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Bayesian framework: Inverse Problems

d = A(x) + e: data d, image x, measurement noise e, forward map A

s data space
image space

Bayes’ rule

™ (X, @, B|d) oc L(d|x, a) 7 (x|B) w(a)m ()

Construction of the Posterior Distribution

m Likelihood: knowledge of measurement noise, maybe knowledge of model error
m Prior: stochastic modelling of x, physical laws, previous data, expert opinion
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Bayesian framework: Inverse Problems

m Expert knowledge, e.g. porosity is between 0 and 1 and more likely < 0.5, and
permeability range is high, low, or medium for some specific regions. (Good for
physical bounds)

m Spatial statistics: e.g. Gaussian Markov Random field (GMRF) or Kriging/
Gaussian process

| A\

Likelihood
Suppose that the model noise n ~ f,(-)

L(d|x,a) = fo (d — A(X))

We assume the noise follows i.i.d. Gaussian, a = X,

L(d]x) o exp (—%(d —AX)TE(d - A(x)))
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Bayesian framework: Solution Approaches

Optimization (MAP)
maximize the posterior density (in a logarithmic scale)

argmax,_ [—%(d —AC)) T Z,(d - A(x)) + Iog(ﬂ(x))]

| A\

Calculating Expectation

Summarize information over the posterior distribution by calculating the expected
value of function of interest

E, [ (x)] = /Xf(x)n(x|d) dx

Example: mean E [x], covariance Var. [x], mean pressure prediction E. [p(A(x))],
covariance of pressure prediction Var. [p(A(x))] ..
e High-dimensional integrals = Monte Carlo integration

XX n(d) B[ (0]~ LS f (x0)
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Posterior Sampling — Metropolis Hastings

Monte Carlo integration needs samples from = (x|d), MH is the most widely used
given state X; = x at time { generate candidate state y from a proposal
distribution q (x, -)

- " : d)q (v, x)

P4 With probability a (x, y) = min 1,L set X1 =

B With probabilty o (x,) (1 Toidatr ) s =
otherwise X1 = x

Repeat

m The proposal q (x, -) defines how the algorithm traverse the parameter space,
and hence the efficiency. Many works in statistics and physics, Adaptive
Metropolis, MALA, Stochastic Newton, Manifold MCMC, Particle MCMC ...

m In our work, we built fast approximation to the posterior distribution. So we can
draw more samples in a given budget of CPU time.

m Two different methods will be discussed.
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Adaptive Error Model
m Geothermal Reservoir Modeling
m Using Approximate Models and Adaptive MCMC
m Results
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Example: Geothermal Reservoir Modelling
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Example: Governing Equations

Multiphase non-isothermal flow are governed by mass and energy balance equations

E/Mdvz Q-ﬁdr+/qdv
dt Q o0 Q

and multiphase Darcy’s law
Mn = ¢(mSi + pvSy)
Q=3 2 (9p - pop)
B=lLv s
Me = (1 = @)p:e: T + o(mth St + pytie Sv)
Q.= 3 2P poghs — KT

B=lv

M — mass (m) or energy (e) per unit volume

Q — mass (m) or energy (e) flux

g —mass (m) or energy (e) input/output rate

¢, k and k. are the porosity, permeability and relative permeability, respectively.
The governing PDEs are solved by finite volume solver TOUGH2, Pruess (1991).
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Example: Calibration

m Estimate the values of unknowns (permeability, porosity, and boundary
condition, etc.) from data (temperature, pressure, and enthaly, etc.)

m Predict the long term behavior of geothermal reservoirs (presure responses and
enthalpy response under centain pump rates)

m Assess the uncertainty of this prediction, and hence the risk

v

Difficulties

Models are computationally very demanding, from the order of hours to days.
Parameter to data map (forward model) is highly nonlinear

The data are sparsely measured and corrupted by noise

Black box model — no adjoint gradient and Hessian
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Case Study: Natural State Modeling

Permeability: K — //"+ \.\ “

s
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Heterogeneous -
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Anisotropic
Pixel based representation © o b
10,005 dimensions

s
GMRF prior \' -

&
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Heterogeneous Yy
RBF based representation S f
41 dimensions w Or
Non-informative prior with constraints o

T

m Parameters: permeability field, and boundary condition. ~ 10,000
m Data: temperature measurements from wellbores. (~ 230 points)
m Computing time: Each model evaluation ~ 30 - 50 mins
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Using Approximation: Two step MCMC

Given state X; = x, generate candidate state y from a proposal g (x, -)
With probability

T (yld) (v, X)]
m(x|d) q(x,¥)]’

accept y, then go to step 3. Otherwise reject y setting X;.1 = x, then go to step 4
With probability

a(X,y) = min {1,

- (y]d) 7*(x|d)
B(x,y) = min {1, l ,
ol ~(xI) = (41d)
accept y setting X;1 = y. Otherwise reject y setting Xi11 = x.
B repeat
What 7* we can use? J
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Using Approximation: Approximation Error Model
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Computing time: fine ~ 30 - 50 mins, coarse ~ 1 mins

Replace the fine model A(x) with the coarse model A*(x) in the likelihood function:

L*(dlx) o exp {—;[A*(x) )T A () — d]}
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Using Approximation: Approximation Error Model
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Using Approximation: Approximation Error Model

Version 2

To deal the model reduction error, Kaipio and Somersalo (2007) introduced an
approximation error model:

Revise the parameter to data map
d=Ax)+e
=A(X) +[AX) - A" (X)] + e
=A"(X)+B(x)+e

Kaipio and Somersalo (2007) assume B_Lx and B ~ N(us, X3), yields the
approximate likelihood

L*(d|x) oc exp {—%[A*(X) + g — 0] (T + o) T [AT(X) + s — d]}
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Using Approximation: A Priori vs. A Posteriori

A Priori — Kaipio and Somersalo, 2007

m pre-sample a set of parameters X, ..., xy from x(x) — very fast
m evaluate the model reduction error A(x;) — A*(x;) for each x; — slow
m use Monte Carlo integration to calculate ug and X

This yields an estimation over the prior distribution

pe = [y B(X)m(x)dx,
Xp J2[B(x) — uBl[B(x) — ps] = (x)dx,

A Posteriori — Cui, Fox, and O’Sullivan, 2010
By integrating the approximation error model into an adaptive two step MCMC, we
provide an online estimation over the posterior distribution:

pe = [, B(x)m(x|d)dx,
o = [y[B(x) — usllB(x) — pe]"n(x|d)dkx,

| A\
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Using Approximation: Adaptive Delayed Acceptance

Adaptive Delayed Acceptance (ADA)

Given state X; = x, generate candidate state y from a proposal g (x, -)

With probability

With probability

accept y setting X;.1 = y. Otherwise reject y setting X;11 = x.

[y 7 (yld) gy, x) |

a(x,y) =min |1,
Coy)=min |1 2260) a(x.y).
accept y, then go to step 3. Otherwise reject y setting X;.1 = x, then go to step 4

Sx.y) = min [1, 71D = (x10)]

L w(x|d) 7=(y|d) ]

I

A Adaptively update the up and ¥ g according to A(Xn.1) and A*(Xn11).

repeat

Convergence

v

The ergodicity can be shown by applying the theorems of Roberts and Rosenthal
(2007).
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Permeability: K _ = 4 .

Heterogeneous
=
Anisotropic , /’/
[ ]

Pixel based representation
10,005 dimensions

GMRF prior
B

Mass input at bottom: W I==-

Heterogeneous
RBF based representation
41 dimensions |

Non-informative prior with constraints

m Run ADA for 40 days, generated 23 effective samples, would cost standard MH
10 months.

m Second acceptance rate is about 0.7 — 0.8, without error model is about 0.25
(The chain does not mix), using offline construction is about 0.4 — 0.5. Other
numerical experiments suggests similar scaling factors.
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Application: Temperature Match
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Application: Temperature Match
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Application: Permeability: x
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Application: Permeability: y
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Application: Permeability: z
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Adaptive Reduced Order Models
= Motivation

Projection Based ROM

Algorithms

A 9D Test Case

A High Dimensional Example
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Aim

From previous study, we know that using a fast approximation helps.
We want to use a reduced order model rather than coarse scale model.

constructing approximation w.r.t. the posterior is important: no offline cost,
more accurate.

Combing the reduced basis approach with adaptive sampling.

Some Useful Facts

| A\

In solving an inverse problem, the model outputs have to be consistent with the
data (i.e., in the support of the posterior). More informative data we have, the
less variation in the outputs.

We would expect the model outputs lives in some low dimensional manifold.
MCMC sampling could track this low dimensional manifold.
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Projection Based ROM

Consider the Poisson’s Equation —V - (xVu) = f. Discretize it, we have

The Full Model The Reduced Order Model

AX)u=f A (X)u = £,
d=Cu (1) d = Cruy )
d=d+eN(0, In,) d = d + t(x) + eN(0, In,)

Given Reduced Basis V for the state variable, we have u ~ V.

mxecRW m A((x)= VTAX)V
" ()= VTAR) o
muUcR™® mfi=V'f N
. mdeR™
mdeRY m C=CV

Methods for compute the reduced Basis includes POD (Wang and Zabaras, 2004),
greedy sampling (Lieberman, Willcox and Ghattas, 2010)
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Variations of POD

Offline Construction

Typical POD builds the basis w.r.t. to the prior distribution or some given physical
bounds ;
Erto [U0G0U00T] v = A

where E is the expectation, and v; defines its the eigenfunction (which is a function
over x, the problem domain).

Samples from the prior is problematic, especially in high dimensional cases. )

Data Oriented
In our data-oriented settings, we build the basis w.r.t. to the posterior distribution

Ex(x|d) [U(X)U(X)T] Vi = AV

To control the error in the online construction, we need a good error indicator /
estimator.
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Error Indicator

t(x) = Cu(x) — CVur(x)

Requires solving the full model to get u(x), we normalize the observation operator
with measurement noise.

Residual
The residual

| A

r(x) = f — A(x) Vur(x)
Gives a bound to the true error, without evaluating the full model, i.e.

18N < ICIIACO) ™ HlIr(x)ll

m True error is not a feasible choice of error estimation, since the full model is
required.

m Using residual as an error indicator has two potential issues: 1) the scaling
issue, 2) it does not reflects the error of the model outputs.

m We use the approximated dual weighted residual.
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Error Indicator

Dual Weighted Residual
The dual is defined as

v(x) = A(x)""CT

Then the model output can be given as u = 7" f. Define the true error and the residual
as

t(x) = Cu(x) — CVu,(x)
r(x) = f — A(x) Vur(x)
We can show that t(x) = ~(x)"r(x) by
~Tr=CAT'[f — AV
= Cu— CW

The dual v provides a way to quantify the impact of residual on the true error.
However, compute the exact dual is not feasible.
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Error Indicator

Approximated Dual Weighted Residual

Meyer and Matthies (2003) approximate the dual by using a ROM that has higher
order of accuracy. In our setting, since we assume all the model outputs are similar to
each other, the dual defined at the MAP point would provide a resealable
approximation

4 = v(Xuar)
and hence the approximated true error #(x) = 4r(x)

We can also use the ensemble of full model evaluations to build a library of dual. Then
possibly to provide a error estimation by

m point estimate from the closest full model evaluation rather than MAP.
m or an average dual from all the full model evaluations.

All these error indicator quantifies that given a new (MCMC) proposal, if the ROM
evaluated at the proposal is accurate enough, up to some threshold.
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Exact Algorithm

Suppose the chain is at X, = x, given a proposal q(x, -), a ROM and some number
Nlag
Simulate a sub-MCMC chain (denoted by Z;) that with the approximate posterior

defined by the ROM, until either the sub-chain exceed the iteration count Njzg or
the error ||t|| > € for the latest accepted state Z.

Use the last state Z; as a proposal in the delayed acceptance, evaluate the full

model at Z;, and the acceptance probability 5(x, Z;). Given an random number
Ty

m If 7 < 8, Set X,,1 = Z, and update the ROM if [|#(Z)]|| > ¢
m otherwise Set X, 1 = x

Some adaptation on the proposal and Njz,.

v

This algorithm is exact, but need many forward model evaluations, i.e., it is

unbiased, but the variance reduction is not very good in terms of number of FOM
evaluations.
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Approximate Algorithm

Suppose the chain is at X, = x
propose y from qg(x, -). Evaluate the ROM, get reduced state u(y) and error (y)

If |#(y)]lco > 1, evaluate the full mode to get u(y), then get the acceptance
probability a(x, y). Accept/reject according to .
If [|£(¥)]loo € (e, 1), run one step of the delayed acceptance using ur(y) as an
approximation
B |f the approximation is accepted, Evaluate the full model to get u(y), and
hence B(x, y). Accept/reject according to 3.
B Otherwise reject.
If [|#(y)]|oo < €, we treat the ROM as good approximation to, then a(x, y) is
approximated. Accept/reject according to a.

For every Full model evaluation, we update the ROM.

If the error is greater than 1 (the standard deviation of the noise), use the full model

If the error is within the threshold € and 1, it is considered as an “reasonable”
approximation, then the delayed acceptance scheme is used to make the correction.

For error < ¢, the ROM is considered to be the same as the full model. This gives the main
computational gain.
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Approximate Algorithm

Mean Square Error

Recall that the mean square error of some estimator 4 to the unknown quantity of
interest ¢ R . . . .
MSE(0) = Var() + (E[f — 6])* = Var() + Bias()*

Approximated MCMC provided a biased estimator that has better variance
reduction (as we can compute more samples in the same CPU time),

The exact MCMC (using delayed acceptance) provides an unbiased estimator
that has larger variance.

The bias of the previous algorithm is still tractable, as the error is controlled by e.

We test various choice of ¢, for e = 10~3, the approximate algorithm is very
accurate. See the coupling test.

C,F,O,M, W (UoA, UoO & MIT) Adaptive Posterior Approximation suQ13 36/48



Test Case

lem Setup

9 parameters are defined by basis functions. 100 measurements with signal to noise ratio 50. J
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A 9D Test Case: Numerical Results
Comparison of Efficiency

Exact Approximate 1 Step MH
MCMC iterations 104, Njag = 50 5% 10° 5 x 10°
€ 101 102 103 10— | 10=2 | 10=8 | -
Average 0.9138 | 0.9562 | 0.9653 | - - - -
FOM evaluations | 10* 104 104 17 37 59 5 x 10°
ROM basis 13 34 61 17 37 59 -
CPU time (sec) 329.3 370.7 425.2 119.5 | 157.5 | 195.5 | 1.032 x 104
ESS 2195 2426 2557 2443 2372 2412 2016
ESS/CPUtime | 6.666 6.544 6.159 20.44 | 15.06 | 12.34 | 0.1953
Speed-up factor 34.13 33.51 31.54 104.7 | 7711 | 63.18 | 1

Comparison of the computational efficiency of the exact algorithm, the approximate
algorithm, and the single step MH (SSMH) algorithm. For the exact algorithm and the
approximate algorithm, three examples with different values of e = 10,102,102
are given. Fixed proposal distribution is used in all the test cases.
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A 9D Test Case: Numerical Results

Log-posterior vs. MCMC iteration

Zoom-in of first 500 iterations

100 200 300 400 500
MCMC iteration

MCMC iteration X 10

The trace of the log-posterior against MCMC iterations. From top to bottom:
e=10"",10"2,10"3. The red and black lines indicate FOM evaluations, where red

means a rejected proposal, and black means an accepted proposal.
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A 9D Test Case: Numerical Results

black: the SSMH

blue: exact algorithm, e = 10"
green: approximate, e = 10"
cyan: approximate, e = 1072
red:  approximate, e = 1072
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A 9D Test Case: Coupling Time

e=10"" e=10"? e=10"°
0 WW
g -2
-4
2.8
27 M
5
2.6
2.5
™
g-2
-4
0 200 400 0 1000 2000 30000 5000 10000
MCMC iterations MCMC iterations MCMC iterations

Coupling time between the SSMH algorithms sampling the approximate posterior and
the SSMH sampling the exact posterior. From left to right, the approximate posterior
uses ROM that constructed with different error threshold, e = 10~",1072,1073.
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A 9D Test Case: Error in the ROM

= ﬁ\% 0.016644
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Comparison of the true error of the data-oriented ROM with the ROM built w.r.t. the J

prior. From left to right: data-oriented ROMs with threshold, e = 10=", 1072, 1072,
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A 9D Test Case: Influence of the Likelihood

140
e - Signal to noise ratio
100 CE_10 ]
€= 120
—S— =102 ®
A _10-1
o 80 e=10 ° 100
b= Z,
= =]
2 2
% 60 80 g
= o
= 40 .
.80 %
n 40
20
20
0
10° 10° 10° 10” 10
Tightness of the posterior distribution: 1\21 %

By changing the signal to noise ratio, we can control the amount of information carried
in the data. We test the number of reduced basis versus the amount of information in
the data.
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A High Dimensional Example: Problem Setup

Distributed parameter, prior defined by the sparse precision matrix.
KL expansion is used to truncate the prior at 99.99% energy, gives 53 basis. J

True Parameter True Solution

A
cm A

s i
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A High Dimensional Example: Numerical Results

Exact Approximate 1 Step MH
MCMC iterations || 10%, Njzg = 50 5 x 105 5 x 10°
€ 101 10— | 10=2 [ 10=8 | -
Average 8 0.9271 - - - -
FOM evaluations || 10* 61 123 198 5 x 10°
ROM basis 62 61 123 198 -
CPU time (sec) 673.2 483.0 | 1023 1849 2.266 x 10*
ESS 2221 2468 2410 2445 2472
ESS / CPU time 3.299 5.110 | 2.356 | 1.322 | 0.1091
Speed-up factor 30.23 46.84 | 21.59 | 1212 | 1

Comparison of the computational efficiency of the exact algorithm, the approximate
algorithm, and the single step MH (SSMH) algorithm. For the exact algorithm,

e = 10~" is used. For the approximate algorithm, three different values of
e=10"1,10"2,102 are used. We use a fixed proposal distribution in all the test
cases.
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A High Dimensional Example: Numerical Results

SSMH Approx., € = 107! Exact, € = 107!
25
2
5‘3;
= 15
1
1
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Mean and standard deviation at each spatial location of the permeability field.
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Thanks
Disoussion

m Using adaptation is important, but this has not been fully discovered.

m POD does not reflect the multiscale behavior of the physics, different forms of
reduced order models?

Nonlinear PDEs using discrete empirical interpolation (DEIM)

Applications in dynamic systems

Extension to using high order derivatives.

Thanks!
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A Real Volcano
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