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The Lasso (a.k.a. L1 regularization)

Consider the linear inverse problem

y = Xβ + ε.

An L1-regularized solution takes a parameter δ and minimizes the
penalized residual

‖Xβ − y‖22 + δ‖β‖1.

This has the advantage that the solutions are typically sparse:
used for variable selection.

When δ = 0 we obtain the least squares solution. As δ →∞,
the solutions approach 0.

We can replace ‖β‖ with a weighted version
∑

i wi |βi |.
Introduced into statistics by Tibshirani (1996) under the name
of ‘the LASSO
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Computing the Lasso

Computational challenge to efficiently compute LASSO solutions
for a range of δ values (i.e. all?).

First observation (from KKT conditions): the set of LASSO
solutions

argminβ{‖Xβ − y‖22 + δ‖β‖1}

for δ ≥ 0 equals the set of solutions to

argminβ{‖Xβ − y‖22 such that ‖β‖1 ≤ λ}

for λ ≥ 0.
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LARS - Lasso algorithm

Let β(λ) denote the optimal solution for a given λ. That is,

β(λ) = argmin‖Xβ − y‖22 such that ‖β‖1 ≤ λ.

It is not too hard to show that β(λ) is piecewise linear (as a
function of λ).

0 OLS

Curve starts at 0 and finishes at the un-penalised solution.
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Lasso computations

Osborne, Presnall and Turlach (2000)
394 citations

Efron, Hastie, Johnstone and Tibshirani (2004)
2909 citations
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The positive Lasso

In many applications (including ours), we require variable
coefficients which are non-negative.

β(λ) = argmin‖Xβ − y‖2 such that β ≥ 0 and ‖β‖ ≤ λ.
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LARS-LASSO

Efron et al. propose a ‘Positive Lasso Lars’ algorithm.

Let β = 0 and c = X′(y − Xβ).
while ‖c‖ > 0

A = {i : ci is maximum}.
Choose the search direction wA = (X′AXA)−11
Move β in direction wA until

an entry becomes negative, OR
new variable(s) join the set of those with maximum ci .

Update c = X′(y − Xβ).
end

Problem: can fail if more than one variable leaves or enters A at
any one time.
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Multiple entries

Is this ‘one-at-a-time’ restriction a problem?

NO: you can always add random noise to break ties.

YES: With a positivity constraint ties appear as part of the
algorithm (not just degenerate data). Also, we ran into problems
with our degenerate models and problems.
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Our algorithm for the positive Lasso

Let β = 0 and c = X′y.
while ‖c‖ > 0

A = {i : ci is maximum}.
Choose the search direction wA = (X′AXA)−11
Find v minimizing ‖XA(vA −wA)‖2 such that

vi ≥ 0 when βi = 0.
Move β in direction v until

an entry goes negative, OR
new variable(s) join the set A

Update c = X′(y − Xβ).
end
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KKT conditions

For each λ we want to find

min
β
‖Xβ − y‖2 such that β ≥ 0 and ‖β‖1 = λ. (†)

From KKT conditions:

β solves (†) if and only if β is feasible and ci is maximal for all i
with βi > 0.
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One step

Consider moving β in direction v. For γ define

βγ = β + γv

so that
cγ = X′(y − Xβγ) = c− γX′Xv.

The conditions that βγ and cγ need to satisfy are then

Feasibility: βγ ≥ 0.

Optimality: cγi maximal for all i such that βγ
i > 0.

Increasing:
∑

βγ >
∑

β.
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Defining the search direction

Define A = {i : ci maximal}. LARS-Lasso algorithm considers the
(unconstrained) search direction w, where wA = (X′AXA)−11.

From above, the actual search direction should be v satisfying

For all i ∈ A such that βi = 0, vi ≥ 0.

For all i ∈ A such that βi > 0 or vi > 0, (X′Xv)i = 1.

For all i ∈ A, (X′Xv)i ≥ 1.

For all i 6∈ A, vi = 0.

These are the KKT conditions for the constrained problem

min
v
‖X(vA −wA)‖ such that βi = 0⇒ vi ≥ 0

where vi = 0 for all i 6∈ A.
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An algorithm for the positive Lasso

Let β = 0 and c = X′y.
while ‖c‖ > 0

A = {i : ci is maximum}.
Choose the search direction wA = (X′AXA)−11
Find v minimizing ‖XA(vA −wA)‖2 such that

vi ≥ 0 when βi = 0.
Move β in direction v until

an entry goes negative, OR
new variable(s) join the set A

Update c = X′(y − Xβ).
end
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Phylogenetics

David Bryant



Application: linear models in phylogenetics

Each edge in the tree corresponds to a split (bipartition) of the
objects into two parts. These splits and their weights determine
evolutionary distances between the objects:
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y contains the observed distances between objects;

X indicates which splits/branches separate which pairs;

β is the vector of split/branch weights to be inferred.

y = Xβ + ε
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Application: phylogenetic networks

Most collections of splits do not encode a tree, however they can
be represented using a split network.
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Useful for data exploration since we can depict conflicting signals,
and represent the amount of noise∗.
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Phylogenetic networks
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From English accents...
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...to Swedish worms.
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From the origin of modern wheat....
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to the origin of life.
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Networks and overfitting

With phylogenetic networks we intentionally over-fit the data.

In practice, many variables (splits) are eliminated using NNLS.

A large component of my student Alethea Rea’s Ph.D. thesis was
devoted to methods for cleaning up the remainder: the Lasso was
an obvious choice.
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Numerical issues

Let n be the number of objects. Then

X is
(n
2

)
×
(n
2

)
.

X′X typically poorly conditioned.

X not sparse, but structured, so efficient algorithms for Xv,
X′v.

(X′X)−1 sparse.
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Numerical issues

Let β = 0 and c = X′y.
while ‖c‖ > 0

A = {i : ci is maximum}.
Choose the search direction wA = (X′AXA)−11
Find v minimizing ‖XA(vA −wA)‖2 such that

vi ≥ 0 when βi = 0.
Move β in direction v until

an entry goes negative, OR
new variable(s) join the set A

Update c = X′(y − Xβ).
end
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Algorithm steps with numerical issues

Let β = 0 and c = X′y.
while ‖c‖ > 0

A = {i : ci is maximum}.
Choose the search direction wA = (X′AXA)−11
Find v minimizing ‖XA(vA −wA)‖2 such that

vi ≥ 0 when βi = 0.
Move β in direction v until

an entry goes negative, OR
new variable(s) join the set A

Update c = X′(y − Xβ).
end
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Strategies

The key computation is the choice of search direction:

min
v
‖XA(vA −wA)‖2 such that βi = 0⇒ vi ≥ 0.

Started with PGCG (thanks to John) but had problems with
conditioning of (X′AXA) and with degeneracy

‘Regressed’ to an active set method. Made use of the sparseness of
(X′X)−1, PCG and the Woodbury formula to solve sub-problems.
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Simple example: full network
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Simple example: lasso networks
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Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks

David Bryant



Simple example: lasso networks
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Open problems

1 Making a choice of λ.

2 Weights within the penalty function (adaptive lasso?)

3 More general error distributions.
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LASSO sampling

What I like most about the LARS and LARS-Lasso algorithm is
that you effectively get an estimate for all possible values of λ:
these are the points on the path β.

Lasso-LARS sampler for
π(β|y, λ)

would produce a ‘nice’ function β : < −→ <n such that for each λ,
β(λ) has the conditional marginal distribution

β(λ) ∼ π(β|y, λ).

Goal:

1 Sample β(λ0) from π(β|y, λ0).

2 Remainder of β(λ) computed deterministically from β(λ0)
(e.g. numerically).
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Summary

We propose a way to ‘correct’ the LARS-positive lasso algorithm to
account for degeneracies.

Motivation was applications to phylogenetic networks, though we
are exploring other applications.
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