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Outline

• What is an ‘inverse problem’ ?

• Bayesian solutions of inverse problems and sampling from
the posterior:

– linear cases: deblurring, tomography,

– nonlinear cases: nonnegativity constraints, Poisson noise,
PET, EIT.

• Numerical examples.

2



Inverse problems as linear models

We begin by considering linear models of the form:

b = Ax + ε,

• b is the n× 1 data vector,

• A is the n× n forward map,

• x is the n× 1 unknown,

• ε ∼ N (0, σ2In) is the n× 1 iid Gaussian noise vector.
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Some examples of linear problems

Data b examples:

Corresponding true images x:
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Naive Solutions

Naive solutions A−1b:

Corresponding true images x:

5



What characterizes an inverse problem?

Consider the continuous model (pre-discretization)

b = Ax,

where b and x are functions and A is an operator.
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What characterizes an inverse problem?

Consider the continuous model (pre-discretization)

b = Ax,

where b and x are functions and A is an operator.

The singular value expansion (SVE) of A has the form

A(·) =
∞∑
i=1

σiui〈vi, ·〉,

with (ui, vi) the left and right singular functions, and σi → 0.
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What characterizes an inverse problem?

Consider the continuous model (pre-discretization)

b = Ax,

where b and x are functions and A is an operator.

The singular value expansion (SVE) of A has the form

A(·) =
∞∑
i=1

σiui〈vi, ·〉,

with (ui, vi) the left and right singular functions, and σi → 0.

Then the SVE of A−1 is

A−1(·) =
∞∑
i=1

vi〈ui, ·〉
σi

,

which is unbounded: ‖A−1‖2
2 =

∑∞
i=1

(
1
σi

)2
=∞.
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What characterizes an inverse problem?

After discretization, we have the matrix A with SVD

A = UΣVT =
n∑
i=1

σiuiv
T
i .

with n large, the σi’s clustering near 0. Hence ‖A−1‖2 is huge.
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What characterizes an inverse problem?

After discretization, we have the matrix A with SVD

A = UΣVT =
n∑
i=1

σiuiv
T
i .

with n large, the σi’s clustering near 0. Hence ‖A−1‖2 is huge.

The naive solution can then be written

A−1b = A−1(Ax + ε)

= x + A−1ε

= x +
n∑
i=1

(
uTi ε

σi

)
vi︸ ︷︷ ︸

dominates
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Naive Solutions

Naive solutions A−1b = x +
∑n
i=1 σ

−1
i (uTi ε)vi:

Corresponding true images x:
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The Fix: Regularization

Parameter Set P Data Set D

Knowledge

Prior

REGULARIZATION

ILL−POSED
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Bayes Law and Regularization

Bayes’ Law:

p(x|b, λ, δ)︸ ︷︷ ︸
posterior

∝ p(b|x, λ)︸ ︷︷ ︸
likelihood

p(x|δ)︸ ︷︷ ︸
prior

.
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Bayes Law and Regularization

Bayes’ Law:

p(x|b, λ, δ)︸ ︷︷ ︸
posterior

∝ p(b|x, λ)︸ ︷︷ ︸
likelihood

p(x|δ)︸ ︷︷ ︸
prior

.

For our statistical model, with λ = 1/σ2,

p(b|x, λ) ∝ exp
(
−
λ

2
‖Ax− b‖2

)
.
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Bayes Law and Regularization

Bayes’ Law:

p(x|b, λ, δ)︸ ︷︷ ︸
posterior

∝ p(b|x, λ)︸ ︷︷ ︸
likelihood

p(x|δ)︸ ︷︷ ︸
prior

.

For our statistical model, with λ = 1/σ2,

p(b|x, λ) ∝ exp
(
−
λ

2
‖Ax− b‖2

)
.

And we assume that the prior has the form

p(x|δ) ∝ exp
(
−
δ

2
xTLx

)
,
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Gaussian Markov Random field priors

The neighbor values for xij are below (in black)

x∂ij = {xi−1,j, xi,j−1, xi+1,j, xi,j+1}

=

 xi,j+1

xi−1,j xij xi+1,j

xi,j−1

 .
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Gaussian Markov Random field priors

The neighbor values for xij are below (in black)

x∂ij = {xi−1,j, xi,j−1, xi+1,j, xi,j+1}

=

 xi,j+1

xi−1,j xij xi+1,j

xi,j−1

 .
Then we assume

xi,j|x∂i,j ∼ N
(
x̄∂i,j,

h2

4δ

)
,

where x̄ij = 1
4
(xi−1,j + xi,j−1 + xi+1,j + xi,j+1).

17



Gaussian Markov Random field priors

This leads to the prior

p(x|δ) ∝ δn exp
(
−
δ

2
xTLx

)
,

where if r = (i, j) after column-stacking 2D arrays

[L]rs =
1

h2


4 s = r,

−1 s ∈ ∂r,
0 otherwise.
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Gaussian Markov Random field priors

This leads to the prior

p(x|δ) ∝ δn exp
(
−
δ

2
xTLx

)
,

where if r = (i, j) after column-stacking 2D arrays

[L]rs =
1

h2


4 s = r,

−1 s ∈ ∂r,
0 otherwise.

NOTES:

1. L is the negative, 2D Laplacian.

2. Boundary conditions must be imposed. We have consid-
ered Dirichlet, periodic, and Neumann.
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Bayes Law and Regularization

The maximizer of the posterior density is

xMAP = arg min
x

{
λ

2
‖Ax− b‖2 +

δ

2
xTLx

}
which is the regularized solution xα with α = δ/λ.
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Bayes Law and Regularization

The maximizer of the posterior density is

xMAP = arg min
x

{
λ

2
‖Ax− b‖2 +

δ

2
xTLx

}
which is the regularized solution xα with α = δ/λ.

α = 2.5× 10−4 α = 1.05× 10−4.
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Sampling vs. Computing the MAP
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Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and δ: λ ∼ p(λ) and δ ∼ p(δ). Then

p(x, λ, δ|b) ∝ p(b|x, λ)p(λ) p(x|δ)p(δ),

is the Bayesian posterior
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Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and δ: λ ∼ p(λ) and δ ∼ p(δ). Then

p(x, λ, δ|b) ∝ p(b|x, λ)p(λ) p(x|δ)p(δ),

is the Bayesian posterior, where

p(b|x, λ) ∝ λn/2 exp
(
−
λ

2
‖Ax− b‖2

)
,

p(x|δ) ∝ δn/2 exp
(
−
δ

2
xTLx

)
.
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Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and δ: λ ∼ p(λ) and δ ∼ p(δ). Then

p(x, λ, δ|b) ∝ p(b|x, λ)p(λ) p(x|δ)p(δ),

is the Bayesian posterior, where

p(b|x, λ) ∝ λn/2 exp
(
−
λ

2
‖Ax− b‖2

)
,

p(x|δ) ∝ δn/2 exp
(
−
δ

2
xTLx

)
.

p(λ) ∝ λαλ−1 exp(−βλλ)

p(δ) ∝ δαδ−1 exp(−βδδ),

where αλ = αδ = 1 and βλ = βδ = 10−4, and hence

mean = α/β = 104, var = α/β2 = 108.
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The Full Posterior Distribution

p(x, λ, δ|b) ∝ the posterior

λn/2+αλ−1δn/2+αδ−1 exp
(
−
λ

2
‖Ax− b‖2 −

δ

2
xTLx− βλλ− βδδ

)
.
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The Full Posterior Distribution

p(x, λ, δ|b) ∝ the posterior

λn/2+αλ−1δn/2+αδ−1 exp
(
−
λ

2
‖Ax− b‖2 −

δ

2
xTLx− βλλ− βδδ

)
.

By conjugacy, each conditional distribution lives in the same
family as the prior/hyper-prior distribution:

x|λ, δ,b ∼ N
(
(λATA + δL)−1λATb, (λATA + δL)−1

)
,[

λ

δ

]∣∣∣∣∣ x,b ∼ Γ

([
n/2 + αλ
n/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
;
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An MCMC Method for sampling from p(x, λ, δ|b)

A Two-Component Gibbs sampler for p(x, δ, λ|b).

0. δ0, and λ0, and set k = 0;

1. Compute a sample

xk+1 ∼ N
(
(λkA

TA + δkL)−1λkA
Tb, (λkA

TA + δkL)−1
)

;

2. Compute a sample[
λk+1

δk+1

]
∼ Γ

([
n/2 + αλ
n/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
;

3. Set k = k + 1 and return to Step 1.
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Sampling vs. Computing the MAP
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The Computational Bottleneck: Step 1

The image sample, Step 1

xk ∼ N
(
(λkA

TA + δkL)−1λkA
Tb, (λkA

TA + δkL)−1
)
,

can be computed via

(λkA
TA + δkL)xk = λkA

Tb + w,

w ∼ N(0, λkA
TA + δkL),

Notice that w can be computed cheaply:

w =
√
λkA

Tv +
√
δkL

1/2v, v ∼ N (0, In).
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Direct Two-Component Gibbs Sampler

0. δ0, and λ0, and set k = 0;

1. First generate

w =
√
λkA

Tv +
√
δkL

1/2v, v ∼ N (0, In),

then compute a sample

xk+1 = (λkA
TA + δkL)−1(λkA

Tb + w).

2. Compute a sample[
λk+1

δk+1

]
∼ Γ

([
n/2 + αλ
n/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
.

3. Set k = k + 1 and return to Step 1.
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Assessing MCMC chain convergence

nr chains, each of length ns, with {ψij} the computed samples.
Define

B =
ns

nr − 1

nr∑
j=1

(ψ·j − ψ··)2, ψ·j =
1

ns

ns∑
i=1

ψij, ψ·· =
1

nr

nr∑
j=1

ψ·j ;

and

W =
1

nr

nr∑
j=1

s2
j , where s2

j =
1

ns − 1

ns∑
i=1

(ψij − ψ·j)2.

Then marginal posterior variance var(ψ|b) can then be esti-
mated by

v̂ar+(ψ|b) =
ns − 1

ns
W +

1

ns
B,

We monitor

R̂ =

√√√√v̂ar+(ψ|b)

W
, (1)

which declines to 1 as ns →∞.
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A One-dimensional example

Sample median Confidence Images in 1D.
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Image Deblurring: Boundary Conditions in 2D

correspond to assumptions about the values of the unknown
outside of the computational domain. We consider three:

Periodic :
X X X
X X X
X X X

,

Neumann :
Xvh Xh Xvh

Xv X Xv

Xvh Xh Xvh

,

Dirichlet :
0 0 0
0 X 0
0 0 0

.
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Periodic boundary conditions

In this case you can efficiently compute

xk = (λkA
TA + δkL)−1(λkA

Tb + w).

Here A and L are diagonalizable by the 2d-DFT.

Sample mean Pixel-wise Variance Image.
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Precision & Reg. Parameter Histograms
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Neumann boundary conditions (w/ M. Howard & J. Nagy)

In this case you can directly solve

xk = (λkA
TA + δkL)−1(λkA

Tb + w).

Here A and L are diagonalizable by the 2d-DCT.

Truth Blurred, noisy image.
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Neumann boundary conditions (w/ M. Howard & J. Nagy)

Sample Mean: Neumann BCs Periodic BCs
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Precision & Reg. Parameter Histograms
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Randomize-then-Optimize

In cases where the linear system

(λkA
TA + δkL)xk = λkA

Tb + w.

can’t be directly solved, we restate it as an optimization prob-
lem.
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Randomize-then-Optimize

In cases where the linear system

(λkA
TA + δkL)xk = λkA

Tb + w.

can’t be directly solved, we restate it as an optimization prob-
lem.

1. Randomize: generate new ‘data’

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

where ‘†’ denotes pseudo-inverse.

2. Optimize: solve

xk = arg min
x

1

2

∥∥∥∥∥
[
λ

1/2
k (Ax− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.
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Two Component Gibbs sampler using RTO

0. δ0, and λ0, and set k = 0;

1. First generate

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

then compute

xk = arg min
x

1

2

∥∥∥∥∥
[
λ

1/2
k (Ax− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.

2. Compute a sample[
λk+1

δk+1

]
∼ Γ

([
n/2 + αλ
n/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
.

3. Set k = k + 1 and return to Step 1.
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Deblurring with Dirichlet boundary conditions

In this case you must solve

xk = arg min
x

{
λk

2
‖Ax− b̂‖2

2 +
δk

2
‖L1/2(x− ĉ)‖2

2

}
.

We use a circulant preconditioned CG algorithm.

Sample median Pixel-wise standard deviation.
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Precision & Reg. Parameter Histograms
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Computed Tomography

In this case you must solve

xk = arg min
x

{
λk

2
‖Ax− b̂‖2

2 +
δk

2
‖L1/2(x− ĉ)‖2

2

}
.

Pretending we have accurate solutions yields:

Sample median Pixel-wise Variance Image.
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Precision & Reg. Parameter Histograms
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Nonnegativity Constrained MCMC Method
with Colin Fox

0. δ0, and λ0, and set k = 0;

1. First generate

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

then compute

xk = arg min
x≥0

1

2

∥∥∥∥∥
[
λ

1/2
k (Ax− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.

2. Compute a sample[
λk+1

δk+1

]
∼ Γ

([
n/2 + αλ
np/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
.

3. Set k = k + 1 and return to Step 1.
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Nonnegativity Constrained RTO

Generate

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

then compute

xk = arg min
x≥0

1

2

∥∥∥∥∥
[
λ

1/2
k (Ax− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

?

Question: What is p(xk)?
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Nonnegativity Constraints: Deblur (w/ C. Fox)
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Inverse Problems with Poisson data

In this case the data model has the form

b = Poisson(Ax + g),

• b is the m× 1 data vector,

• A is an m× n ill-condition matrix,

• x is the n× 1 unknown,

• g is the m× 1 known background.
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The Full Posterior Distribution

Then

p(b|x) ∝ exp

(
−

n∑
i=1

([Ax]i + βi)− bi ln([Ax]i + βi)

)
.

If we assume, as above, Gaussian prior and Gamma hyper-
prior, we obtain

p(x, δ|b) ∝ the posterior

δn/2+α−1 exp

(
−

n∑
i=1

([Ax]i + βi)− bi ln([Ax]i + βi)

−
δ

2
xTLx− βδ

)
.
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A Two-Component Gibbs Sampler for Poisson Data
Sample cyclically from p(x|b, δ) and p(δ|b,x)

0. δ0, and λ0, and set k = 0.
1. Compute a sample xk+1 from

p(x|δk,b) ∝ exp

(
−

n∑
i=1

([Ax]i + βi)− bi ln([Ax]i + βi)−
δ

2
xTLx

)
.

2. Compute a sample δk+1 from

p(δ|xk+1,b) ∼ Γ
(
n/2 + α,

1

2
(xk)TLxk + β

)
.

3. Set k = k + 1 and return to Step 1.
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Randomize-then-Optimize for Step 1

1. first randomize the ‘data’,

b̂ ∼ Poiss(b) and ĉ ∼ N(0, δ−1
k I),

2. then optimize to obtain a sample,

xk = arg min
x≥0

{
n∑
i=1

{[Ax]i + gi − b̂i ln([Ax]i + gi)}

+
δk

2
‖L1/2(x− ĉ)‖2

}
.

Question: Is the density p(xk) defined by RTO close to

p(x|δk,b) ∝ exp

(
−

n∑
i=1

([Ax]i + βi)− bi ln([Ax]i + βi)−
δ

2
xTLx

)
?
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A Two-Component Gibbs Sampler for Poisson Data
with Haario and Solonen

0. δ0, and λ0, and set k = 0;

1. First generate

b̂ ∼ Poiss(b) and ĉ ∼ N(0, δ−1
k I),

then compute

xk = arg min
x≥0

{
n∑
i=1

{[Ax]i + gi − b̂i ln([Ax]i + gi)}

+
δk

2
‖L1/2(x− ĉ)‖2

}
.

2. δk+1 ∼ Γ
(
np/2 + α, 1

2
(xk)TLxk + β

)
;

3. Set k = k + 1 and return to Step 1.
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Sampling vs. Computing the MAP
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Positron Emission Tomography
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Nonlinear models

We begin by considering linear models of the form:

b = A(x) + ε,

• b is the m× 1 data vector,

• A : Rn → Rm is the nonlinear forward map,

• x is the n× 1 unknown,

• ε ∼ N (0, σ2In) is the n× 1 iid Gaussian noise vector.
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EIT Model

Let u be voltage, σ electrical conductivity:

∇ · (σ∇u) = 0, Ω

BCs, ∂Ω

Inverse Problem: given inputs and measurements of u at the
boundary, determine the conductivity σ in the interior.
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EIT data
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RTO in the nonlinear case
w/ Haario, Kaipio, Seppanen, Solonen

1. Randomize: generate new ‘data’

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

2. Optimize: solve

xk = arg min
x

1

2

∥∥∥∥∥
[
λ

1/2
k (A(x)− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.
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RTO in the nonlinear case
w/ Haario, Kaipio, Seppanen, Solonen

1. Randomize: generate new ‘data’

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

2. Optimize: solve

xk = arg min
x

1

2

∥∥∥∥∥
[
λ

1/2
k (A(x)− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.

Question: Is the density p(xk) defined by RTO close to

p(x|b, λk, δk) ∝ exp

−1

2

∥∥∥∥∥
[
λ

1/2
k (A(x)− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2


as in the linear case?
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Numerical Comparison of AM and RTO
by Antti Solonen

Test 1: Let f−1(x) =
[
x1/a, ax2 + ab(x2

1 + a2)
]

and define

π(x) ∝ exp
(
(f−1(x)− v)TΣ−1(f−1(x)− v)

)
,
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Numerical Comparison of AM and RTO
by Antti Solonen

Test 2: use RTO to sample

(x1, x2) = arg min
(x1,x2)

T∑
i=1

(bi − x1(1− exp(−x2ti)))2,

where (b1, . . . , bn) and (t1, . . . , tn) are measured data and

bi = x1(1− exp(−x2ti)) + εi, i = 1, . . . , T.
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Two-Component Gibbs Sampler, Nonlinear Case
with Seppänen, Solonen, Haario, and Kaipio

0. δ0, and λ0, and set k = 0;

1. First generate

b̂ ∼ N (b, λ−1
k In) and ĉ ∼ N (0, δ−1

k L†).

then compute

xk = arg min
x

1

2

∥∥∥∥∥
[
λ

1/2
k (A(x)− b̂)

δ
1/2
k L1/2(x− ĉ)

]∥∥∥∥∥
2

2

.

2. Compute a sample[
λk+1

δk+1

]
∼ Γ

([
n/2 + αλ
n/2 + αδ

]
,

[
1
2
‖Axk − b‖2 + βλ

1
2
‖L1/2xk‖2 + βδ

])
.

3. Set k = k + 1 and return to Step 1.
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Sample mean and standard deviation images

65



Nonlinear RTO Proof, Scalar Case

Let b be fixed ‘data’ from the model

b = a(x) + v, v ∼ N (0, σ2).

Let v̂ be a fixed realization from v and define

xv̂ = arg min
x

{
f(x) = (a(x)− (b+ v̂))2

}
.
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Nonlinear RTO Proof, Scalar Case

Let b be fixed ‘data’ from the model

b = a(x) + v, v ∼ N (0, σ2).

Let v̂ be a fixed realization from v and define

xv̂ = arg min
x

{
f(x) = (a(x)− (b+ v̂))2

}
.

Note/Question: We want to sample from

p(x|b) ∝ exp

(
−

(a(x)− (b+ v̂))2

2σ2

)
.

Are we doing this in RTO?
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Nonlinear RTO Proof, Scalar Case

First order optimality: We know f ′(xv̂) = 0, and hence

a′(xv̂)(a(xv̂)− (b+ v̂)) = 0.

Assuming a′(xv̂) 6= 0, then

v̂ = a(xv̂)− b.
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Nonlinear RTO Proof, Scalar Case

First order optimality: We know f ′(xv̂) = 0, and hence

a′(xv̂)(a(xv̂)− (b+ v̂)) = 0.

Assuming a′(xv̂) 6= 0, then

v̂ = a(xv̂)− b.

Change of variables: we expand a about xv̂ to obtain

a(x)− b = a(xv̂)− b︸ ︷︷ ︸
=v̂

+a′(xv̂)(x− xv̂) +O((x− xv̂)2),

which motivates the change of variables

v = a(xv̂)− b︸ ︷︷ ︸
=v̂

+a′(xv̂)(x− xv̂).
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Nonlinear RTO Proof, Scalar Case

Then, if

p(v) =
1√

2πσ2
exp

(
−
v2

2σ2

)
,

the change of variables

v = a(xv̂)− b︸ ︷︷ ︸
=v̂

+a′(xv̂)(x− xv̂).

yields

p(x) =
|a′(xv̂)|√

2πσ2
exp

(
−

(a(xv̂)− b+ a′(xv̂)(x− xv̂))2

2σ2

)
.
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Nonlinear RTO Proof, Scalar Case

Then, if

p(v) =
1√

2πσ2
exp

(
−
v2

2σ2

)
,

the change of variables

v = a(xv̂)− b︸ ︷︷ ︸
=v̂

+a′(xv̂)(x− xv̂).

yields

p(x) =
|a′(xv̂)|√

2πσ2
exp

(
−

(a(xv̂)− b+ a′(xv̂)(x− xv̂))2

2σ2

)
.

Finally, the fact that v = v̂ ⇐⇒ x = xv̂ yields

p(xv̂) =
|a′(xv̂)|√

2πσ2
exp

(
−

(a(xv̂)− b)2

2σ2

)
.
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Nonlinear RTO Proof, Scalar Case

The implication of this result is that RTO samples satisfy

p(x) ∝ |a′(x)|p(x|b).

To obtain samples from p(x|b), use importance sampling.

72



Nonlinear RTO Proof, Scalar Case

The implication of this result is that RTO samples satisfy

p(x) ∝ |a′(x)|p(x|b).

To obtain samples from p(x|b), use importance sampling.

Example, computing E(x|b): suppose xi ∼ p(x), i = 1, . . . , k.

E(x|b) =
∫
x p(x|b) dx

=
∫
x (p(x|b)/p(x))p(x) dx

≈

 k∑
i=1

wi

−1
k∑
i=1

xiwi, wi = |a′(xi)|−1.
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1D Demo by Antti Solonen
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Nonlinear RTO Proof, Vector Case

Provided the above approach is valid, it can be extended to
the vector case to obtain

p(x) ∝
√
|J(x)TJ(x)|p(x|b).

where J(x) is the Jacobian of A(·) at x.
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Nonlinear RTO Proof, Vector Case

Provided the above approach is valid, it can be extended to
the vector case to obtain

p(x) ∝
√
|J(x)TJ(x)|p(x|b).

where J(x) is the Jacobian of A(·) at x.

Example, computing E(x|b): suppose xi ∼ p(x), i = 1, . . . , k.

E(x|b) =
∫

x p(x|b) dx

=
∫

x (p(x|b)/p(x))p(x) dx

≈

 k∑
i=1

wi

−1
k∑
i=1

xiwi, wi = |J(xi)TJ(xi)|−1/2.
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Summary

1. Randomize-then-Optimize yields high quality samples for
large-scale inverse problems.

2. In nonlinear cases (nonnegativity constraints, Poisson noise,
nonlinear models) the theory for RTO has not been de-
veloped.

3. Preliminary results indicate that RTO can be used within
an importance sampling framework.
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