DOE/NV/25946--1671

Dynamic Surface Uncertainties Using Laser-based Interferometry

Eric Machorro, NSTec

Southern UQ Working Group Dunedin, New Zealand Jan. 7-10, 2013

Joint work with Aaron Luttman, Jerome Blair, Ed Daykin, and Ding Yuan

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and supported by the Site-Directed Research and Development Program.

Complete List Collaborators & Technical Staff

- Jerry Blair
- Aaron Luttman
- Ding Yuan
- Ed Daykin
- Nathan Sipes
- C.Y. Tom
- Steve Gardener
- Steve Mitchell

A modern interferometer 1. Laser Light Shining on Moving Object Infrared laser bouncing light off the fast moving surface 3. Some kind of device to measure the returning light...

2. Moving Surface

A "Fast" Moving Surface travelling at speed v_b

1. PDV is a Simple, Portable Diagnostic Tool

Concept: Generate a beat signal using fiber transport

Photonic **D**oppler **V**elocimetry (PDV) works by fiber-optic mixing of undoppler-shifted light with doppler-shifted light and measuring the beat frequency

PDV Data Analysis in Frequency Space – an FFT of the raw scope data yields frequency proportional to velocity

A few applications...

Because the diagnostic to works on a wide variety of time scales (1 m/ s to 40 km/s) and is easier to operate than previous tools (e.g. VISAR, Fabry-Perot), it has a wide variety of applications

- Shock physics experiments investigations into Equations-Of-State (EOS) that relate pressure, temperatures, energy, and volume.
- Diagnostic for HE experiments/dynamics
 - CTH (projectile) model verification
 - Expanding ring experiments (accelerometry)
 - High-speed shock-wave propagation models

Example Spectrograms (based on overlapping Fourier transforms of the recorded data)

Classical Approach to Frequency Estimation: Short-term Fourier Transform (STFT)

For each vertical column, find pixel with maximum intensity.

$$\boldsymbol{\omega}_{k} \approx \underset{i=k...k+2^{p}-1}{\operatorname{arg\,max}} \left| FFT(data_{i=k}^{k-1+2^{p}}) \right|$$

Interpolated FFT uses nearby intensities to give fractional pixel values.

National Security Technologies Vision • Service • Partnership

Is there a better way to do estimate the instantaneous frequency of our recorded signal?

Other Methods to Estimate Frequency (i.e., Velocity)

Other Methods: Least-Squares Estimation

Fit
$$y(t) = A(t)\sin(\Phi(t)) + \eta$$

with

$$\Phi(t) = \varphi_0 + \varphi_1(t - t_c) + \varphi_2(t - t_c)^2,$$

$$A(t) = A_0 + A_1(t - t_c).$$

- Recall that with = column Spectrogram gives initial estimate for x_1 . The spectrogram can also provide estimates for x_0, x_2 , and A_0
 - Use linear least squares to yield an initial estimate for the • remaining parameters.
 - Use those starting values to begin the nonlinear least squares ٠ routine.

Another way to analyze PDV: Transforming the data into statistics

A 2^p long "window" of data can be thought of more simply as a discrete Sine function on an interval $[-T_k/2, T_k/2]$ centered at zero:

We have so far .. i. FFT-based methods ii. LS polynomial fitting iii. Spline

Having not even answered our initial question, let's do something more complicated ...

let's ask for estimates in the uncertainty in our methods.

Uncertainty Estimates: Random & Fitting Errors

Difficult to estimate

$$E_{total} \cong \sqrt{c_1^2 \sigma_{noise}^2 + c_2^2 \ddot{v}(t)^2 + c_3^2 \ddot{A}(t)^2}$$

Random error due to oscilloscope noise and time jitter **Fitting errors (Bias)**, 2nd derivative estimated with divided difference of velocity

Note that here,

$$c_1 \cong \frac{C_1 \Delta t^{-3/2} N^{-3/2}}{A_0}, \text{ and } c_2 \cong C_2 \Delta t^2 N^2.$$

Vision • Service • Partnership

Analogous issues using spline-based approaches

Main Questions:

- How to estimate the phase (or frequency) of a single point of PDV?
 - With reliable (and useful) error bars, error estimates
 - On data sets that can vary in length from 30k to 30M points
 - Usable at very low signal:noise levels
 - Usable on signals that can have very large changes in derivative

Things we've looked at so far ...But aren't really happy with yet.

- STFT and IpFFT approaches
- Smoothing splines and a home-brewed technique or two
- LS parameter fitting and Peano-Kernel approximations for errors
- Local Polynomial Approximations

Having not even answered our initial questions, let's do something more complicated ...

If one PDV system is good, then several should be even better: MPDV – multipoint (multiplexed) PDV systems.

MPDV challenges w/ extraction & error analysis

Question: How accurate are these visualizations?

... It's very hard to bench mark these kind of systems at the velocities that are of interest to researchers ...

Proposed Experimental Setup

Vibrating band under tension filmed with high-speed camera.

Vibrating band movie:

Green is camera, red is PDV-FFT estimate

Main Questions:

- How to estimate the phase (resp. frequency, acceleration) of a single point of PDV?
 - With reliable (and useful) error-bars, error-estimates
 - On data sets that can vary in length from 30k to 30M points.
 - Useable at very low signal:noise levels
 - Use on signals that can have very large changes in derivative.
 - How to estimate the surface profile using mPDV system and provide reliable (and useful) error-bar estimates?
 - This questions has all of the constraints & questions of singlepoint PDV data analysis (above), but whereas it is
 - Oversampled in time (sample rate is 50 GS/sec), but sparse in spatial dimension (16 to 124 points of PDV for example)

