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The Book

Motivation, 10 years ago
Didn’t think the people I was working with really knew much about
probability (but that didn’t stop them using the language)
Markets exist independently of each other but there is both
commonality and exclusivity:

- Lloyds (catastrophic physical risks)
- London Stock Exchange
- Derivative securities

Lest we forget–excess of loss spiral in Lloyds, 2008 crash
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New motivation
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From the Otago Daily Times, August 2012

Otago Regional Council’s water quality plan changes

Proposed limit of 10kg of nitrogen per hectare of land per year, on
average, going into groundwater.

Disgruntled farmer

‘. . . let’s base it on science rather than assumptions or modelling. . . ’.
North Otago farmer Robert Borst.

ORC response
‘. . . modelling was science in action.’ ORC policy director Fraser
McRae.
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The Challenges

How do you sell inverse problems and UQ?
Regularisation does very nice, thank you!
If you play the UQ card you open up a can of worms
Skakeholder buy-in

First selling point:

Measurement
uncertainty

Model uncertainty

Predictive
uncertainty

Therefore, need to quantify envelope of uncertainty
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Aims

to be disagreeable!
to remind us of our responsibilities to engage a broader debate
(Sir Paul Callaghan, FRS)
to invite robust comment
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Chapter 1

Hayman’s question
‘What is that number p between 0 and 1?’ (Prof W.K. Hayman, FRS,
Imperial College 1960’s)

Law(s) of averages

Basic intuition wrapped up in ideas of repeatability and regularity:
repeat an experiment indefinitely with n different outcomes (or
events). Then the proportion of occurrences of a particular event
will ‘approach’ the probability of that event.
This is what makes probability a useful tool at all levels.
In particular: ‘return period’ (engineers, underwriters)
No good trying to hide under Kolmogorov’s shirt tails
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Littlewood on probability

From a Mathematician’s Miscellany:
‘Mathematics (by which I shall mean pure mathematics) has no grip on
the real world; if probability is to deal with the real world it must contain
elements outside mathematics; the meaning of probability must relate
to the real world, from which we can then proceed deductively (i.e.
mathematically). We will suppose (as we may by lumping several
primitive propositions together) that there is just one primitive
proposition, the ‘probability’ axiom, and we call it A for short. Although
it has got to be true, A is by the nature of the case incapable of
deductive proof, for the sufficient reason that it is about the real world
. . . ’

Back to: ‘What is that number p between 0 and 1?’
Mathematical theory gives no prescription for assigning
probabilities
Sufficient that some self evident axioms are satisfied
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Earthquake forecasting

USGS earthquake forecast in SF Bay area
David Freedman’s analysis in ‘What is the probability of an
earthquake?’

Stage 1
2,000 models to predict

rate of tectonic deformation

Stage 2
3 stochastic models for
fault segment ruptures

Monte Carlo

Deduction
Prob of earthquake 0.7 ± 0.1
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Earthquake forecasting: comments

Freedman’s views
‘by a process we do not understand, those uncertainties
[estimated in stage 1] were propagated through stage 2 to
estimate the uncertainty of the estimated probability of a large
earthquake. If this view is correct, 0.1 is a gross underestimate of
the uncertainty’
10 sources of error overlooked

Morals
Don’t get seduced by Monte Carlo sampling!
Action is a poor apology for thought (Milne Anderson, UCL)
Assigning a probability gives a cloak of respectability
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Liquefaction assessment

What is the risk of liquefaction?
Simplified method
Process:

Generate excess pore water
pressure through cyclic loading

Loss of stiffness
(due to reduction
in effective stress)

Liquefaction
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Liquefaction assessment: simplified method

EQ load Liquefaction resistance

Cyclic stress ratio

CSR =
τcyc

σ′
v

= 0.65
amax

g
σv

σ′
v

rd

amplitude, (frequency?)

Cyclic resistance ratio

CRR = CRRM=7.5 × MSF × Kσ

If xxxxxxxxxxxxxxxxxxxxxx

FL =
CRR
CSR

< 1

then liquefaction xxxxxxxx
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Sources of uncertainty

Obvious sources of uncertainty
Even if you accept the procedure there are numerous uncertainties
with the scalings:

- 0.65

- Stress reduction factor, rd (many empirical formulae)

- Magnitude scaling factor, MSF

- Effects of overburden stress Kσ

If based on lab tests:

CRRfield = C1C2C3C4C5CRRtriaxial

As well as with other corrections for soil type, sloping ground &c., and
the all important interpretation of test data

Then there are harder questions about the underlying methodology:

Lab inspired approach to analysis, over regularising (?), the
‘uniform assumption’, equivalent number of cycles
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Example 1: Linear least squares fit with good UQ
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Example 2: Linear least squares fit with poor UQ
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What went wrong?

Example 1
Model calibrated, i.e. ‘fitted to data’, confidence intervals

reasonable 4
Parameter uncertainty reasonable, i.e. capture true values 4
Predictive uncertainty reasonable, i.e. capture reality4

Example 2

Model calibrated4
But

- poor parameter uncertainty, i.e. don’t capture true values7
- poor predictive uncertainty7

Distinction
Good and bad UQ
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Test case
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Problem

Model

S(x , y)
∂s(x , y , t)

∂t
= ∇ · (T (x , y)∇s(x , y , t)) + Qδ(x)δ(y) in Ω (1)

s(x , y , t) = 0 on ∂Ω (2)
s(x , y ,0) = 0 (3)

where s = s(x , y , t) is drawdown, T = T (x , y)) and S = S(x , y) are
spatially distributed transmissivities and storativities, and Q is the
constant pumping rate over the duration of pumping.

Problem
Carry out a pump test and observe drawdown in bores O1-O4.
Estimate distributed log-transmissivity log T = log T (x , y) and
log-storativity log S = log S(x , y)
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Reflections

What can we reasonably expect to reconstruct from the data from
bores O1-O4?
Presumably, there will be a zone where the data tells us
something, outside the data will give little/no information.
What is a sensible prior model?

-what structural information does it make sense to use?
-what scales can we expect capture?
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Draws from prior
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Data
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Reconstruction
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Calibration
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Prediction at measurement points
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Prediction at test points P1-P4
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Parameter reconstruction
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Longitudinal cut through parameter reconstruction
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Scenario
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Pump test data
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Unbounded uncertainty
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Data for shallow pumping test
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Posterior parameter uncertainty using data d2 and d3
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Uncertainty in stream depletion using data d2 and d3
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Posterior parameter uncertainty using all data d1 − d3
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Uncertainty in stream depletion using all data d1 − d3
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Discussion: Key references

Cui and Dudley Ward (2012), Uncertainty quantification for stream
depletion tests, J.Hydr.Eng
Cui, Dudley Ward & Kaipio (2012), Characterisation of aquifer
parameters from pumping test data for a heterogenous aquifer,
Under review, J.Hydr.Eng
Dudley Ward & Kaipio (2012), Uncertainty, decision and control:
an introduction, Preprint.
Dudley Ward (2012), The Book, MS.
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Discussion: Summary

Why do quantified uncertainty?
Insufficient consideration of uncertainty leads to poor predictive
reliability
Good UQ essential to decision making, since quantified risks can
be controlled
But: bad UQ is unhelpful at best, positively misleading at worst

Take home advice:
Beware the pitfalls of Monte Carlo sampling

To reflect on:
Effective public communication of risk
See http://understandinguncertainty.org
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