How to lasso positively, quickly and correctly

David Bryant

University of Otago

SUQ 2013

David Bryant

The Lasso (a.k.a. L_1 regularization)

Consider the linear inverse problem

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}.$$

An L_1 -regularized solution takes a parameter δ and minimizes the penalized residual

$$\|\mathbf{X}\boldsymbol{\beta}-\mathbf{y}\|_2^2+\delta\|\boldsymbol{\beta}\|_1.$$

- This has the advantage that the solutions are typically sparse: used for variable selection.
- When $\delta = 0$ we obtain the least squares solution. As $\delta \to \infty$, the solutions approach **0**.
- We can replace $\|\beta\|$ with a weighted version $\sum_i w_i |\beta_i|$.
- Introduced into statistics by Tibshirani (1996) under the name of 'the LASSO

Computational challenge to efficiently compute LASSO solutions for a range of δ values (i.e. all?).

First observation (from KKT conditions): the set of LASSO solutions

$$\operatorname{argmin}_{\boldsymbol{\beta}} \{ \| \mathbf{X} \boldsymbol{\beta} - \mathbf{y} \|_{2}^{2} + \delta \| \boldsymbol{\beta} \|_{1} \}$$

for $\delta \geq \mathbf{0}$ equals the set of solutions to

$$\operatorname{argmin}_{\boldsymbol{\beta}}\{\|\mathbf{X}\boldsymbol{\beta}-\mathbf{y}\|_2^2 \text{ such that } \|\boldsymbol{\beta}\|_1 \leq \lambda\}$$

for $\lambda \geq 0$.

Let $\beta(\lambda)$ denote the optimal solution for a given λ . That is,

$$oldsymbol{eta}(\lambda) = \operatorname{argmin} \| oldsymbol{X} oldsymbol{eta} - oldsymbol{y} \|_2^2$$
 such that $\| oldsymbol{eta} \|_1 \leq \lambda$.

It is not too hard to show that $\beta(\lambda)$ is piecewise linear (as a function of λ).

Curve starts at **0** and finishes at the un-penalised solution.

Osborne, Presnall and Turlach (2000)

394 citations

Efron, Hastie, Johnstone and Tibshirani (2004)

2909 citations

David Bryant

In many applications (including ours), we require variable coefficients which are non-negative.

$$\boldsymbol{\beta}(\lambda) = \operatorname{argmin} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|^2$$
 such that $\boldsymbol{\beta} \ge \mathbf{0}$ and $\|\boldsymbol{\beta}\| \le \lambda$.

Efron et al. propose a 'Positive Lasso Lars' algorithm.

```
Let \beta = \mathbf{0} and \mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\beta).

while \|\mathbf{c}\| > 0

\mathcal{A} = \{i : \mathbf{c}_i \text{ is maximum}\}.

Choose the search direction \mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}

Move \beta in direction \mathbf{w}_{\mathcal{A}} until

an entry becomes negative, OR

new variable(s) join the set of those with maximum \mathbf{c}_i.

Update \mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\beta).

end
```

Problem: can fail if more than one variable leaves or enters \mathcal{A} at any one time.

Is this 'one-at-a-time' restriction a problem?

NO: you can always add random noise to break ties.

YES: With a positivity constraint ties appear as part of the algorithm (not just degenerate data). Also, we ran into problems with our degenerate models and problems.

Let $\beta = 0$ and $\mathbf{c} = \mathbf{X}'\mathbf{y}$. while $\|c\| > 0$ $\mathcal{A} = \{i : \mathbf{c}_i \text{ is maximum}\}.$ Choose the search direction $\mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}$ Find **v** minimizing $\|\mathbf{X}_{\mathcal{A}}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\|_2$ such that $\mathbf{v}_i > 0$ when $\boldsymbol{\beta}_i = 0$. Move β in direction **v** until an entry goes negative, OR new variable(s) join the set AUpdate $\mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$. end

For each λ we want to find

$$\min_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2 \text{ such that } \boldsymbol{\beta} \ge \mathbf{0} \text{ and } \|\boldsymbol{\beta}\|_1 = \lambda.$$
 (†)

From KKT conditions:

 β solves (†) if and only if β is feasible and \mathbf{c}_i is maximal for all i with $\beta_i > 0$.

Consider moving β in direction **v**. For γ define

$$oldsymbol{eta}^\gamma = oldsymbol{eta} + \gamma \mathbf{v}$$

so that

$$\mathbf{c}^{\gamma} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^{\gamma}) = \mathbf{c} - \gamma \mathbf{X}' \mathbf{X} \mathbf{v}.$$

The conditions that β^{γ} and \mathbf{c}^{γ} need to satisfy are then

- Feasibility: $\beta^{\gamma} \geq 0$.
- Optimality: \mathbf{c}_i^{γ} maximal for all *i* such that $\beta_i^{\gamma} > 0$.
- Increasing: $\sum \beta^{\gamma} > \sum \beta$.

Define $\mathcal{A} = \{i : \mathbf{c}_i \text{ maximal}\}$. LARS-Lasso algorithm considers the (unconstrained) search direction \mathbf{w} , where $\mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}$.

From above, the actual search direction should be \mathbf{v} satisfying

- For all $i \in \mathcal{A}$ such that $\beta_i = 0$, $\mathbf{v}_i \geq 0$.
- For all $i \in \mathcal{A}$ such that $\beta_i > 0$ or $\mathbf{v}_i > 0$, $(\mathbf{X}'\mathbf{X}\mathbf{v})_i = 1$.
- For all $i \in \mathcal{A}$, $(\mathbf{X}'\mathbf{X}\mathbf{v})_i \geq 1$.
- For all $i \notin A$, $\mathbf{v}_i = 0$.

These are the KKT conditions for the constrained problem

 $\min_{\mathbf{v}} \|\mathbf{X}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\| \text{ such that } \beta_i = 0 \Rightarrow \mathbf{v}_i \ge 0$

where $\mathbf{v}_i = 0$ for all $i \notin \mathcal{A}$.

An algorithm for the positive Lasso

Let $\beta = 0$ and $\mathbf{c} = \mathbf{X}'\mathbf{y}$. while $\|c\| > 0$ $\mathcal{A} = \{i : \mathbf{c}_i \text{ is maximum}\}.$ Choose the search direction $\mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}$ Find **v** minimizing $\|\mathbf{X}_{\mathcal{A}}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\|_2$ such that $\mathbf{v}_i > 0$ when $\boldsymbol{\beta}_i = 0$. Move β in direction **v** until an entry goes negative, OR new variable(s) join the set AUpdate $\mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$. end

3

Application: linear models in phylogenetics

Each edge in the tree corresponds to a split (bipartition) of the objects into two parts. These splits and their weights determine evolutionary distances between the objects:

- y contains the observed distances between objects;
- X indicates which splits/branches separate which pairs;
- β is the vector of split/branch weights to be inferred.

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Most collections of splits do not encode a tree, however they can be represented using a split network.

Useful for data exploration since we can depict conflicting signals, and represent the amount of noise*.

Phylogenetic networks

(日)

э

From English accents...

<ロ> <同> <同> < 回> < 回>

æ

...to Swedish worms.

æ

- ● ● ●

From the origin of modern wheat....

・ロト ・四ト ・ヨト ・ヨト

æ

to the origin of life.

< ≣⇒

David Bryant

With phylogenetic networks we intentionally over-fit the data.

In practice, many variables (splits) are eliminated using NNLS.

A large component of my student Alethea Rea's Ph.D. thesis was devoted to methods for cleaning up the remainder: the Lasso was an obvious choice.

Let n be the number of objects. Then

- X is $\binom{n}{2} \times \binom{n}{2}$.
- X'X typically poorly conditioned.
- X not sparse, but structured, so efficient algorithms for $X\nu,$ $X^{\prime}\nu.$
- $(\mathbf{X}'\mathbf{X})^{-1}$ sparse.

Let $\beta = 0$ and $\mathbf{c} = \mathbf{X}'\mathbf{y}$. while $\|c\| > 0$ $\mathcal{A} = \{i : \mathbf{c}_i \text{ is maximum}\}.$ Choose the search direction $\mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}$ Find **v** minimizing $\|\mathbf{X}_{\mathcal{A}}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\|_2$ such that $\mathbf{v}_i > 0$ when $\boldsymbol{\beta}_i = 0$. Move β in direction **v** until an entry goes negative, OR new variable(s) join the set AUpdate $\mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$. end

Algorithm steps with numerical issues

Let $\beta = 0$ and $\mathbf{c} = \mathbf{X}'\mathbf{y}$. while $\|\mathbf{c}\| > 0$ $\mathcal{A} = \{i : \mathbf{c}_i \text{ is maximum}\}.$ Choose the search direction $\mathbf{w}_{\mathcal{A}} = (\mathbf{X}'_{\mathcal{A}}\mathbf{X}_{\mathcal{A}})^{-1}\mathbf{1}$ Find **v** minimizing $\|\mathbf{X}_{\mathcal{A}}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\|_2$ such that $\mathbf{v}_i \geq 0$ when $\boldsymbol{\beta}_i = 0$. Move β in direction **v** until an entry goes negative, OR new variable(s) join the set \mathcal{A} Update $\mathbf{c} = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$. end

The key computation is the choice of search direction:

$$\min_{\mathbf{v}} \|\mathbf{X}_{\mathcal{A}}(\mathbf{v}_{\mathcal{A}} - \mathbf{w}_{\mathcal{A}})\|_2 \text{ such that } \beta_i = 0 \Rightarrow \mathbf{v}_i \ge 0.$$

Started with PGCG (thanks to John) but had problems with conditioning of $(\mathbf{X}'_{A}\mathbf{X}_{A})$ and with degeneracy

'Regressed' to an active set method. Made use of the sparseness of $(\mathbf{X}'\mathbf{X})^{-1}$, PCG and the Woodbury formula to solve sub-problems.

Simple example: full network

₩10.0

DD_PD670 DD_PD6518 DD_PD668 DD_PD638 DD_PD639 DD0728

₩ 0.0010

	DD0728 DD_PD668
DD_PD6518	DD PD638
	DD ⁻ PD639
	DD ⁻ PD670

₩0.0010

æ

《曰》《聞》《注》《注》

æ

《曰》《聞》《注》《注》

- Making a choice of λ .
- Weights within the penalty function (adaptive lasso?)
- More general error distributions.

LASSO sampling

What I like most about the LARS and LARS-Lasso algorithm is that you effectively get an estimate for *all* possible values of λ : these are the points on the path β .

Lasso-LARS sampler for

 $\pi(\boldsymbol{\beta}|\mathbf{y},\lambda)$

would produce a 'nice' function $\beta : \Re \longrightarrow \Re^n$ such that for each λ , $\beta(\lambda)$ has the conditional marginal distribution

$$\boldsymbol{\beta}(\lambda) \sim \pi(\boldsymbol{\beta}|\mathbf{y},\lambda).$$

Goal:

- Sample $\beta(\lambda_0)$ from $\pi(\beta|\mathbf{y},\lambda_0)$.
- Remainder of β(λ) computed deterministically from β(λ₀) (e.g. numerically).

We propose a way to 'correct' the LARS-positive lasso algorithm to account for degeneracies.

Motivation was applications to phylogenetic networks, though we are exploring other applications.

