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Outline

How to compute approximately, and get exactly the right answer ...

• Prelude

– MCMC for IP

– One history of inexact MCMC

• MCMC with randomized (estimated) acceptance probability

– approximate evaluation of the forward map

– standard- randomized- näıve- exact- approximate-MCMC

• (1/) Separation time as a ‘distance’ between Markov chains

– τsep � τIACT ⇒ approximation is ‘exact’

• Scaling of separation time for some (pairs of) algorithms

– plugging in estimates in r-MCMC is best



Bayesian analysis of inverse problems is simple!

Measurement process: (θ deterministic, v ∼ πn random)

d = G (θ, v)

' A(θ) + v

when A is known forward map

Explore posterior

π (θ|d) ∝ πn (d−A(θ))πpr(θ)

Write posterior as

π (θ) = exp {−V (θ)}

where typically ‘potential’ V (θ) = χ(A(θ)− d) + ρ(θ) for simple functions χ and ρ

Can evaluate V (θ) hence π(θ) for any θ – requires evaluation of A, i.e. simulate physics, etc

– hence can implement MCMC

That can be expensive to do exactly. How inexact can we get away with?



standard MCMC (s-MCMC)

Let θ ∼ π(dθ) be a target variable with density π(θ). Let Q(θ, dθ′) be a Hastings proposal

distribution with density q(θ, θ′), satisfying q(θ, θ′) > 0⇔ q(θ′, θ) > 0. Then

h(θ, θ′) =
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
= e{V (θ)−V (θ′)} q(θ

′, θ)

q(θ, θ′)
α(θ, θ′) = min

{
1, h(θ, θ′)

}
gives the standard Metropolis Hastings acceptance probability

Algorithm 1 (s-MCMC) At state Θt = θ, simulate Θt+1 as follows:

1. Simulate θ′ ∼ q(θ, ·).

2. With probability α(θ, θ′) set Θt+1 = θ′, otherwise set Θt+1 = θ.

Targets π when the chain is aperiodic (minorization condition) and irreducible, since the

simulated transition kernel is in detailed balance with π, i.e.,

π(θ)q(θ, θ′)α(θ, θ′) = π(θ′)q(θ′, θ)α(θ′, θ)

We call this an exact MCMC because it provably targets π.

Observation: must be robust to error in detailed balance



Approximate MCMC

If we have an estimate V ∗(θ′) or V ∗θ (θ′) of V (θ′) (Monte Carlo, numerical evaluation, lin-

earization, etc) simply plug that in

h∗(θ, θ′) = e{V
∗(θ)−V ∗(θ′)} q(θ

′, θ)

q(θ, θ′)
α∗(θ, θ′) = min

{
1, h∗(θ, θ′)

}
and proceed as with s-MCMC.

In general does not target π, may not even have an equilibrium distribution.

We call this a näıve algorithm because we have simply plugged estimates into an exact

algorithm.

Delayed acceptance uses one step of this inexact algorithm as a proposal in a s-MCMC to

give an exact algorithm. That requires (exact) evaluation of V (θ) so we gain a speedup, but

not a better scaling.

F Nicholls 1997, Christen F 2005



Penalty method (Ceperley and Dewing 1999)

(from now on wlog take proposal as symmetric)

Suppose we have a normal estimator (e.g. in QMC)

D̂θ,θ′ ∼ N(V (θ′)− V (θ), σ2(θ, θ′))

with known σ2 6= 0.

The näıve acceptance probability

αN(θ, θ′) = min
{

1, eD̂
}

provably does not target π.

However, the corrected acceptance probability

αP (θ, θ′) = min
{

1, eD̂−σ
2/2
}

gives a kernel that is in detailed balance with π, so is exact (!)

Ceperley and Dewing 1999 solved an integral equation to show this. We will prove this more

simply, and generalize to a wider class of (randomized) algorithms.



Randomized-acceptance MCMC (r-MCMC)

Target π(θ), proposal q(θ, θ′) as before. Let X be a scalar random variable with probability

density ξ(x; θ, θ′) with support W independent of θ and θ′, and f : W → W an involution,

i.e. f satisfies f(f(x)) = x, that has a derivative at ξ-a.e. x ∈W .

The involution f can be thought of as pairing points (x, f(x)) in W .

hξ(θ, θ
′;x) = h(θ, θ′)

ξ(f(x); θ′, θ)

ξ(x; θ, θ′)
|f ′(x)| αξ(θ, θ

′;x) = min
{

1, hξ(θ, θ
′;x)

}
is a randomized acceptance probability, that depends on the value of X.

Then the r-algorithm

Algorithm 2 (r-MCMC) At state Θt = θ, simulate Θt+1 as follows:

1. Simulate θ′ ∼ q(θ, ·) and x ∼ ξ(·; θ, θ′).

2. With probability αξ(θ, θ
′;x) set Θt+1 = θ′, otherwise set Θt+1 = θ.

targets π.



r-MCMC satisfies detailed balance on average

Acceptance probability is αξ(θ, θ
′) =

∫
W ξ(x; θ, θ′)αξ(θ, θ

′;x)dx and we wish to establish

detailed balance, i.e.,

π(θ)q(θ, θ′)αξ(θ, θ
′) = π(θ′)q(θ′, θ)αξ(θ

′, θ).

Multiply expression for αξ by π(θ)q(θ, θ′)ξ(x; θ, θ′)

π(θ)q(θ, θ′)ξ(x; θ, θ′)αξ(θ, θ′;x) = min {π(θ)q(θ, θ′)ξ(x; θ, θ′), π(θ′)q(θ′, θ)ξ(f(x); θ′, θ)|f ′(x)|}

similarly,

π(θ′)q(θ′, θ)ξ(y; θ′, θ)αξ(θ′, θ; y) = min {π(θ′)q(θ′, θ)ξ(y; θ′, θ), π(θ)q(θ, θ′)ξ(f(y); θ, θ′)|f ′(y)|}

and set y = f(x) so x = f(y) and f ′(y) = 1/f ′(x) to get

π(θ′)q(θ′, θ)ξ(f(x); θ′, θ)αξ(θ′, θ; f(x))|f ′(x)| = min {π(θ′)q(θ′, θ)ξ(f(x); θ′, θ)|f ′(x)|, π(θ)q(θ, θ′)ξ(x; θ, θ′)} .

which has the RHS equal to the RHS of first eqn.

Hence ‘very detailed balance’

π(θ)q(θ, θ′)αξ(θ, θ
′;x)ξ(x; θ, θ′) = π(θ′)q(θ′, θ)αξ(θ

′, θ; f(x))ξ(f(x); θ′, θ)|f ′(x)|

Integrating over all x in W establishes detailed balance.



Further properties of r-MCMC

• Under weak conditions, the r-chain to inherits π-irreducibility and minorization from the

corresponding s-chain. Can be used to establish ergodicity in particular cases

• Results hold under the generalization from scalar to multivariate X. That is, if X =

(X1, ..., XK) has multivariate density ξ(x; θ, θ′) with support W in <K , and f is an

involution of W having Jacobian f ′(x) with determinant |f ′(x)|, then the r-algorithm

targets π.

• r-MCMC is, in general, less statistically efficient than the s-MCMC from which it is derived

because the r-chain below the s-chain in Peskin ordering. Hence r-chain estimators have

greater asymptotic variance than corresponding s-chain estimators.

Nicholls F Muir Watt Coupled MCMC with a randomized acceptance probability archiv.stat.co 2012



A simple example

An s-algorithm targeting π(θ) with symmetric proposal q(θ, θ′) = q(θ′, θ) has acceptance

probability

α(θ, θ′) = min

{
1,
π(θ′)

π(θ)

}
.

Consider the (randomized) estimate X of log(π(θ′)/π(θ)) with normal density ξ(x; θ, θ′) =

N(x; log(π(θ′)/π(θ)), 1), and the identity involution f(x) = x, to get the following r-algorithm:

Algorithm 3 (toy r-MCMC) At state Θt = θ, simulate Θt+1 as follows:

1. Simulate θ′ ∼ q(θ, ·) and X ∼ N(log(π(θ′)/π(θ)), 1).

2. With probability

αξ(θ, θ
′;x) = min

{
1,

(
π(θ′)

π(θ)

)1−2X
}

set Θt+1 = θ′, otherwise set Θt+1 = θ.

As shown above, this algorithm satisfies detailed balance with respect to π.



The penalty method is a r-MCMC

The acceptance probability in the s-algorithm is min(1, exp(D(θ, θ′))). Let X have a normal

density, ξ(x; θ, θ′) = N(x; 0, σ2) and take for f the involution f(x) = σ2 − x. It follows that

ξ(f(x); θ′, θ)

ξ(x; θ′, θ)
|f ′(x)| = ex−σ

2/2

and hence the acceptance probability in the r-algorithm is

αξ(θ, θ
′;x) min

{
1, eD(θ,θ′)+x−σ2/2

}
which is the penalty method.

Other examples of r-algorithms:

• ‘universal rule’ of Ball et al 2003 (uses two randomizations)

• single variable exchange of Murray and MacKay 2006 (identity involution)



Penalty estimate method (Ceperley and Dewing 1999)

As before, suppose we have a normal estimator

D̂θ,θ′ ∼ N(V (θ′)− V (θ), σ2(θ, θ′))

but we don’t know σ2 6= 0. Instead we plug in an estimate s2 of σ2.

Algorithm 4 (penalty estimate method) At state Θt = θ, simulate Θt+1 as follows:

1. Simulate θ′ ∼ q(θ, ·) and D̂θ,θ′ ∼ N(V (θ′) − V (θ), σ2(θ, θ′)). Form an independent

unbiased variance estimate s2 of σ2

2. With probability

αP̂ (θ, θ′) = min
{

1, eD̂−s
2/2
}

set Θt+1 = θ′, otherwise set Θt+1 = θ.

This algorithm is inexact, so can’t be a r-algorithm. However it is practical and probably

useful. How useful? I claim it is better than a näıve s-MCMC.



Separation times and approximate-target MCMC

We analyze a coupling algorithm to show that the naive algorithm gives exactly the same

MCMC samples as the exact penalty method, out to O(m) steps, where m is the sample size

used in D-estimation.

D̂θ,θ′ is an estimator for D(θ, θ′) = V (θ) − V (θ′) with cdf Gm(·; θ, θ′), that need not be

unbiased or normal. We do assume it satisfies a CLT, so that

Gm(x) = Φ

(
x−D
σ/
√
m

)
+O(m−1/2).

For example, if D̂θ,θ′ is computed from a realization of a geometrically ergodic Markov chain

W = {Wi}∞i=0 and

D̂θ,θ′ =
1

m

m∑
i=1

Wi,

then the CLT holds, subject to mild additional conditions specified in Kontoyiannis and Meyn

(2003).



Coupling algorithm

The algorithm simulates an exact method and also an indicator variable Bt ∈ {0, 1}, t = 1, 2, ...

marking the times at which the approximate chain separates from the exact chain.

Algorithm 5 (Coupling algorithm: exact and arbitrary algorithm) At state Θt = θ, sim-

ulate Bt and Θt+1 as follows:

1. Simulate θ′ ∼ q(θ, ·) and other quantities δ as needed.

2. Simulate Ut ∼ U(0, 1).

Evaluate exact-chain acceptance probability αE(θ, θ′).

If Vt ≤ αP then set Θt+1 = θ′, otherwise set Θt+1 = θ.

3. Evaluate arbitrary-chain acceptance probability αA(θ, θ′).

If

min(αA, αE) < Vt ≤ max(αA, αE)

then set Bt = 1 and otherwise set Bt = 0.

The Θt chain targets π exactly, while the Bt marks separations.



Mean time to separation

We now give a bound on the mean time to separation, assuming that the chains start in

equilibrium.

Suppose Θ0 ∼ π, so that the Bt process is stationary. Let T = min{t > 0;Bt = 1} be

the first separation time, and assume Pr(T < ∞) = 1. We call T |B0 = 1 the separation

return-time. Let ρ = E(T |B0 = 1) be the mean separation return-time. By Kac’s Recurrence

Theorem ρ = 1/Pr(B0 = 1). Let

E|αE − αA| =
∫
E2×R

|αE(θ, θ′; δ)− αA(θ, θ′; δ)| gm(δ)dδQ(θ, dθ′)π(dθ).

so

ρ =
1

E|αE − αA|
.

The separation time from the initialization Θ0 = θ0 is τ(θ0) = E(T |Θ0 = θ0). Let τ =∫
E τ(θ)π(dθ) give the mean separation time starting in equilibrium. The return time bounds

the separation time by 2τ ≥ ρ as the separation time around a fixed time is length-biased.



Scaling of separation time

If the CLT holds for D̂θ,θ′ , then it can be coupled to a normal estimator.

D̂θ,θ′ = D +
σ√
m

D̂ −D
σ/
√
m

= D +
σ√
m

Φ−1(Gm(D̂) +O(m−1/2))

= D +
σ√
m

Φ−1(Gm(D̂)) +O(1/m),

where Φ−1(Gm(D̂)) is a standard normal random variable.

Coupling the penalty method (exact) and naive algorithm shows that the mean separation

time grows at least linearly with increasing m, since |αP − αN | = O(1/m).

If we couple the naive algorithm to the standard algorithm, s-MCMC, with acceptance prob-

ability αS , we find E|αS − αN | = O(1/
√
m). The naive algorithm is therefore closer to the

exact penalty method, in the ‘distance’ E|α− αN| than it is to the exact standard algorithm.

The penalty estimate method achieves separation times of O(m3/2) at the price of stronger

conditions on th eestimator D̂.



Example

A very simple example for which we can compute Φ−1(Gm(x))

π(θ) = p MV N(θ;µ1,Σ1) + (1− p)MVN(θ;µ2,Σ2),

µ1 = (3, 3)T , µ2 = (6, 6)T , [Σa]i,i = 1 for a, i = 1, 2, and [Σ1]1,2 = 1/2 and [Σ2]1,2 = −0.5.

Simulations of the MCMC coupling-separation algorithm Θ1+Θ2 in the penalty method (solid

lines) and naive algorithm (dashed lines), (left) with Random-Walk Metropolis updates and

(right) with independence-sampler updates. Target density is a mixture of bivariate normals,

D-estimator using m = 8 samples at each update.



Separation time

Two estimates of ρ are computed:

ρ̂1 =
1

K−1
∑K

t=1 |αP (θt, θ′t; yt)− αN (θt, θ′t;xt)|

and

ρ̂2 = S−1
S∑
i=1

(Ti − Ti−1)

where Ti = min{t > Ti−1;Bt = 1} with T0 = 0 re the separation times in the coupling

algorithm. The ρ̂1 estimator has lower variance than the ρ̂2 estimator. The τ -estimator is the

mean of 1000 realizations of T1.



(left) Estimated separation times ρ and τ between the exact Penalty Method and the ap-

proximate Naive Algorithm, as a function of estimator sample size m, for Random-Walk (solid

lines) and Independence sampler (dashed lines) updates. Two estimates of ρ, ρ̂1 (left error bar

in each group of three) and ρ̂2 (central error bar) and τ̂ (right error bar) are plotted for each

sample and each m with a linear regression of the ρ̂2 estimates. (rght) Estimated separation

times, as above, between Penalty Method and approximate Penalty Estimate chains regressed

with ρ̂1 = cm3/2.



Conclusions

phew!
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