Rightarrow approximation is 'exact'$

- Scaling of separation time for some (pairs of) algorithms
 - plugging in estimates in r-MCMC is best

Bayesian analysis of inverse problems is simple!

Measurement process: (θ deterministic, $v \sim \pi_n$ random)

$$d = G(\theta, v)$$
$$\simeq A(\theta) + v$$

when A is known forward map

Explore posterior

$$\pi\left(\theta|d\right)\propto\pi_{n}\left(d-A(\theta)
ight)\pi_{\mathrm{pr}}(\theta)$$

Write posterior as

$$\pi(\theta) = \exp\{-V(\theta)\}\$$

where typically 'potential' $V(\theta) = \chi(A(\theta) - d) + \rho(\theta)$ for simple functions χ and ρ

Can evaluate $V(\theta)$ hence $\pi(\theta)$ for any θ – requires evaluation of A, i.e. simulate physics, etc – hence can implement MCMC

That can be expensive to do *exactly*. How inexact can we get away with?

standard MCMC (s-MCMC)

Let $\theta \sim \pi(d\theta)$ be a target variable with density $\pi(\theta)$. Let $Q(\theta, d\theta')$ be a Hastings proposal distribution with density $q(\theta, \theta')$, satisfying $q(\theta, \theta') > 0 \Leftrightarrow q(\theta', \theta) > 0$. Then

$$h(\theta, \theta') = \frac{\pi(\theta')q(\theta', \theta)}{\pi(\theta)q(\theta, \theta')} = \mathbf{e}^{\{V(\theta) - V(\theta')\}} \frac{q(\theta', \theta)}{q(\theta, \theta')} \qquad \alpha(\theta, \theta') = \min\left\{1, h(\theta, \theta')\right\}$$

gives the standard Metropolis Hastings acceptance probability

Algorithm 1 (s-MCMC) At state $\Theta_t = \theta$, simulate Θ_{t+1} as follows:

- 1. Simulate $\theta' \sim q(\theta, \cdot)$.
- 2. With probability $\alpha(\theta, \theta')$ set $\Theta_{t+1} = \theta'$, otherwise set $\Theta_{t+1} = \theta$.

Targets π when the chain is aperiodic (minorization condition) and irreducible, since the simulated transition kernel is in detailed balance with π , i.e.,

$$\pi(\theta)q(\theta,\theta')\alpha(\theta,\theta') = \pi(\theta')q(\theta',\theta)\alpha(\theta',\theta)$$

We call this an *exact* MCMC because it provably targets π .

Observation: must be robust to error in detailed balance

Approximate MCMC

If we have an estimate $V^*(\theta')$ or $V^*_{\theta}(\theta')$ of $V(\theta')$ (Monte Carlo, numerical evaluation, linearization, etc) simply plug that in

$$h^*(\theta, \theta') = \mathbf{e}^{\{V^*(\theta) - V^*(\theta')\}} \frac{q(\theta', \theta)}{q(\theta, \theta')} \qquad \alpha^*(\theta, \theta') = \min\{1, h^*(\theta, \theta')\}$$

and proceed as with s-MCMC.

In general does not target π , may not even have an equilibrium distribution.

We call this a *naïve* algorithm because we have simply plugged estimates into an exact algorithm.

Delayed acceptance uses one step of this inexact algorithm as a *proposal* in a s-MCMC to give an exact algorithm. That requires (exact) evaluation of $V(\theta)$ so we gain a speedup, but not a better scaling.

F Nicholls 1997, Christen F 2005

Penalty method (Ceperley and Dewing 1999)

(from now on wlog take proposal as symmetric)

Suppose we have a normal estimator (e.g. in QMC)

$$\hat{D}_{\theta,\theta'} \sim N(V(\theta') - V(\theta), \sigma^2(\theta, \theta'))$$

with known $\sigma^2 \neq 0$.

The naïve acceptance probability

$$\alpha_{\mathsf{N}}(\theta, \theta') = \min\left\{1, \mathrm{e}^{\hat{D}}\right\}$$

provably does not target π .

However, the corrected acceptance probability

$$\alpha_P(\theta, \theta') = \min\left\{1, \mathbf{e}^{\hat{D} - \sigma^2/2}\right\}$$

gives a kernel that is in detailed balance with π , so is exact (!)

Ceperley and Dewing 1999 solved an integral equation to show this. We will prove this more simply, and generalize to a wider class of (randomized) algorithms.

Randomized-acceptance MCMC (r-MCMC)

Target $\pi(\theta)$, proposal $q(\theta, \theta')$ as before. Let X be a scalar random variable with probability density $\xi(x; \theta, \theta')$ with support W independent of θ and θ' , and $f: W \to W$ an *involution*, i.e. f satisfies f(f(x)) = x, that has a derivative at ξ -a.e. $x \in W$.

The involution f can be thought of as pairing points (x, f(x)) in W.

$$h_{\xi}(\theta, \theta'; x) = h(\theta, \theta') \frac{\xi(f(x); \theta', \theta)}{\xi(x; \theta, \theta')} |f'(x)| \qquad \alpha_{\xi}(\theta, \theta'; x) = \min\left\{1, h_{\xi}(\theta, \theta'; x)\right\}$$

is a randomized acceptance probability, that depends on the value of X. Then the r-algorithm

Algorithm 2 (r-MCMC) At state $\Theta_t = \theta$, simulate Θ_{t+1} as follows:

1. Simulate $\theta' \sim q(\theta, \cdot)$ and $x \sim \xi(\cdot; \theta, \theta')$.

2. With probability $\alpha_{\xi}(\theta, \theta'; x)$ set $\Theta_{t+1} = \theta'$, otherwise set $\Theta_{t+1} = \theta$.

targets π .

r-MCMC satisfies detailed balance on average

Acceptance probability is $\alpha_{\xi}(\theta, \theta') = \int_{W} \xi(x; \theta, \theta') \alpha_{\xi}(\theta, \theta'; x) dx$ and we wish to establish detailed balance, i.e.,

$$\pi(\theta)q(\theta,\theta')\alpha_{\xi}(\theta,\theta') = \pi(\theta')q(\theta',\theta)\alpha_{\xi}(\theta',\theta).$$

Multiply expression for α_{ξ} by $\pi(\theta)q(\theta,\theta')\xi(x;\theta,\theta')$

 $\pi(\theta)q(\theta,\theta')\xi(x;\theta,\theta')\alpha_{\xi}(\theta,\theta';x) = \min\left\{\pi(\theta)q(\theta,\theta')\xi(x;\theta,\theta'),\pi(\theta')q(\theta',\theta)\xi(f(x);\theta',\theta)|f'(x)|\right\}$ similarly,

 $\pi(\theta')q(\theta',\theta)\xi(y;\theta',\theta)\alpha_{\xi}(\theta',\theta;y) = \min \left\{\pi(\theta')q(\theta',\theta)\xi(y;\theta',\theta), \pi(\theta)q(\theta,\theta')\xi(f(y);\theta,\theta')|f'(y)|\right\}$ and set y = f(x) so x = f(y) and f'(y) = 1/f'(x) to get $\pi(\theta')q(\theta',\theta)\xi(f(x);\theta',\theta)\alpha_{\xi}(\theta',\theta;f(x))|f'(x)| = \min \left\{\pi(\theta')q(\theta',\theta)\xi(f(x);\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)| = \min \left\{\pi(\theta')q(\theta',\theta)\xi(f(x);\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')\xi(x;\theta',\theta)|f'(x)|, \pi(\theta)q(\theta,\theta')|f'(x)|, \pi$

 $\pi(\theta)q(\theta,\theta')\alpha_{\xi}(\theta,\theta';x)\xi(x;\theta,\theta') = \pi(\theta')q(\theta',\theta)\alpha_{\xi}(\theta',\theta;f(x))\xi(f(x);\theta',\theta)|f'(x)|$

Integrating over all x in W establishes detailed balance.

Further properties of r-MCMC

- Under weak conditions, the r-chain to inherits π -irreducibility and minorization from the corresponding s-chain. Can be used to establish ergodicity in particular cases
- Results hold under the generalization from scalar to multivariate X. That is, if $X = (X_1, ..., X_K)$ has multivariate density $\xi(x; \theta, \theta')$ with support W in \Re^K , and f is an involution of W having Jacobian f'(x) with determinant |f'(x)|, then the r-algorithm targets π .
- r-MCMC is, in general, less statistically efficient than the s-MCMC from which it is derived because the r-chain below the s-chain in Peskin ordering. Hence r-chain estimators have greater asymptotic variance than corresponding s-chain estimators.

Nicholls F Muir Watt Coupled MCMC with a randomized acceptance probability archiv.stat.co 2012

A simple example

An s-algorithm targeting $\pi(\theta)$ with symmetric proposal $q(\theta, \theta') = q(\theta', \theta)$ has acceptance probability

$$\alpha(\theta, \theta') = \min\left\{1, \frac{\pi(\theta')}{\pi(\theta)}\right\}.$$

Consider the (randomized) estimate X of $\log(\pi(\theta')/\pi(\theta))$ with normal density $\xi(x; \theta, \theta') = N(x; \log(\pi(\theta')/\pi(\theta)), 1)$, and the identity involution f(x) = x, to get the following r-algorithm:

Algorithm 3 (toy r-MCMC) At state $\Theta_t = \theta$, simulate Θ_{t+1} as follows:

- 1. Simulate $\theta' \sim q(\theta, \cdot)$ and $X \sim N(\log(\pi(\theta')/\pi(\theta)), 1)$.
- 2. With probability

$$\alpha_{\xi}(\theta, \theta'; x) = \min\left\{1, \left(\frac{\pi(\theta')}{\pi(\theta)}\right)^{1-2X}\right\}$$

set $\Theta_{t+1} = \theta'$, otherwise set $\Theta_{t+1} = \theta$.

As shown above, this algorithm satisfies detailed balance with respect to π .

The penalty method is a r-MCMC

The acceptance probability in the s-algorithm is $\min(1, \exp(D(\theta, \theta')))$. Let X have a normal density, $\xi(x; \theta, \theta') = N(x; 0, \sigma^2)$ and take for f the involution $f(x) = \sigma^2 - x$. It follows that

$$\frac{\xi(f(x);\theta',\theta)}{\xi(x;\theta',\theta)}|f'(x)| = e^{x-\sigma^2/2}$$

and hence the acceptance probability in the r-algorithm is

$$\alpha_{\xi}(\theta, \theta'; x) \min\left\{1, \mathrm{e}^{D(\theta, \theta') + x - \sigma^2/2}\right\}$$

which is the penalty method.

Other examples of r-algorithms:

- 'universal rule' of Ball et al 2003 (uses two randomizations)
- single variable exchange of Murray and MacKay 2006 (identity involution)

Penalty estimate method (Ceperley and Dewing 1999)

As before, suppose we have a normal estimator

$$\hat{D}_{\theta,\theta'} \sim N(V(\theta') - V(\theta), \sigma^2(\theta, \theta'))$$

but we don't know $\sigma^2 \neq 0$. Instead we plug in an estimate s^2 of σ^2 .

Algorithm 4 (penalty estimate method) At state $\Theta_t = \theta$, simulate Θ_{t+1} as follows:

- 1. Simulate $\theta' \sim q(\theta, \cdot)$ and $\hat{D}_{\theta, \theta'} \sim N(V(\theta') V(\theta), \sigma^2(\theta, \theta'))$. Form an independent unbiased variance estimate s^2 of σ^2
- 2. With probability

$$\alpha_{\hat{P}}(\theta, \theta') = \min\left\{1, \mathbf{e}^{\hat{D} - s^2/2}\right\}$$

set $\Theta_{t+1} = \theta'$, otherwise set $\Theta_{t+1} = \theta$.

This algorithm is inexact, so can't be a r-algorithm. However it is practical and probably useful. How useful? I claim it is better than a naïve s-MCMC.

Separation times and approximate-target MCMC

We analyze a coupling algorithm to show that the naive algorithm gives *exactly the same* MCMC samples as the exact penalty method, out to O(m) steps, where m is the sample size used in D-estimation.

 $\hat{D}_{\theta,\theta'}$ is an estimator for $D(\theta,\theta') = V(\theta) - V(\theta')$ with cdf $G_m(\cdot;\theta,\theta')$, that need not be unbiased or normal. We do assume it satisfies a CLT, so that

$$G_m(x) = \Phi\left(\frac{x-D}{\sigma/\sqrt{m}}\right) + O(m^{-1/2}).$$

For example, if $\hat{D}_{\theta,\theta'}$ is computed from a realization of a geometrically ergodic Markov chain $W = \{W_i\}_{i=0}^{\infty}$ and

$$\hat{D}_{\theta,\theta'} = \frac{1}{m} \sum_{i=1}^{m} W_i,$$

then the CLT holds, subject to mild additional conditions specified in Kontoyiannis and Meyn (2003).

Coupling algorithm

The algorithm simulates an exact method and also an indicator variable $B_t \in \{0, 1\}, t = 1, 2, ...$ marking the times at which the approximate chain separates from the exact chain.

Algorithm 5 (Coupling algorithm: exact and arbitrary algorithm) At state $\Theta_t = \theta$, simulate B_t and Θ_{t+1} as follows:

- 1. Simulate $\theta' \sim q(\theta, \cdot)$ and other quantities δ as needed.
- 2. Simulate $U_t \sim U(0, 1)$.

Evaluate exact-chain acceptance probability $\alpha_E(\theta, \theta')$. If $V_t \leq \alpha_P$ then set $\Theta_{t+1} = \theta'$, otherwise set $\Theta_{t+1} = \theta$.

3. Evaluate arbitrary-chain acceptance probability $\alpha_A(\theta, \theta')$. If

```
\min(\alpha_{\mathcal{A}}, \alpha_{\mathcal{E}}) < V_t \le \max(\alpha_{\mathcal{A}}, \alpha_{\mathcal{E}})
```

then set $B_t = 1$ and otherwise set $B_t = 0$.

The Θ_t chain targets π exactly, while the B_t marks separations.

Mean time to separation

We now give a bound on the mean time to separation, assuming that the chains start in equilibrium.

Suppose $\Theta_0 \sim \pi$, so that the B_t process is stationary. Let $T = \min\{t > 0; B_t = 1\}$ be the first separation time, and assume $\Pr(T < \infty) = 1$. We call $T|B_0 = 1$ the separation return-time. Let $\rho = \mathbb{E}(T|B_0 = 1)$ be the mean separation return-time. By Kac's Recurrence Theorem $\rho = 1/\Pr(B_0 = 1)$. Let

$$\mathbb{E}|\alpha_E - \alpha_A| = \int_{E^2 \times R} |\alpha_E(\theta, \theta'; \delta) - \alpha_A(\theta, \theta'; \delta)| g_m(\delta) d\delta Q(\theta, d\theta') \pi(d\theta).$$

SO

$$\rho = \frac{1}{\mathbb{E}|\alpha_E - \alpha_A|}$$

The separation time from the initialization $\Theta_0 = \theta_0$ is $\tau(\theta_0) = \mathbb{E}(T|\Theta_0 = \theta_0)$. Let $\tau = \int_E \tau(\theta)\pi(d\theta)$ give the mean separation time starting in equilibrium. The return time bounds the separation time by $2\tau \ge \rho$ as the separation time around a fixed time is length-biased.

Scaling of separation time

If the CLT holds for $\hat{D}_{\theta,\theta'}$, then it can be coupled to a normal estimator.

$$\hat{D}_{\theta,\theta'} = D + \frac{\sigma}{\sqrt{m}} \frac{\hat{D} - D}{\sigma/\sqrt{m}} = D + \frac{\sigma}{\sqrt{m}} \Phi^{-1}(G_m(\hat{D}) + O(m^{-1/2}))$$
$$= D + \frac{\sigma}{\sqrt{m}} \Phi^{-1}(G_m(\hat{D})) + O(1/m),$$

where $\Phi^{-1}(G_m(\hat{D}))$ is a standard normal random variable.

Coupling the penalty method (exact) and naive algorithm shows that the mean separation time grows at least linearly with increasing m, since $|\alpha_P - \alpha_N| = O(1/m)$.

If we couple the naive algorithm to the standard algorithm, s-MCMC, with acceptance probability α_S , we find $\mathbb{E}|\alpha_S - \alpha_N| = O(1/\sqrt{m})$. The naive algorithm is therefore closer to the exact penalty method, in the 'distance' $\mathbb{E}|\alpha - \alpha_N|$ than it is to the exact standard algorithm.

The penalty estimate method achieves separation times of $O(m^{3/2})$ at the price of stronger conditions on the estimator \hat{D} .

Example

A very simple example for which we can compute $\Phi^{-1}(G_m(x))$

$$\pi(\theta) = p MVN(\theta; \mu_1, \Sigma_1) + (1-p)MVN(\theta; \mu_2, \Sigma_2),$$

 $\mu_1 = (3,3)^T$, $\mu_2 = (6,6)^T$, $[\Sigma_a]_{i,i} = 1$ for a, i = 1, 2, and $[\Sigma_1]_{1,2} = 1/2$ and $[\Sigma_2]_{1,2} = -0.5$.

Simulations of the MCMC coupling-separation algorithm $\Theta_1 + \Theta_2$ in the penalty method (solid lines) and naive algorithm (dashed lines), (left) with Random-Walk Metropolis updates and (right) with independence-sampler updates. Target density is a mixture of bivariate normals, D-estimator using m = 8 samples at each update.

Separation time

Two estimates of ρ are computed:

$$\hat{\rho}_{1} = \frac{1}{K^{-1} \sum_{t=1}^{K} |\alpha_{P}(\theta_{t}, \theta_{t}'; y_{t}) - \alpha_{N}(\theta_{t}, \theta_{t}'; x_{t})|}$$

and

$$\hat{\rho}_2 = S^{-1} \sum_{i=1}^{S} (T_i - T_{i-1})$$

where $T_i = \min\{t > T_{i-1}; B_t = 1\}$ with $T_0 = 0$ re the separation times in the coupling algorithm. The $\hat{\rho}_1$ estimator has lower variance than the $\hat{\rho}_2$ estimator. The τ -estimator is the mean of 1000 realizations of T_1 .

(left) Estimated separation times ρ and τ between the exact Penalty Method and the approximate Naive Algorithm, as a function of estimator sample size m, for Random-Walk (solid lines) and Independence sampler (dashed lines) updates. Two estimates of ρ , $\hat{\rho}_1$ (left error bar in each group of three) and $\hat{\rho}_2$ (central error bar) and $\hat{\tau}$ (right error bar) are plotted for each sample and each m with a linear regression of the $\hat{\rho}_2$ estimates. (rght) Estimated separation times, as above, between Penalty Method and approximate Penalty Estimate chains regressed with $\hat{\rho}_1 = cm^{3/2}$.

Conclusions

phew!