Randomize-then-optimize, the saga continues: a sampling method for large-scale inverse problems

John Bardsley, U. Montana

Outline

- What is an 'inverse problem'?
- Bayesian solutions of inverse problems and sampling from the posterior:
- linear cases: deblurring, tomography,
- nonlinear cases: nonnegativity constraints, Poisson noise, PET, EIT.
- Numerical examples.

Inverse problems as linear models

We begin by considering linear models of the form:

$$
\mathrm{b}=\mathrm{Ax}+\epsilon
$$

- \mathbf{b} is the $n \times 1$ data vector,
- \mathbf{A} is the $n \times n$ forward map,
- x is the $n \times 1$ unknown,
- $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{n}\right)$ is the $n \times 1$ iid Gaussian noise vector.

Some examples of linear problems

Data b examples:

Corresponding true images \mathbf{x} :

Naive Solutions

Naive solutions $\mathbf{A}^{-1} \mathbf{b}$:

Corresponding true images \mathbf{x} :

What characterizes an inverse problem?

Consider the continuous model (pre-discretization)
$b=A x$,
where b and x are functions and A is an operator.

What characterizes an inverse problem?

Consider the continuous model (pre-discretization)

$$
b=A x
$$

where b and x are functions and A is an operator.
The singular value expansion (SVE) of A has the form

$$
A(\cdot)=\sum_{i=1}^{\infty} \sigma_{i} u_{i}\left\langle v_{i}, \cdot\right\rangle
$$

with $\left(u_{i}, v_{i}\right)$ the left and right singular functions, and $\sigma_{i} \rightarrow 0$.

What characterizes an inverse problem?

Consider the continuous model (pre-discretization)

$$
b=A x
$$

where b and x are functions and A is an operator.
The singular value expansion (SVE) of A has the form

$$
A(\cdot)=\sum_{i=1}^{\infty} \sigma_{i} u_{i}\left\langle v_{i}, \cdot\right\rangle
$$

with $\left(u_{i}, v_{i}\right)$ the left and right singular functions, and $\sigma_{i} \rightarrow 0$.
Then the SVE of A^{-1} is

$$
A^{-1}(\cdot)=\sum_{i=1}^{\infty} \frac{v_{i}\left\langle u_{i}, \cdot\right\rangle}{\sigma_{i}}
$$

which is unbounded: $\left\|A^{-1}\right\|_{2}^{2}=\sum_{i=1}^{\infty}\left(\frac{1}{\sigma_{i}}\right)^{2}=\infty$.

What characterizes an inverse problem?

After discretization, we have the matrix A with SVD

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}=\sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

with n large, the σ_{i} 's clustering near 0 . Hence $\left\|\mathbf{A}^{-1}\right\|_{2}$ is huge.

What characterizes an inverse problem?

After discretization, we have the matrix A with SVD

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

with n large, the $\sigma_{i}{ }^{\prime}$ s clustering near 0 . Hence $\left\|\mathbf{A}^{-1}\right\|_{2}$ is huge.
The naive solution can then be written

$$
\begin{aligned}
\mathbf{A}^{-1} \mathbf{b} & =\mathbf{A}^{-1}(\mathbf{A} \mathbf{x}+\boldsymbol{\epsilon}) \\
& =\mathbf{x}+\mathbf{A}^{-1} \boldsymbol{\epsilon} \\
& =\mathbf{x}+\underbrace{\sum_{i=1}^{n}\left(\frac{\mathbf{u}_{i}^{T} \boldsymbol{\epsilon}}{\sigma_{i}}\right) \mathbf{v}_{i}}_{\text {dominates }}
\end{aligned}
$$

Naive Solutions

Naive solutions $\mathbf{A}^{-1} \mathbf{b}=\mathbf{x}+\sum_{i=1}^{n} \sigma_{i}^{-1}\left(\mathbf{u}_{i}^{T} \boldsymbol{\epsilon}\right) \mathbf{v}_{i}$:

Corresponding true images \mathbf{x} :

The Fix: Regularization

Bayes Law and Regularization

Bayes' Law:

$$
\underbrace{p(\mathbf{x} \mid \mathbf{b}, \lambda, \delta)}_{\text {posterior }} \propto \underbrace{p(\mathbf{b} \mid \mathbf{x}, \lambda)}_{\text {likelihood }} \underbrace{p(\mathbf{x} \mid \delta)}_{\text {prior }} .
$$

Bayes Law and Regularization

Bayes' Law:

$$
\underbrace{p(\mathbf{x} \mid \mathbf{b}, \lambda, \delta)}_{\text {posterior }} \propto \underbrace{p(\mathbf{b} \mid \mathbf{x}, \lambda)}_{\text {likelinood }} \underbrace{p(\mathbf{x} \mid \delta)}_{\text {prior }} .
$$

For our statistical model, with $\lambda=1 / \sigma^{2}$,

$$
p(\mathbf{b} \mid \mathbf{x}, \lambda) \propto \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right)
$$

Bayes Law and Regularization

Bayes' Law:

$$
\underbrace{p(\mathbf{x} \mid \mathbf{b}, \lambda, \delta)}_{\text {posterior }} \propto \underbrace{p(\mathbf{b} \mid \mathbf{x}, \lambda)}_{\text {likelihood }} \underbrace{p(\mathbf{x} \mid \delta)}_{\text {prior }} .
$$

For our statistical model, with $\lambda=1 / \sigma^{2}$,

$$
p(\mathbf{b} \mid \mathbf{x}, \lambda) \propto \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right)
$$

And we assume that the prior has the form

$$
p(\mathbf{x} \mid \delta) \propto \exp \left(-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right)
$$

Gaussian Markov Random field priors

The neighbor values for $x_{i j}$ are below (in black)

$$
\begin{aligned}
\mathbf{x}_{\partial_{i j}} & =\left\{x_{i-1, j}, x_{i, j-1}, x_{i+1, j}, x_{i, j+1}\right\} \\
& =\left[\begin{array}{cc}
& x_{i, j+1} \\
x_{i-1, j} & x_{i j} \\
& x_{i+1, j} \\
& x_{i, j-1}
\end{array}\right]
\end{aligned}
$$

Gaussian Markov Random field priors

The neighbor values for $x_{i j}$ are below (in black)

$$
\begin{aligned}
\mathbf{x}_{\partial_{i j}} & =\left\{x_{i-1, j}, x_{i, j-1}, x_{i+1, j}, x_{i, j+1}\right\} \\
& =\left[\begin{array}{cc}
& x_{i, j+1} \\
x_{i-1, j} & x_{i j} \\
& x_{i+1, j} \\
& x_{i, j-1}
\end{array}\right]
\end{aligned}
$$

Then we assume

$$
x_{i, j} \left\lvert\, \mathbf{x}_{\partial_{i, j}} \sim \mathcal{N}\left(\bar{x}_{\partial_{i, j}}, \frac{h^{2}}{4 \delta}\right)\right.
$$

where $\bar{x}_{i j}=\frac{1}{4}\left(x_{i-1, j}+x_{i, j-1}+x_{i+1, j}+x_{i, j+1}\right)$.

Gaussian Markov Random field priors

This leads to the prior

$$
p(\mathbf{x} \mid \delta) \propto \delta^{n} \exp \left(-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right)
$$

where if $r=(i, j)$ after column-stacking 2D arrays

$$
[\mathrm{L}]_{r s}=\frac{1}{h^{2}} \begin{cases}4 & s=r \\ -1 & s \in \partial_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Gaussian Markov Random field priors

This leads to the prior

$$
p(\mathbf{x} \mid \delta) \propto \delta^{n} \exp \left(-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right)
$$

where if $r=(i, j)$ after column-stacking 2D arrays

$$
[\mathbf{L}]_{r s}=\frac{1}{h^{2}} \begin{cases}4 & s=r \\ -1 & s \in \partial_{r} \\ 0 & \text { otherwise }\end{cases}
$$

NOTES:

1. L is the negative, 2D Laplacian.
2. Boundary conditions must be imposed. We have considered Dirichlet, periodic, and Neumann.

Bayes Law and Regularization

The maximizer of the posterior density is

$$
\mathbf{x}_{\mathrm{MAP}}=\arg \min _{\mathrm{x}}\left\{\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right\}
$$

which is the regularized solution \mathbf{x}_{α} with $\alpha=\delta / \lambda$.

Bayes Law and Regularization

The maximizer of the posterior density is

$$
\mathbf{x}_{\mathrm{MAP}}=\arg \min _{\mathrm{x}}\left\{\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right\}
$$

which is the regularized solution \mathbf{x}_{α} with $\alpha=\delta / \lambda$.

$$
\alpha=2.5 \times 10^{-4} \quad \alpha=1.05 \times 10^{-4}
$$

Sampling vs. Computing the MAP

Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and $\delta: \lambda \sim p(\lambda)$ and $\delta \sim p(\delta)$. Then

$$
p(\mathbf{x}, \lambda, \delta \mid \mathbf{b}) \propto p(\mathbf{b} \mid \mathbf{x}, \lambda) p(\lambda) p(\mathbf{x} \mid \delta) p(\delta)
$$

is the Bayesian posterior

Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and $\delta: \lambda \sim p(\lambda)$ and $\delta \sim p(\delta)$. Then

$$
p(\mathbf{x}, \lambda, \delta \mid \mathbf{b}) \propto p(\mathbf{b} \mid \mathbf{x}, \lambda) p(\lambda) p(\mathbf{x} \mid \delta) p(\delta),
$$

is the Bayesian posterior, where

$$
\begin{aligned}
p(\mathbf{b} \mid \mathbf{x}, \lambda) & \propto \lambda^{n / 2} \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right), \\
p(\mathbf{x} \mid \delta) & \propto \delta^{n / 2} \exp \left(-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right) .
\end{aligned}
$$

Bayesian Hierarchical Models for λ and δ

Uncertainty in λ and $\delta: \lambda \sim p(\lambda)$ and $\delta \sim p(\delta)$. Then

$$
p(\mathbf{x}, \lambda, \delta \mid \mathbf{b}) \propto p(\mathbf{b} \mid \mathbf{x}, \lambda) p(\lambda) p(\mathbf{x} \mid \delta) p(\delta),
$$

is the Bayesian posterior, where

$$
\begin{aligned}
p(\mathbf{b} \mid \mathbf{x}, \lambda) & \propto \lambda^{n / 2} \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right), \\
p(\mathbf{x} \mid \delta) & \propto \delta^{n / 2} \exp \left(-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L x}\right) . \\
p(\lambda) & \propto \lambda^{\alpha_{\lambda}-1} \exp \left(-\beta_{\lambda} \lambda\right) \\
p(\delta) & \propto \delta^{\alpha_{\delta}-1} \exp \left(-\beta_{\delta} \delta\right),
\end{aligned}
$$

where $\alpha_{\lambda}=\alpha_{\delta}=1$ and $\beta_{\lambda}=\beta_{\delta}=10^{-4}$, and hence

$$
\text { mean }=\alpha / \beta=10^{4}, \quad \text { var }=\alpha / \beta^{2}=10^{8} .
$$

The Full Posterior Distribution

$p(\mathrm{x}, \lambda, \delta \mid \mathbf{b}) \propto$ the posterior

$$
\lambda^{n / 2+\alpha_{\lambda}-1} \delta^{n / 2+\alpha_{\delta}-1} \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L x}-\beta_{\lambda} \lambda-\beta_{\delta} \delta\right) .
$$

The Full Posterior Distribution

$p(\mathrm{x}, \lambda, \delta \mid \mathbf{b}) \propto$ the posterior

$$
\lambda^{n / 2+\alpha_{\lambda}-1} \delta^{n / 2+\alpha_{\delta}-1} \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L x}-\beta_{\lambda} \lambda-\beta_{\delta} \delta\right) .
$$

By conjugacy, each conditional distribution lives in the same family as the prior/hyper-prior distribution:

$$
\begin{gathered}
\mathbf{x} \mid \lambda, \delta, \mathbf{b} \sim N\left(\left(\lambda \mathbf{A}^{T} \mathbf{A}+\delta \mathbf{L}\right)^{-1} \lambda \mathbf{A}^{T} \mathbf{b},\left(\lambda \mathbf{A}^{T} \mathbf{A}+\delta \mathbf{L}\right)^{-1}\right), \\
{\left.\left[\begin{array}{c}
\lambda \\
\delta
\end{array}\right] \right\rvert\, \mathbf{x}, \mathbf{b} \sim \Gamma\left(\left[\begin{array}{c}
n / 2+\alpha_{\lambda} \\
n / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) ;}
\end{gathered}
$$

A Two-Component Gibbs sampler for $p(\mathrm{x}, \delta, \lambda \mid \mathbf{b})$.
0 . δ_{0}, and λ_{0}, and set $k=0$;

1. Compute a sample

$$
\mathbf{x}^{k+1} \sim N\left(\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1} \lambda_{k} \mathbf{A}^{T} \mathbf{b},\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1}\right) ;
$$

2. Compute a sample

$$
\left[\begin{array}{c}
\lambda_{k+1} \\
\delta_{k+1}
\end{array}\right] \sim \Gamma\left(\left[\begin{array}{c}
n / 2+\alpha_{\lambda} \\
n / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) ;
$$

3. Set $k=k+1$ and return to Step 1 .

Sampling vs. Computing the MAP

The Computational Bottleneck: Step 1

The image sample, Step 1

$$
\mathbf{x}^{k} \sim N\left(\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1} \lambda_{k} \mathbf{A}^{T} \mathbf{b},\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1}\right)
$$

can be computed via

$$
\begin{aligned}
\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right) \mathbf{x}^{k} & =\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w} \\
\mathbf{w} & \sim N\left(\mathbf{0}, \lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)
\end{aligned}
$$

Notice that w can be computed cheaply:

$$
\mathbf{w}=\sqrt{\lambda_{k}} \mathbf{A}^{T} \mathbf{v}+\sqrt{\delta_{k}} \mathbf{L}^{1 / 2} \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n}\right)
$$

Direct Two-Component Gibbs Sampler

0 . δ_{0}, and λ_{0}, and set $k=0$;

1. First generate

$$
\mathbf{w}=\sqrt{\lambda_{k}} \mathbf{A}^{T} \mathbf{v}+\sqrt{\delta_{k}} \mathbf{L}^{1 / 2} \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n}\right),
$$

then compute a sample

$$
\mathbf{x}^{k+1}=\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1}\left(\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}\right)
$$

2. Compute a sample

$$
\left[\begin{array}{c}
\lambda_{k+1} \\
\delta_{k+1}
\end{array}\right] \sim \Gamma\left(\left[\begin{array}{l}
n / 2+\alpha_{\lambda} \\
n / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) .
$$

3. Set $k=k+1$ and return to Step 1 .

Assessing MCMC chain convergence

n_{r} chains, each of length n_{s}, with $\left\{\psi_{i j}\right\}$ the computed samples. Define

$$
B=\frac{n_{s}}{n_{r}-1} \sum_{j=1}^{n_{r}}\left(\bar{\psi}_{. j}-\bar{\psi}_{. .}\right)^{2}, \quad \bar{\psi}_{. j}=\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \psi_{i j}, \quad \bar{\psi}_{. .}=\frac{1}{n_{r}} \sum_{j=1}^{n_{r}} \bar{\psi}_{. j} ;
$$

and

$$
W=\frac{1}{n_{r}} \sum_{j=1}^{n_{r}} s_{j}^{2}, \quad \text { where } \quad s_{j}^{2}=\frac{1}{n_{s}-1} \sum_{i=1}^{n_{s}}\left(\psi_{i j}-\bar{\psi}_{\cdot j}\right)^{2} .
$$

Then marginal posterior variance $\operatorname{var}(\psi \mid \mathbf{b})$ can then be estimated by

$$
\widehat{\operatorname{var}}^{+}(\psi \mid \mathbf{b})=\frac{n_{s}-1}{n_{s}} W+\frac{1}{n_{s}} B,
$$

We monitor

$$
\begin{equation*}
\hat{R}=\sqrt{\frac{\operatorname{var}^{+}(\psi \mid \mathbf{b})}{W}}, \tag{1}
\end{equation*}
$$

which declines to 1 as $n_{s} \rightarrow \infty$.

A One-dimensional example

Sample median

Confidence Images in 1D.

Image Deblurring: Boundary Conditions in 2D

correspond to assumptions about the values of the unknown outside of the computational domain. We consider three:

	\mathbf{X}	\mathbf{X}	\mathbf{X}
Periodic:	\mathbf{X}	\mathbf{X}	\mathbf{X},
	\mathbf{X}	\mathbf{X}	\mathbf{X}
	$\mathbf{X}_{v h}$	\mathbf{X}_{h}	$\mathbf{X}_{v h}$
Neumann:	\mathbf{X}_{v}	\mathbf{X}	\mathbf{X}_{v}
	$\mathbf{X}_{v h}$	\mathbf{X}_{h}	$\mathbf{X}_{v h}$
	$\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ Dirichlet: $\mathbf{0}$ \mathbf{X} $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$		

Periodic boundary conditions

In this case you can efficiently compute

$$
\mathbf{x}^{k}=\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1}\left(\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}\right) .
$$

Here \mathbf{A} and \mathbf{L} are diagonalizable by the $2 d-D F T$.

Sample mean

Pixel-wise Variance Image.

Precision \& Reg. Parameter Histograms

Neumann boundary conditions (w/ м. Howard \& \rfloor. Nagy)

In this case you can directly solve

$$
\mathbf{x}^{k}=\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right)^{-1}\left(\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}\right)
$$

Here \mathbf{A} and \mathbf{L} are diagonalizable by the $2 d-D C T$.

Truth

Blurred, noisy image.

Neumann boundary conditions (w/ м. Howard \& \rfloor. Nagy)

Precision \& Reg. Parameter Histograms

Randomize-then-Optimize

In cases where the linear system

$$
\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right) \mathbf{x}^{k}=\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}
$$

can't be directly solved, we restate it as an optimization problem.

Randomize-then-Optimize

In cases where the linear system

$$
\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{L}\right) \mathbf{x}^{k}=\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}
$$

can't be directly solved, we restate it as an optimization problem.

1. Randomize: generate new 'data'

$$
\widehat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \widehat{\mathbf{c}} \sim \mathcal{N}\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right)
$$

where ' \dagger ' denotes pseudo-inverse.
2. Optimize: solve

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x}} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A} \mathbf{x}-\hat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2}
$$

Two Component Gibbs sampler using RTO

0 . δ_{0}, and λ_{0}, and set $k=0$;

1. First generate

$$
\hat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \hat{\mathbf{c}} \sim \mathcal{N}\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right) .
$$

then compute

$$
\mathbf{x}^{k}=\arg \min _{\mathbf{x}} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A x}-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2} .
$$

2. Compute a sample

$$
\left[\begin{array}{l}
\lambda_{k+1} \\
\delta_{k+1}
\end{array}\right] \sim \Gamma\left(\left[\begin{array}{c}
n / 2+\alpha_{\lambda} \\
n / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) .
$$

3. Set $k=k+1$ and return to Step 1 .

Deblurring with Dirichlet boundary conditions

In this case you must solve

$$
\mathrm{x}^{k}=\arg \min _{\mathrm{x}}\left\{\frac{\lambda_{k}}{2}\|\mathbf{A x}-\hat{\mathrm{b}}\|_{2}^{2}+\frac{\delta_{k}}{2}\left\|\mathbf{L}^{1 / 2}(\mathrm{x}-\widehat{\mathrm{c}})\right\|_{2}^{2}\right\} .
$$

We use a circulant preconditioned CG algorithm.

Sample median

Precision \& Reg. Parameter Histograms

Computed Tomography

In this case you must solve

$$
\mathrm{x}^{k}=\arg \min _{\mathrm{x}}\left\{\frac{\lambda_{k}}{2}\|\mathbf{A x}-\hat{\mathrm{b}}\|_{2}^{2}+\frac{\delta_{k}}{2}\left\|\mathbf{L}^{1 / 2}(\mathrm{x}-\hat{\mathbf{c}})\right\|_{2}^{2}\right\} .
$$

Pretending we have accurate solutions yields:

> Sample median Pixel-wise Variance Image.

Precision \& Reg. Parameter Histograms

Nonnegativity Constrained MCMC Method

with Colin Fox

0 . δ_{0}, and λ_{0}, and set $k=0$;

1. First generate

$$
\hat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \hat{\mathbf{c}} \sim \mathcal{N}\left(0, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right) .
$$

then compute

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x} \geq 0} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A x}-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2} .
$$

2. Compute a sample

$$
\left[\begin{array}{l}
\lambda_{k+1} \\
\delta_{k+1}
\end{array}\right] \sim \Gamma\left(\left[\begin{array}{c}
n / 2+\alpha_{\lambda} \\
n_{p} / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) .
$$

3. Set $k=k+1$ and return to Step 1 .

Nonnegativity Constrained RTO

Generate

$$
\widehat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \hat{\mathbf{c}} \sim \mathcal{N}\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right) .
$$

then compute

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x} \geq 0} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A x}-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2} ?
$$

Question: What is $p\left(\mathrm{x}^{k}\right)$?

Nonnegativity Constraints: Deblur (w/ c. Fox)

Inverse Problems with Poisson data

In this case the data model has the form

$$
\mathrm{b}=\text { Poisson }(\mathrm{Ax}+\mathrm{g})
$$

- \mathbf{b} is the $m \times 1$ data vector,
- \mathbf{A} is an $m \times n$ ill-condition matrix,
- \mathbf{x} is the $n \times 1$ unknown,
- \mathbf{g} is the $m \times 1$ known background.

The Full Posterior Distribution

Then

$$
p(\mathbf{b} \mid \mathbf{x}) \propto \exp \left(-\sum_{i=1}^{n}\left([\mathbf{A x}]_{i}+\beta_{i}\right)-b_{i} \ln \left([\mathbf{A x}]_{i}+\beta_{i}\right)\right)
$$

If we assume, as above, Gaussian prior and Gamma hyperprior, we obtain

$$
p(\mathbf{x}, \delta \mid \mathbf{b}) \propto \text { the posterior }
$$

$$
\begin{aligned}
\delta^{n / 2+\alpha-1} \exp \left(-\sum_{i=1}^{n}\left([\mathbf{A x}]_{i}+\beta_{i}\right)-b_{i} \ln (\right. & {\left.[\mathbf{A x}]_{i}+\beta_{i}\right) } \\
& \left.-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}-\beta \delta\right)
\end{aligned}
$$

A Two-Component Gibbs Sampler for Poisson Data

Sample cyclically from $p(\mathbf{x} \mid \mathbf{b}, \delta)$ and $p(\delta \mid \mathbf{b}, \mathbf{x})$

0 . δ_{0}, and λ_{0}, and set $k=0$.

1. Compute a sample x_{k+1} from
$p\left(\mathbf{x} \mid \delta_{k}, \mathbf{b}\right) \propto \exp \left(-\sum_{i=1}^{n}\left([\mathbf{A x}]_{i}+\beta_{i}\right)-b_{i} \ln \left([\mathbf{A x}]_{i}+\beta_{i}\right)-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L x}\right)$.
2. Compute a sample δ_{k+1} from

$$
p\left(\delta \mid \mathbf{x}_{k+1}, \mathbf{b}\right) \sim \Gamma\left(n / 2+\alpha, \frac{1}{2}\left(\mathrm{x}^{k}\right)^{T} \mathbf{L} \mathbf{x}^{k}+\beta\right) .
$$

3. Set $k=k+1$ and return to Step 1 .

Randomize-then-Optimize for Step 1

1. first randomize the 'data',

$$
\widehat{\mathbf{b}} \sim \operatorname{Poiss}(\mathbf{b}) \text { and } \widehat{\mathbf{c}} \sim N\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{I}\right)
$$

2. then optimize to obtain a sample,

$$
\begin{aligned}
\mathbf{x}^{k}=\arg \min _{\mathbf{x} \geq 0}\left\{\sum _ { i = 1 } ^ { n } \left\{[\mathbf{A} \mathbf{x}]_{i}+g_{i}\right.\right. & \left.-\widehat{b}_{i} \ln \left([\mathbf{A} \mathbf{x}]_{i}+g_{i}\right)\right\} \\
& \left.+\frac{\delta_{k}}{2}\left\|\mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})\right\|^{2}\right\}
\end{aligned}
$$

Question: Is the density $p\left(\mathrm{x}^{k}\right)$ defined by RTO close to
$p\left(\mathbf{x} \mid \delta_{k}, \mathbf{b}\right) \propto \exp \left(-\sum_{i=1}^{n}\left([\mathbf{A x}]_{i}+\beta_{i}\right)-b_{i} \ln \left([\mathbf{A x}]_{i}+\beta_{i}\right)-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{L} \mathbf{x}\right) ?$

A Two-Component Gibbs Sampler for Poisson Data

0 . δ_{0}, and λ_{0}, and set $k=0$;

1. First generate

$$
\widehat{\mathrm{b}} \sim \text { Poiss }(\mathbf{b}) \text { and } \widehat{\mathbf{c}} \sim N\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{I}\right),
$$

then compute

$$
\begin{array}{r}
\mathbf{x}^{k}=\arg \min _{\mathrm{x} \geq 0}\left\{\sum_{i=1}^{n}\left\{[\mathbf{A} \mathbf{x}]_{i}+g_{i}-\widehat{b}_{i} \ln \left([\mathbf{A x}]_{i}+g_{i}\right)\right\}\right. \\
\left.+\frac{\delta_{k}}{2}\left\|\mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})\right\|^{2}\right\}
\end{array}
$$

2. $\delta_{k+1} \sim \Gamma\left(n_{p} / 2+\alpha, \frac{1}{2}\left(\mathrm{x}^{k}\right)^{T} \mathbf{L x} \mathbf{x}^{k}+\beta\right)$;
3. Set $k=k+1$ and return to Step 1 .

Sampling vs. Computing the MAP

Positron Emission Tomography

Nonlinear models

We begin by considering linear models of the form:

$$
\mathrm{b}=\mathrm{A}(\mathrm{x})+\epsilon
$$

- \mathbf{b} is the $m \times 1$ data vector,
- $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the nonlinear forward map,
- x is the $n \times 1$ unknown,
- $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{n}\right)$ is the $n \times 1$ iid Gaussian noise vector.

EIT Model

Let u be voltage, σ electrical conductivity:

$$
\begin{aligned}
\nabla \cdot(\sigma \nabla u)=0, & \Omega \\
\mathrm{BCs}, & \partial \Omega
\end{aligned}
$$

Inverse Problem: given inputs and measurements of u at the boundary, determine the conductivity σ in the interior.

EIT data

RTO in the nonlinear case

w/ Haario, Kaipio, Seppanen, Solonen

1. Randomize: generate new 'data'

$$
\widehat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \widehat{\mathbf{c}} \sim \mathcal{N}\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right)
$$

2. Optimize: solve

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x}} \frac{1}{2}\left\|\left[\begin{array}{c}
\lambda_{k}^{1 / 2}(\mathbf{A}(\mathbf{x})-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2}
$$

RTO in the nonlinear case

1. Randomize: generate new 'data'

$$
\hat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \hat{\mathbf{c}} \sim \mathcal{N}\left(0, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right) .
$$

2. Optimize: solve

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x}} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A}(\mathrm{x})-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2} .
$$

Question: Is the density $p\left(\mathrm{x}^{k}\right)$ defined by RTO close to

$$
p\left(\mathrm{x} \mid \mathbf{b}, \lambda_{k}, \delta_{k}\right) \propto \exp \left(-\frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A}(\mathbf{x})-\widehat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2}\right)
$$

as in the linear case?

Numerical Comparison of AM and RTO

Test 1: Let $f^{-1}(\mathbf{x})=\left[x_{1} / a, a x_{2}+a b\left(x_{1}^{2}+a^{2}\right)\right]$ and define

$$
\pi(\mathbf{x}) \propto \exp \left(\left(f^{-1}(\mathbf{x})-\mathbf{v}\right)^{T} \Sigma^{-1}\left(f^{-1}(\mathbf{x})-\mathbf{v}\right)\right)
$$

Numerical Comparison of AM and RTO

by Antti Solonen

Test 2: use RTO to sample

$$
\left(x_{1}, x_{2}\right)=\arg \min _{\left(x_{1}, x_{2}\right)} \sum_{i=1}^{T}\left(b_{i}-x_{1}\left(1-\exp \left(-x_{2} t_{i}\right)\right)\right)^{2}
$$

where $\left(b_{1}, \ldots, b_{n}\right)$ and $\left(t_{1}, \ldots, t_{n}\right)$ are measured data and

$$
b_{i}=x_{1}\left(1-\exp \left(-x_{2} t_{i}\right)\right)+\epsilon_{i}, \quad i=1, \ldots, T
$$

Two-Component Gibbs Sampler, Nonlinear Case

0 . δ_{0}, and λ_{0}, and set $k=0$;

1. First generate

$$
\hat{\mathbf{b}} \sim \mathcal{N}\left(\mathbf{b}, \lambda_{k}^{-1} \mathbf{I}_{n}\right) \quad \text { and } \quad \hat{\mathbf{c}} \sim \mathcal{N}\left(\mathbf{0}, \delta_{k}^{-1} \mathbf{L}^{\dagger}\right) .
$$

then compute

$$
\mathbf{x}^{k}=\arg \min _{\mathrm{x}} \frac{1}{2}\left\|\left[\begin{array}{l}
\lambda_{k}^{1 / 2}(\mathbf{A}(\mathbf{x})-\hat{\mathbf{b}}) \\
\delta_{k}^{1 / 2} \mathbf{L}^{1 / 2}(\mathbf{x}-\widehat{\mathbf{c}})
\end{array}\right]\right\|_{2}^{2} .
$$

2. Compute a sample

$$
\left[\begin{array}{c}
\lambda_{k+1} \\
\delta_{k+1}
\end{array}\right] \sim \Gamma\left(\left[\begin{array}{c}
n / 2+\alpha_{\lambda} \\
n / 2+\alpha_{\delta}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|^{2}+\beta_{\lambda} \\
\frac{1}{2}\left\|\mathbf{L}^{1 / 2} \mathbf{x}^{k}\right\|^{2}+\beta_{\delta}
\end{array}\right]\right) .
$$

3. Set $k=k+1$ and return to Step 1 .

Sample mean and standard deviation images

Nonlinear RTO Proof, Scalar Case

Let b be fixed 'data' from the model

$$
b=a(x)+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Let \widehat{v} be a fixed realization from v and define

$$
x_{\widehat{v}}=\arg \min _{x}\left\{f(x)=(a(x)-(b+\widehat{v}))^{2}\right\}
$$

Nonlinear RTO Proof, Scalar Case

Let b be fixed 'data' from the model

$$
b=a(x)+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Let \widehat{v} be a fixed realization from v and define

$$
x_{\widehat{v}}=\arg \min _{x}\left\{f(x)=(a(x)-(b+\widehat{v}))^{2}\right\}
$$

Note/Question: We want to sample from

$$
p(x \mid b) \propto \exp \left(-\frac{(a(x)-(b+\widehat{v}))^{2}}{2 \sigma^{2}}\right)
$$

Are we doing this in RTO?

Nonlinear RTO Proof, Scalar Case

First order optimality: We know $f^{\prime}\left(x_{\hat{v}}\right)=0$, and hence

$$
a^{\prime}\left(x_{\widehat{v}}\right)\left(a\left(x_{\widehat{v}}\right)-(b+\widehat{v})\right)=0
$$

Assuming $a^{\prime}\left(x_{\hat{v}}\right) \neq 0$, then

$$
\widehat{v}=a\left(x_{\widehat{v}}\right)-b
$$

Nonlinear RTO Proof, Scalar Case

First order optimality: We know $f^{\prime}\left(x_{\hat{v}}\right)=0$, and hence

$$
a^{\prime}\left(x_{\widehat{v}}\right)\left(a\left(x_{\widehat{v}}\right)-(b+\widehat{v})\right)=0
$$

Assuming $a^{\prime}\left(x_{\hat{v}}\right) \neq 0$, then

$$
\widehat{v}=a\left(x_{\hat{v}}\right)-b
$$

Change of variables: we expand a about $x_{\hat{v}}$ to obtain

$$
a(x)-b=\underbrace{a\left(x_{\hat{v}}\right)-b}_{=\hat{v}}+a^{\prime}\left(x_{\hat{v}}\right)\left(x-x_{\hat{v}}\right)+\mathcal{O}\left(\left(x-x_{\hat{v}}\right)^{2}\right),
$$

which motivates the change of variables

$$
v=\underbrace{a\left(x_{\hat{v}}\right)-b}_{=\widehat{v}}+a^{\prime}\left(x_{\hat{v}}\right)\left(x-x_{\hat{v}}\right) .
$$

Nonlinear RTO Proof, Scalar Case

Then, if

$$
p(v)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right)
$$

the change of variables

$$
v=\underbrace{a\left(x_{\widehat{v}}\right)-b}_{=\widehat{v}}+a^{\prime}\left(x_{\widehat{v}}\right)\left(x-x_{\widehat{v}}\right) .
$$

yields

$$
p(x)=\frac{\left|a^{\prime}\left(x_{\hat{v}}\right)\right|}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(a\left(x_{\hat{v}}\right)-b+a^{\prime}\left(x_{\hat{v}}\right)\left(x-x_{\hat{v}}\right)\right)^{2}}{2 \sigma^{2}}\right) .
$$

Nonlinear RTO Proof, Scalar Case

Then, if

$$
p(v)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right)
$$

the change of variables

$$
v=\underbrace{a\left(x_{\widehat{v}}\right)-b}_{=\widehat{v}}+a^{\prime}\left(x_{\widehat{v}}\right)\left(x-x_{\widehat{v}}\right) .
$$

yields

$$
p(x)=\frac{\left|a^{\prime}\left(x_{\hat{v}}\right)\right|}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(a\left(x_{\hat{v}}\right)-b+a^{\prime}\left(x_{\hat{v}}\right)\left(x-x_{\hat{v}}\right)\right)^{2}}{2 \sigma^{2}}\right) .
$$

Finally, the fact that $v=\widehat{v} \Longleftrightarrow x=x_{\hat{v}}$ yields

$$
p\left(x_{\widehat{v}}\right)=\frac{\left|a^{\prime}\left(x_{\hat{v}}\right)\right|}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(a\left(x_{\hat{v}}\right)-b\right)^{2}}{2 \sigma^{2}}\right) .
$$

Nonlinear RTO Proof, Scalar Case

The implication of this result is that RTO samples satisfy

$$
p(x) \propto\left|a^{\prime}(x)\right| p(x \mid b) .
$$

To obtain samples from $p(x \mid b)$, use importance sampling.

Nonlinear RTO Proof, Scalar Case

The implication of this result is that RTO samples satisfy

$$
p(x) \propto\left|a^{\prime}(x)\right| p(x \mid b)
$$

To obtain samples from $p(x \mid b)$, use importance sampling.
Example, computing $E(x \mid b)$: suppose $x^{i} \sim p(x), i=1, \ldots, k$.

$$
\begin{aligned}
E(x \mid b) & =\int x p(x \mid b) d x \\
& =\int x(p(x \mid b) / p(x)) p(x) d x \\
& \approx\left(\sum_{i=1}^{k} w^{i}\right)^{-1} \sum_{i=1}^{k} x^{i} w^{i}, \quad w^{i}=\left|a^{\prime}\left(x^{i}\right)\right|^{-1}
\end{aligned}
$$

Nonlinear RTO Proof, Vector Case

Provided the above approach is valid, it can be extended to the vector case to obtain

$$
p(\mathbf{x}) \propto \sqrt{\left|J(\mathbf{x})^{T} J(\mathbf{x})\right|} p(\mathbf{x} \mid \mathbf{b})
$$

where $J(\mathbf{x})$ is the Jacobian of $A(\cdot)$ at \mathbf{x}.

Nonlinear RTO Proof, Vector Case

Provided the above approach is valid, it can be extended to the vector case to obtain

$$
p(\mathbf{x}) \propto \sqrt{\left|J(\mathbf{x})^{T} J(\mathbf{x})\right|} p(\mathbf{x} \mid \mathbf{b})
$$

where $J(\mathbf{x})$ is the Jacobian of $A(\cdot)$ at \mathbf{x}.
Example, computing $E(\mathrm{x} \mid \mathrm{b})$: suppose $\mathrm{x}^{i} \sim p(\mathrm{x}), i=1, \ldots, k$.

$$
\begin{aligned}
E(\mathbf{x} \mid \mathbf{b}) & =\int \mathbf{x} p(\mathbf{x} \mid \mathbf{b}) d \mathbf{x} \\
& =\int \mathbf{x}(p(\mathbf{x} \mid \mathbf{b}) / p(\mathbf{x})) p(\mathbf{x}) d \mathbf{x} \\
& \approx\left(\sum_{i=1}^{k} w^{i}\right)^{-1} \sum_{i=1}^{k} \mathbf{x}^{i} w^{i}, \quad w^{i}=\left|J\left(\mathbf{x}^{i}\right)^{T} J\left(\mathbf{x}^{i}\right)\right|^{-1 / 2}
\end{aligned}
$$

Summary

1. Randomize-then-Optimize yields high quality samples for large-scale inverse problems.
2. In nonlinear cases (nonnegativity constraints, Poisson noise, nonlinear models) the theory for RTO has not been developed.
3. Preliminary results indicate that $R T O$ can be used within an importance sampling framework.
