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Introduction

Basic scattering problem :
Concerns the effect of an inhomogeneous medium on an incident
acoustic wave.

u (total field) = ui (incident field) + us (scattered field)

Inverse problem :
Determine the shape or physical properties of the obstacle from
the measurement of us .
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Figure: The real part of ui (Left) and us (Right) for a diamond shaped
obstacle
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Direct Scattering Problem

Determine us from knowledge of ui and the scattering obstacle.
Assuming the time harmonic waves

U(x , t) = u(x)e−iwt

the us is estimated using the following equations,

Helmholtz equation : ∇2u + k2u = 0 in Ω ∈ R2

Neumann B.C : ∂u
∂n = 0 on ∂Ω

Radiation condition : limr→∞ r
(
∂us
∂r − ikus

)
= 0

where
k : wave number
n : the unit outward normal to ∂Ω
r = |x |.
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Direct Scattering Problem

Determine us from knowledge of ui and the scattering obstacle.
Assuming the time harmonic waves

U(x , t) = u(x)e−iwt

the us is estimated using the following equations,

Helmholtz equation : ∇2u + k2u = 0 in Ω ∈ R2

Neumann B.C : ∂u
∂n = 0 on ∂Ω

Radiation condition : limr→∞ r
(
∂us
∂r − ikus

)
= 0

The Neumann boundary condition corresponds to a sound-hard
obstacle and the Sommerfield radiation condition guarantees that
us is outgoing.

6/21



Direct Scattering Problem

Determine us from knowledge of ui and the scattering obstacle.
Assuming the time harmonic waves

U(x , t) = u(x)e−iwt

the us is estimated using the following equations,

Helmholtz equation : ∇2u + k2u = 0 in Ω ∈ R2

Neumann B.C : ∂u
∂n = 0 on ∂Ω

Radiation condition : limr→∞ r
(
∂us
∂r − ikus

)
= 0

I Also called the forward map, Mf since it maps the image of
the obstacle to the scattering field (i.e., Mf :Image→us).
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Direct Scattering Problem

I Solving a forward map for us becomes a exterior boundary
value problem (BVP)

I Numerical and analytical solutions for the exterior Helmholtz
equation.

I Analytical solution for a limited case.

I Numerical solution using the Green’s function and Green’s
formulae
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Exterior boundary value problem (BVP)

For a sufficiently smooth ∂Ω, the solution for us is

∫
∂Ω

[
∂ui (x)

∂n
g(x |ξ) +

∂g(x |ξ)

∂n
us(x)

]
dl(x) =


us(ξ) , ξ ∈ Ω

us(ξ)

2
, ξ ∈ ∂Ω

where

g(x |ξ) =
i

4
H0(k |x − ξ|) , ∂g(x |ξ)

∂n
= − ik

4
H1(k |x − ξ|)∂(|x − ξ|)

∂n
,

H0 : a Hankel function of the first kind of order zero
H1 : a Hankel function of the first kind of order one
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Exterior boundary value problem (BVP)

For a sufficiently smooth ∂Ω, the solution for us is

∫
∂Ω

[
∂ui (x)

∂n
g(x |ξ) +

∂g(x |ξ)

∂n
us(x)

]
dl(x) =


us(ξ) , ξ ∈ Ω

us(ξ)

2
, ξ ∈ ∂Ω

This is solved numerically using the boundary element method
(BEM).
Boundary ∂Ω is discretized by Nb number of elements, {∂Ω̄i}Nb

i=1

i.e., ∂Ω ≈ ∪Nb
i=1∂Ω̄i
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Figure: (a) the set of boundary elements {∂Ω̄i}10
i=1 and the original

boundary which is a unit circle and (b) the measurement points
s1, . . . , s10 around an unit circle obstacle.
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Inverse Scattering Problem

I Unknown shape of the obstacle from the measurement of the
scattering field us

I Nonlinear and ill-posed problem

I Small variations in us can lead to large errors in the
reconstruction of the obstacle
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Statistical Inference

Using a Bayesian approach, the inverse problem is tackled as a
statistical inference for an unknown shape of the obstacle

I Γ - the continuous state space of feasible images w

I d - noisy measurements of the far field patterns

The posterior density for w is

p(w |d) =
p(d |w)p(w)∫

Γ p(d |w)p(w)dw
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Statistical Inference

I Synthetic Data - us (synthetic noise free data) respect to the
true image is obtained by solving the forward map. We assume
both the real and imaginary parts of each measurement
contain zero-mean Gaussian-distributed noise in reality.

I Prior,(p(w)) - Since there is no real prior knowledge of w and
hence no subjective prior. A uniform distribution over Γ is
used.

I Likelihood, p(d |w)

p(d |w) =

Nf∏
i=1

exp

(
−(Re(d(si )− us(si )))2 − (Im(d(si )− us(si )))2

2σ2

)
.

Nf : the number of measurements
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Statistical Inference

The expected shape of obstacle is

E[w ] =

∫
Γ
wp(w |d)dw .

If the sample set {wi}Ni=1 generated from p(w |d) over Γ the
expectation of w is estimated by Monte Carlo integration

w̄ ≈ 1

N

∑
i

wi .

Markov chain Monte Carlo method is used to generated samples
from p(w |d), and the central limit theorem (CLT) holds for w̄ .
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Markov chain Monte Carlo (MCMC) method

Figure: Four types of proposal movements; V, R, S and T (Left to
Right)

. . . .

MH-Algorithm
Given a state Wn = w , the Metropolis Hastings algorithm is as
follows
Step 1 Select a move mi . i ∈ {1, . . . ,Nm} with probability εi .
Generate w ′ by sampling Φi (w → w ′).
Step 2 Compute the acceptance probability for the state,
αmi (w → w ′).
Step 3 Accept w ′ with αmi (w → w ′).
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Markov chain Monte Carlo (MCMC) method

Figure: Four types of proposal movements; V, R, S and T (Left to
Right)

. . . .

Move R Rotate w by a random angle hR with respect to the
center of mass, hR ∼ U(−δR, δR)
Move T Shift w by a random vector hT , hT ∼ U(−δT , δT )2

Move V Move a position of one vertex by a random vector hV ,
hV ∼ U(−δV , δV)2

Move S Change a size of w by a random rate hS respect to the
center of mass, hS ∼ U( 1

δS
, δS)
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Computing the Likelihood efficiently

I Precomputation of Hankel function : Instead of evaluating a
truncated infinite sum or similar for each Greens function
value, look up the table of precomputed Hankel function
values.

I Efficient boundary discretization : In solving the forward
problem numerically, the number of elements Nb relates to the
size of dimensions of the linear system.
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Delayed acceptance MCMC (DAMCMC)

I Generates samples from the exact posterior using an
intermediate approximation step.

I If a proposal is accepted by the approximation, it is corrected
by calculating the true posterior density to ensure it reaches
the target distribution. Otherwise a proposal is rejected.

I Computation time reduction by avoiding calculation of the
exact density for proposals that are rejected.

I Quality of approximation.

I The speed up of these algorithms over the standard MH
algorithm equals the inverse of the proportion of acceptance.
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Delayed acceptance MCMC (DAMCMC)

Algorithm
Let Wn = w and p∗w (w ′|d) denotes the approximation to p(w ′|d) computed at w
(i.e., p∗w (w |d) = p(w |d)).
Step 1 Select a move mi . i ∈ {1, . . . ,Nm} with probability εi . Generate w ′ by
sampling Φi (w → w ′).
Step 2 Using the approximation of the present section, estimate p∗w (w ′|d).
Step 3 Compute the Metropolis Hastings ratio α

mi
MH(w → w ′) using p∗w (w ′|d).

Step 4 Accept or reject the candidate state w ′:

4.1 If w ′ is rejected, set Wn+1 = w and go back to Step 1.

4.2 If w ′ is accepted, compute pw (w ′|d) using the exact calculation.
Compute the second-stage acceptance probability αmi (w → w ′) and
accept w ′ with αmi (w → w ′).
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Forward map approximation

I Linear approximate
Use of the the Fréchet derivative of the forward map.

I Coarse discretization approximate
Use of a coarsened boundary discretization using fewer
boundary elements than the exact calculation.
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Forward map approximation

I Linear approximate (Hettlich (1995))
For sufficiently small vector fields h ∈ C1(∂Ω) a perturbation of ∂Ω is a
boundary of a domain denoted by ∂Ωh = {x ′ ∈ R2 : x ′ = x + h(x), x ∈ ∂Ω} in
the class C1. The normal component of a vector field h is denoted by hn = h · n
and the notation (∇u)t for the tangential component (∇u)t = n× (∇u×n) of a
vector field u is used. Then the operator M is Fréchet differentiable at ∂Ω, i.e.,

1

‖h‖C1(∂Ω)

‖M(∂Ωh)−M(∂Ω)−M′(∂Ω)h‖ → 0 , h→ 0 .

Note that the derivative is related to u′∞, (i.e., M′(∂Ω)h = u′∞). u′∞ is the
far-field pattern of the radiating solution of

∇2u′∞ + k2u′∞ = 0 in Ω ⊂ R2

∂u′∞
∂n

= k2hnus + Div(hn(∇us)t) on ∂Ω .

us denotes the solution of the scattering problem with respect to Ω. The linear
approximation u′s to the scattering field on a domain Ωh for small h is given by

u′s ' us + u′∞ .

I Coarse discretization approximate

22/21



Forward map approximation

I Linear approximate

I Coarse discretization approximate

• Fine discretization gives an accurate solution and demands a
higher computation cost..

• Coarse discretization using fewer boundary elements but also a
reasonably accurate solution.

• Separation analysis of coupled Markov chains (Nicholls, G. K.,
Fox, C. and Watt, A. (2012))

• Key idea is to compare the mean separation time of two chains
under the same random sequences and if the time is long
enough, two chains are empirically identical.
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I Linear approximate

I Coarse discretization approximate
Algorithm
Generate W0 form the initial state distribution ρ0 and set
Z0 = W0.
For n < Nt ,
Step 1 Generate a proposal w ′ from ψ(w ′|w).
Step 2 Compute the acceptance probabilities; αw

n (w ′|w)
using pw (w ′|d) and αz

n(w ′|w) using pz(w ′|d).
Step 3 Accept w ′ with αw

n (w ′|w). If w ′ is accepted set
Wn+1 = Zn+1 = w ′. Otherwise set Wn+1 = Zn+1 = w .
Step 4 After Nt iterations compute the mean absolute
differences of αw and αz .

αw ,z =
1

Nt

Nt∑
n=1

|αw
n − αz

n|
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I Linear approximate

I Coarse discretization approximate

Figure: log of likelihood of W (1024), W (512) and W (8)
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I Linear approximate

I Coarse discretization approximate

• For a large Nt , αw ,z is the average separation probability per
update and the inverse relates to the mean separation time of
Z from W .

• For theoretical result, see Nicholls, G. K., Fox, C. and Watt, A.
M. (2012).

• If a separation time is longer than the total run length, the
approximate chain is identical to the exact chain.

• If αw ,z is greater than an autocorrelation time of the exact, we
treat that the chain mixes faster than it separates.

26/21



Simulation study
I A diamond shape of obstacle.
I Ten us measurements points, (10 cos(φi ), 10 sin(φi )) where
φi = 2π(i − 1)/10, i = 1, . . . , 10.

I Two incident fields, u1
i = e ikx and u2

i = e iky .
I Synthetic data : di = us(si ) + ε1 + iε2, ε1, ε2 ∼ N(0,σ2).
I 512 boundary elements are used, Nb = 512.

Figure: A diamond-shaped obstacle and the measurement points
s1, . . . , s10
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Simulation study
I A diamond shape of obstacle.
I Ten us measurements points, (10 cos(φi ), 10 sin(φi )) where
φi = 2π(i − 1)/10, i = 1, . . . , 10.

I Two incident fields, u1
i = e ikx and u2

i = e iky .
I Synthetic data : di = us(si ) + ε1 + iε2, ε1, ε2 ∼ N(0, σ2).
I 512 boundary elements, Nb = 512, for the exact chain.

Figure: Empirical posterior mean (black line) and 95% confidence
intervals (grey lines).
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Simulation study
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Summary

I The inverse obstacle scattering problem using Bayesian
inference

I Two attempts to increase the forward map calculation
efficiency ; precomputation of Hankel function values and
efficient boundary discretization.

I The delayed acceptance MH algorithm can be effective in
reducing a computational workload when an appropriate
approximate is used.
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Future works

I Advanced MCMC techniques such as adaptive delayed
acceptance M-H algorithm by Cui, T., Fox, C., and
O’Sullivan, M. J. (2011).

I Alternative representation for an obstacle shape.

I Improvement of forward map approximate.
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Thank you for your attention!


