Approximate marginalization of uninteresting unknowns in inverse problems

Ville Kolehmainen ${ }^{1}$ and Jari Kaipio ${ }^{2}$

${ }^{1}$ Department of Applied Physics,
University of Eastern Finland, Kuopio, Finland
${ }^{2}$ Department of Mathematics, University of Auckland, New Zealand.

SUQ 13, Dunedin, NZ.

Contents

Part 1: Approximation error model

Part 2: Computational Examples

Part 3: Modification for high-dimensional data

Part 1: Approximation error model

Finnish Centre of Excellence
in Inverse Problems Research

Introduction

- Consider the inverse problem of estimating $x \in \mathbb{R}^{n}$ from noisy observation $y \in \mathbb{R}^{m}$, given the model

$$
y=\bar{A}(x, z)+e \in \mathbb{R}^{m}
$$

where
$x \in \mathbb{R}^{n}$: primary unknown
$z \in \mathbb{R}^{d}$: uninteresting, auxiliary unknowns (e.g. inaccurately known domain boundary, detector locations, uninteresting distributed parameter, etc)

- Complete Bayesian solution: Posterior density model $\pi(x, z \mid y)$. In many practical applications
- estimation of all parameters (x, z) or
- marginalization $\pi(x \mid y)=\iint \pi(x, z \mid y) \mathrm{d} z$ is infeasible due to computation time limitations.
- Conventional (ignorance) solution: treat z as fixed conditioning variables, and estimate x from

$$
\pi\left(x \mid y, z=z_{0}\right)
$$

\rightarrow large errors if realization z_{0} is incorrect.

- Figure: 1D-marginal posterior $\pi\left(x_{\ell} \mid y\right)$:
- exact marginal $\pi\left(x_{\ell} \mid y\right)$ (black line)
- $\pi\left(x_{\ell} \mid y, z=z_{0}\right)$ with incorrect z_{0} (blue)
- true value of x_{ℓ} (vertical).

- Approximation error approach gives approximate (pre)marginalization of $\pi(x, z \mid y)$ over z;
- Modeling errors caused by inaccurately known z are modeled as an additive noise process $\varepsilon(x, z)$ in the measurement model.
- Approximate marginalization over the noise process using a Gaussian approximation for $\pi(x, \varepsilon)$.
- Approximation of $\pi(x, \varepsilon)$ can be estimated by straightforward Monte Carlo integration over samples from prior models of (x, z). Can be done off-line.
- Leads to computationally efficient approximation of $\pi(x \mid y)$, allows simultaneous handling of model reduction related errors.

Conventional measurement error model (CEM)

- Consider the conventional measurement model

$$
\begin{equation*}
y=\bar{A}(x)+e \tag{1}
\end{equation*}
$$

- Joint density

$$
\pi(y, x, e)=\pi(y \mid x, e) \pi(e \mid x) \pi(x)=\pi(y, e \mid x) \pi(x)
$$

- In case of (1), we have $\pi(y \mid x, e)=\delta(y-\bar{A}(x)-e)$, and

$$
\begin{aligned}
\pi(y \mid x) & =\int \pi(y, e \mid x) \mathrm{d} e \\
& =\int \delta(y-\bar{A}(x)-e) \pi(e \mid x) \mathrm{d} e \\
& =\pi_{e \mid x}(y-\bar{A}(x) \mid x)
\end{aligned}
$$

- In the (usual) case of mutually independent x and e, we have $\pi_{e \mid x}(e \mid x)=\pi_{e}(e)$ and

$$
\pi(y \mid x)=\pi_{e}(y-\overline{\mathcal{A}}(x))
$$

- Furthermore, if $\pi(e)=\mathcal{N}\left(e_{*}, \Gamma_{e}\right)$ and $\pi(x)=\mathcal{N}\left(x_{*}, \Gamma_{x}\right)$, we have
$\pi(x \mid y) \propto \exp \left(-\frac{1}{2}\left(\left\|L_{e}\left(y-\bar{A}(x)-e_{*}\right)\right\|^{2}+\left\|L_{x}\left(x-x_{*}\right)\right\|^{2}\right)\right)$,
where $L_{e}^{\mathrm{T}} L_{e}=\Gamma_{e}^{-1}$ and $L_{x}^{\mathrm{T}} L_{x}=\Gamma_{x}^{-1}$.
- MAP estimate with the CEM:

$$
\min _{x}\left\{\left\|L_{e}\left(y-\bar{A}(x)-e_{*}\right)\right\|^{2}+\left\|L_{x}\left(x-x_{*}\right)\right\|^{2}\right\}
$$

Approximation error model (AEM)

- Accurate measurement model

$$
\begin{equation*}
y=\bar{A}(x, z)+e \in \mathbb{R}^{m} \tag{2}
\end{equation*}
$$

- Instead of using (2) and treating (x, z) as unknowns, we fix $z \leftarrow z_{0}$ and use a possibly drastically reduced model

$$
x \mapsto A\left(x, z_{0}\right)
$$

- The use of conventional measurement error model

$$
y=A\left(x, z_{0}\right)+e
$$

leads to errors in the estimates of x if i) z_{0} is incorrect or/and ii) model reduction errors are not negligible.

- In the approximation error approach, we write the measurement model

$$
\begin{align*}
y & =\bar{A}(x, z)+e \\
& =A\left(x, z_{0}\right)+\left[\bar{A}(x, z)-A\left(x, z_{0}\right)\right]+e \\
& =A\left(x, z_{0}\right)+\varepsilon(x, z)+e \tag{3}
\end{align*}
$$

where $\varepsilon(x, z)=\bar{A}(x, z)-A\left(x, z_{0}\right)$ is the approximation error.

- The objective is to formulate posterior model

$$
\pi(x \mid y) \propto \pi(y \mid x) \pi(x)
$$

using measurement model (3).

- We consider e independent of (x, z).
- Using Bayes formula repeatedly, we get

$$
\begin{array}{r}
\pi(y, x, z, e, \varepsilon)=\pi(y \mid x, z, e, \varepsilon) \pi(x, z, e, \varepsilon) \\
=\delta\left(y-A\left(x, z_{0}\right)-e-\varepsilon\right) \pi(e, \varepsilon \mid x, z) \pi(z \mid x) \pi(x) \\
=\pi(y, z, e, \varepsilon \mid x) \pi(x)
\end{array}
$$

- Hence

$$
\begin{aligned}
\pi(y \mid x) & =\iiint \int \pi(y, z, e, \varepsilon \mid x) d e d \varepsilon d z \\
& =\int \pi_{e}\left(y-A\left(x, z_{0}\right)-\varepsilon\right) \pi_{\varepsilon \mid x}(\varepsilon \mid x) d \varepsilon
\end{aligned}
$$

(note: convolution integral w.r.t. ε)

- To get a computationally useful and efficient form, π_{e} and $\pi_{\varepsilon \mid x}$ are approximated with Gaussian distributions.
- Let the Gaussian approximation of $\pi(\varepsilon, x)$ be

$$
\pi(\varepsilon, x) \propto \exp \left\{-\frac{1}{2}\binom{\varepsilon-\varepsilon_{*}}{x-x_{*}}^{\mathrm{T}}\left(\begin{array}{cc}
\Gamma_{\varepsilon} & \Gamma_{\varepsilon x} \\
\Gamma_{x \varepsilon} & \Gamma_{x}
\end{array}\right)^{-1}\binom{\varepsilon-\varepsilon_{*}}{x-x_{*}}\right\}
$$

- Hence $\pi(e)=\mathcal{N}\left(e_{*}, \Gamma_{e}\right), \quad \pi(\varepsilon \mid x)=\mathcal{N}\left(\varepsilon_{* \mid x}, \Gamma_{\varepsilon \mid x}\right)$, where

$$
\varepsilon_{* \mid X}=\varepsilon_{*}+\Gamma_{\varepsilon X} \Gamma_{x}^{-1}\left(x-x_{*}\right), \quad \Gamma_{\varepsilon \mid X}=\Gamma_{\varepsilon}-\Gamma_{\varepsilon X} \Gamma_{X}^{-1} \Gamma_{x \varepsilon}
$$

- Define $\nu|x=e+\varepsilon| x, \quad \pi(\nu \mid x)=\mathcal{N}\left(\nu_{* \mid x}, \Gamma_{\nu \mid x}\right)$, where

$$
\nu_{* \mid x}=e_{*}+\varepsilon_{*}+\Gamma_{\varepsilon x} \Gamma_{x}^{-1}\left(x-x_{*}\right), \quad \Gamma_{\nu \mid x}=\Gamma_{e}+\Gamma_{\varepsilon}-\Gamma_{\varepsilon x} \Gamma_{x}^{-1} \Gamma_{x \varepsilon}
$$

- Approximate likelihood

$$
\pi(y \mid x)=\mathcal{N}\left(y-A\left(x, z_{0}\right)-\nu_{* \mid x}, \Gamma_{\nu \mid x}\right)
$$

- Posterior model

$$
\pi(x \mid y) \propto \pi(y \mid x) \pi(x) \propto \exp \left(-\frac{1}{2} V(x)\right)
$$

where $V(x)$

$$
\begin{aligned}
V(x)= & \left(y-A\left(x, z_{0}\right)-\nu_{* \mid x}\right)^{\mathrm{T}} \Gamma_{\nu \mid x}^{-1}\left(y-A\left(x, z_{0}\right)-\nu_{* \mid x}\right) \\
& +\left(x-x_{*}\right)^{\mathrm{T}} \Gamma_{x}^{-1}\left(x-x_{*}\right) \\
= & \left\|L_{\nu \mid x}\left(y-A\left(x, z_{0}\right)-\nu_{* \mid x}\right)\right\|^{2}+\left\|L_{x}\left(x-x_{*}\right)\right\|^{2}
\end{aligned}
$$

where $\Gamma_{\nu \mid x}^{-1}=L_{\nu \mid x}^{\mathrm{T}} L_{\nu \mid x}$ and $\Gamma_{x}^{-1}=L_{x}^{\mathrm{T}} L_{x}$.

- MAP estimate with the AEM:

$$
\min _{x}\left\{\left\|L_{\nu \mid x}\left(y-A\left(x, z_{0}\right)-\nu_{* \mid x}\right)\right\|^{2}+\left\|L_{x}\left(x-x_{*}\right)\right\|^{2}\right\}
$$

Part 2: Computational Examples

Finnish Centre of Excellence
in Inverse Problems Research

Local x-ray tomography

- Let image domain Ω s.t. $D \subset \Omega$, where D denotes the body. Decomposing x as

$$
x=\left.x\right|_{\Omega \backslash \text { roi }}+\left.x\right|_{\text {roi }}:=x_{0}+x_{1}
$$

we get measurement model

$$
\begin{equation*}
y=\bar{A} x+e=A_{0} x_{0}+A_{1} x_{1}+e \tag{4}
\end{equation*}
$$

- Estimation of $x=\left(x_{0}, x_{1}\right)^{\mathrm{T}}$ is often computationally extensive.
- On the other hand, approximating $A_{0} x_{0} \approx 0$ and estimating only the ROI part x_{1} from truncated model

$$
y \approx A_{1} x_{1}+e
$$

leads to large estimation errors.

- We write the accurate model as

$$
\begin{equation*}
d=A_{1} x_{1}+\left[\bar{A} x-A_{1} x_{1}\right]+e=A_{1} x_{1}+\underbrace{\varepsilon+e}_{\nu} \tag{5}
\end{equation*}
$$

where

$$
\varepsilon=A_{0} x_{0}
$$

is the approximation error.

- Gaussian (smoothness) prior $\pi(x)=\left(x_{*}, \Gamma_{x}\right)+$ linear model \rightarrow

$$
\pi(\nu \mid x)=\mathcal{N}\left(\nu_{* \mid x}, \Gamma_{\nu \mid x}\right)
$$

has closed form solution.

- MAP estimate

$$
\min _{x_{1}}\left\{\left\|L_{\nu \mid x}\left(y-A_{1} x_{1}-\nu_{* \mid x}\right)\right\|^{2}+\left\|L_{x_{1}}\left(x_{1}-x_{*, 1}\right)\right\|^{2}\right\}
$$

Experimental sparse-angle local tomography data from a tooth specimen

Top: Whole image domain Ω, bottom: ROI detail $\left(\Omega_{1}\right)$
A Target (reconstruction from global tomography data)
B Local tomography with accurate projection model and CEM $(y=\bar{A} x+e)$
C Local tomography with ROI only model and CEM ($\left.y=A_{1} x_{1}+e\right)$
D Local tomography with ROI only model and $\operatorname{AEM}\left(y=A_{1} x_{1}+\varepsilon+e\right)$

EIT with inaccurately known body shape

- EIT problem: estimate the electrical conductivity $\bar{\sigma}$, given measured voltages $V \in \mathbb{R}^{m}$ at $\partial \Omega$ and the model

$$
\begin{equation*}
V=U(\bar{\sigma}, \gamma)+e \tag{6}
\end{equation*}
$$

where $\gamma \in \mathbb{R}^{q}$ denotes a parameterization of $\partial \Omega$.

- Mapping $U: \bar{\sigma}, \gamma \mapsto U$ is based on FEM approximation of the associated conductivity equation (elliptic PDE).
- Left image: Measurement setup. Right image: Estimated conductivity using correct boundary $\partial \Omega$ in the computational models.

- When EIT is used, for example, in intensive care units, there is no possibility for measuring the exact shape of the patient \Rightarrow Reconstructions are computed using a model domain $\tilde{\Omega}$, i.e., using the model

$$
\begin{equation*}
V \approx U(\sigma, \tilde{\gamma})+e \tag{7}
\end{equation*}
$$

where $\tilde{\gamma}$ is parameterization of $\partial \tilde{\Omega}$.

- Middle image: true domain Ω (gray), boundary of $\tilde{\Omega}$ (solid line).
- Right image: estimated conductivity using incorrect boundary $\partial \tilde{\Omega}$.

Approximation error model

- We write measurement model

$$
\begin{equation*}
V=U(\sigma, \tilde{\gamma})+(U(\bar{\sigma}, \gamma)-U(\sigma, \tilde{\gamma}))+e=U(\sigma, \tilde{\gamma})+\varepsilon(\bar{\sigma}, \gamma)+e \tag{8}
\end{equation*}
$$

- The relation of conductivities is $\bar{\sigma}(x)=\sigma(T(x))$, where $T(\Omega, \tilde{\Omega}): \Omega \mapsto \tilde{\Omega}$ is a bijective mapping that models the deformation of domain Ω to $\tilde{\Omega}$.
- T is not unique and not known, and one has to choose a model for the deformation.
- Numerical implementation: $P \bar{\sigma}=\sigma$

Prior models

$\pi(\sigma)$: Proper Gaussian smoothness prior, construction $\sigma(x)=\sigma_{\text {in }}(x)+\sigma_{\mathrm{hg}}(x)$, where

- $\sigma_{\text {in }}(x) \sim \mathcal{N}\left(0, \Gamma_{\text {in }}\right)$ (spatially inhomogeneous part)
- $\sigma_{\mathrm{hg}}(x)=c \mathbb{I}, \mathbb{R} \ni c \sim \mathcal{N}\left(\sigma_{*}, \mu_{\mathrm{hg}}^{2}\right)$ (spatially homogeneous background conductivity).
$\Rightarrow \pi(\sigma)=\mathcal{N}\left(\sigma_{*} \mathbb{I}, \Gamma_{\sigma}\right)$, where $\Gamma_{\sigma}=\Gamma_{\text {in }}+\mu_{\mathrm{hg}}^{2} \mathbb{I I}{ }^{\mathrm{T}}$.
$\pi(\gamma)$: Sample based Gaussian $\pi(\gamma)=\mathcal{N}\left(\gamma_{*}, \Gamma_{\gamma}\right)$, where
- $\gamma_{*}=\frac{1}{N_{\mathrm{pr}}} \sum_{k=1}^{N_{\mathrm{pr}}} \gamma^{(k)}$
- $\Gamma_{\gamma}=\frac{1}{N_{\mathrm{pr}}-1} \sum_{k=1}^{N_{\mathrm{pr}}}\left(\gamma^{(k)}-\gamma_{*}\right)\left(\gamma^{(k)}-\gamma_{*}\right)^{\mathrm{T}}$.
- Sample boundaries $\left\{\partial \Omega^{(\ell)}, \ell=1,2, \ldots, N_{\text {pr }}\right\}$ from chest CT images of $N_{\mathrm{pr}}=150$ different individuals.
- Fourier parameterization of the boundaries.

Estimation of the approximation error statistics

- Sample based approximation for $\pi(\sigma, \varepsilon)$:

1. Take N_{s} random draws $\left\{\gamma^{(\ell)}, \bar{\sigma}^{(\ell)}\right\}$ from $\pi(\bar{\sigma})$ and $\pi(\gamma)$ (image on the left shows four samples).
2. Map $\sigma^{(\ell)}=P^{(\ell)} \bar{\sigma}^{(\ell)}$, where $P^{(\ell)}=P^{(\ell)}\left(\Omega^{(\ell)}, \tilde{\Omega}\right)$ interpolates conductivity from $\Omega^{(\ell)}$ to $\tilde{\Omega}$ according to the deformation model T.
3. Compute realizations $\varepsilon^{(\ell)}=U\left(\bar{\sigma}^{(\ell)}, \gamma^{(\ell)}\right)-U\left(\sigma^{(\ell)}, \tilde{\gamma}\right)$
4. Estimate the means and covariances by sample averages.

Results

- We make further approximation of modelling σ and ε as mutually independent (i.e, $\left.\Gamma_{\varepsilon \sigma}=0\right) \Rightarrow$ MAP-AEM estimate

$$
\sigma_{\mathrm{MAP}}=\arg \min _{\sigma \geq 0}\left\{\left\|L_{e+\varepsilon}\left(V-U(\sigma, \gamma)-e_{*}-\varepsilon_{*}\right)\right\|^{2}+\left\|L_{\sigma}\left(\sigma-\sigma_{*}\right)\right\|^{2}\right\}
$$

where $L_{e+\varepsilon}^{\mathrm{T}} L_{e+\varepsilon}=\left(\Gamma_{e}+\Gamma_{\varepsilon}\right)^{-1}$.

- Images from left to right: a) Measurement setup, b) Ω (gray) and $\partial \tilde{\Omega}$ (solid line), c) MAP-CEM using $\tilde{\Omega}$, d) MAP-AEM using $\tilde{\Omega}$.

Part 3: Modification for high-dimensional data

Modification of AEM for high-dimensional data

- When dimension of data y is large, the computation (and storage) of $\Gamma_{\nu \mid X}$ and especially $L_{\nu \mid X}$ can be prohibitive tasks.
- In the following, we make technical approximations:
- x and ε are approximated mutually independent.
- 「 ${ }_{e}$ diagonal
- We have access to a sample based low rank approximation of Γ_{ε} (with rank $q<m$).
- Since $\varepsilon-\varepsilon_{*} \in \operatorname{sp}\left\{v_{1}, \ldots, v_{q}\right\}$, where v_{i} are the eigenvectors of Γ_{ε}, we write

$$
\begin{equation*}
\varepsilon=\varepsilon_{*}+\underbrace{\sum_{k=1}^{p} \alpha_{k} v_{k}}_{\varepsilon_{p}}+\underbrace{\sum_{j=p+1}^{q} \beta_{j} v_{j}}_{\varepsilon_{-p}} . \tag{9}
\end{equation*}
$$

- Now, we write

$$
\varepsilon_{p}=\varepsilon_{*}+\sum_{k=1}^{p} \beta_{p, k} v_{k}
$$

where $\beta_{p} \in \mathbb{R}^{p}$ and $V_{p}=\left(v_{1}, \ldots, v_{p}\right) \in \mathbb{R}^{m \times p}$, and write

$$
y=A(x)+\varepsilon_{p}+\varepsilon_{-p}+e=A(x)+V_{p} \beta_{p}+\varepsilon_{*}+\varepsilon_{-p}+e
$$

- MAP estimate for the HD modification:
$\min _{x, \beta_{p}}\left\{\left\|L_{e+\varepsilon_{-p}}\left(y-A(x)-V_{p} \beta_{p}-e_{*}-\varepsilon_{*}\right)\right\|^{2}+\left\|L_{x}\left(x-x_{*}\right)\right\|^{2}+\left\|L_{p} \beta_{p}\right\|^{2}\right\}$ where $L_{p}=\operatorname{diag}\left(\lambda_{1}^{-1 / 2}, \ldots, \lambda_{p}^{-1 / 2}\right)$.
- Low rank approximation for the eigensystem of Γ_{ε} can be computed with the orthogonal iterations without explicit formation of Γ_{ε}.
- We can tune dimension p s.t. $L_{e+\varepsilon_{-p}} \approx L_{e}$.

Local tomography (continued)

 A
 B
 C

Top: Whole image domain Ω, bottom: ROI detail $\left(\Omega_{1}\right)$
A Local tomography with accurate projection model and CEM $(y=\bar{A} x+e)$
B Local tomography with ROI only model and AEM $\left(y=A_{1} x_{1}+\varepsilon+e\right)$
C Local tomography with ROI only model and HD modification of the AEM $\left(y=A_{1} x_{1}+V_{p} \beta_{p}+\varepsilon_{*}+e\right)$

EIT (continued)

- Using the augmented form, we write

$$
V=U(\sigma, \tilde{\gamma})+V_{p} \beta_{p}+\varepsilon_{*}+\varepsilon_{-p}+e
$$

- Once MAP estimate ($\hat{\sigma}, \hat{\beta}_{p}$) has been found, we compute estimate for the boundary shape as

$$
\hat{\gamma}=\Gamma_{\gamma \varepsilon_{p}} \Gamma_{\varepsilon_{p}}^{-1} \hat{\varepsilon}_{p}+\gamma_{*}, \quad \hat{\varepsilon}_{p}=V_{p} \hat{\beta}_{p}
$$

where γ_{*} is the mean of $\pi(\gamma)$.

- Conductivity mapped from $\tilde{\Omega}$ to reconstructed domain by $\hat{\bar{\sigma}}=\tilde{P} \hat{\sigma}$, where \tilde{P} implements interpolation according to the inverse T^{-1} of the domain deformation model.

- Top right: MAP-CEM estimate using the correct domain Ω.
- Bottom left: MAP-CEM using the incorrect model domain $\tilde{\Omega}$.
- Bottom right: MAP-AEM using the incorrect model domain $\tilde{\Omega}$.

