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Introduction
• Consider the inverse problem of estimating x ∈ Rn from

noisy observation y ∈ Rm, given the model

y = Ā(x , z) + e ∈ Rm

where
x ∈ Rn: primary unknown
z ∈ Rd : uninteresting, auxiliary unknowns (e.g. inaccurately known

domain boundary, detector locations, uninteresting
distributed parameter, etc)

• Complete Bayesian solution: Posterior density model
π(x , z|y). In many practical applications

• estimation of all parameters (x , z) or
• marginalization π(x |y) =

∫ ∫
π(x , z|y)dz

is infeasible due to computation time limitations.
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• Conventional (ignorance) solution: treat z as fixed
conditioning variables, and estimate x from

π(x |y , z = z0)

→ large errors if realization z0 is incorrect.
• Figure: 1D-marginal posterior π(xℓ|y):

• exact marginal π(xℓ|y) (black line)
• π(xℓ|y , z = z0) with incorrect z0 (blue)
• true value of xℓ (vertical).
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• Approximation error approach gives approximate
(pre)marginalization of π(x , z|y) over z;

• Modeling errors caused by inaccurately known z are
modeled as an additive noise process ε(x , z) in the
measurement model.

• Approximate marginalization over the noise process using a
Gaussian approximation for π(x , ε).

• Approximation of π(x , ε) can be estimated by
straightforward Monte Carlo integration over samples from
prior models of (x , z). Can be done off-line.

• Leads to computationally efficient approximation of π(x |y),
allows simultaneous handling of model reduction related
errors.
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Conventional measurement error model (CEM)
• Consider the conventional measurement model

y = Ā(x) + e (1)

• Joint density
π(y , x ,e) = π(y | x ,e)π(e | x)π(x) = π(y ,e | x)π(x)

• In case of (1), we have π(y | x ,e) = δ(y − Ā(x)− e), and

π(y | x) =

∫
π(y ,e | x) de

=

∫
δ(y − Ā(x)− e)π(e | x) de

= πe | x(y − Ā(x) | x)
• In the (usual) case of mutually independent x and e, we

have πe | x(e | x) = πe(e) and

π(y |x) = πe(y − Ā(x))
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• Furthermore, if π(e) = N (e∗, Γe) and π(x) = N (x∗, Γx), we
have

π(x | y) ∝ exp
(
−1

2

(
∥Le(y − Ā(x)− e∗)∥2 + ∥Lx(x − x∗)∥2

))
,

where LT
eLe = Γ−1

e and LT
x Lx = Γ−1

x .
• MAP estimate with the CEM:

min
x

{
∥Le(y − Ā(x)− e∗)∥2 + ∥Lx(x − x∗)∥2

}
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Approximation error model (AEM)
• Accurate measurement model

y = Ā(x , z) + e ∈ Rm (2)

• Instead of using (2) and treating (x , z) as unknowns, we fix
z ← z0 and use a possibly drastically reduced model

x 7→ A(x , z0)

• The use of conventional measurement error model

y = A(x , z0) + e

leads to errors in the estimates of x if i) z0 is incorrect
or/and ii) model reduction errors are not negligible.
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• In the approximation error approach, we write the
measurement model

y = Ā(x , z) + e
= A(x , z0) +

[
Ā(x , z)− A(x , z0)

]
+ e

= A(x , z0) + ε(x , z) + e (3)

where ε(x , z) = Ā(x , z)− A(x , z0) is the approximation
error.

• The objective is to formulate posterior model

π(x |y) ∝ π(y |x)π(x)

using measurement model (3).
• We consider e independent of (x , z).
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• Using Bayes formula repeatedly, we get

π(y , x , z,e, ε) = π(y | x , z,e, ε)π(x , z,e, ε)
= δ(y − A(x , z0)− e − ε)π(e, ε | x , z)π(z | x)π(x)

= π(y , z,e, ε | x)π(x)

• Hence

π(y | x) =

∫∫∫∫
π(y , z,e, ε | x)de dεdz

=

∫
πe(y − A(x , z0)− ε)πε|x(ε | x) dε

(note: convolution integral w.r.t. ε)
• To get a computationally useful and efficient form, πe and
πε|x are approximated with Gaussian distributions.
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• Let the Gaussian approximation of π(ε, x) be

π(ε, x) ∝ exp

{
−1

2

(
ε− ε∗
x − x∗

)T (
Γε Γεx
Γxε Γx

)−1 (
ε− ε∗
x − x∗

)}
• Hence π(e) = N (e∗, Γe), π(ε | x) = N (ε∗|x , Γε|x), where

ε∗|x = ε∗ + ΓεxΓ
−1
x (x − x∗), Γε|x = Γε − ΓεxΓ

−1
x Γxε

• Define ν | x = e + ε | x , π(ν | x) = N (ν∗|x , Γν|x), where

ν∗|x = e∗+ε∗+ΓεxΓ
−1
x (x−x∗), Γν|x = Γe +Γε−ΓεxΓ

−1
x Γxε

• Approximate likelihood

π(y | x) = N (y − A(x , z0)− ν∗|x , Γν|x)
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• Posterior model

π(x | y) ∝ π(y | x)π(x) ∝ exp
(
−1

2
V (x)

)
where V (x)

V (x) = (y − A(x , z0)− ν∗|x)
TΓ−1

ν|x(y − A(x , z0)− ν∗|x)

+ (x − x∗)TΓ−1
x (x − x∗)

= ∥Lν|x(y − A(x , z0)− ν∗|x)∥2 + ∥Lx(x − x∗)∥2

where Γ−1
ν | x = LT

ν|xLν|x and Γ−1
x = LT

x Lx .
• MAP estimate with the AEM:

min
x
{∥Lν|x(y − A(x , z0)− ν∗|x)∥2 + ∥Lx(x − x∗)∥2}
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Local x-ray tomography

roi

x−ray source

x−ray detector plane

Principle of local
tomography.

• Let image domain Ω s.t. D ⊂ Ω, where D denotes
the body. Decomposing x as

x = x |Ω\roi + x |roi := x0 + x1

we get measurement model

y = Āx + e = A0x0 + A1x1 + e (4)

• Estimation of x = (x0, x1)
T is often

computationally extensive.

• On the other hand, approximating A0x0 ≈ 0 and
estimating only the ROI part x1 from truncated
model

y ≈ A1x1 + e

leads to large estimation errors.
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• We write the accurate model as

d = A1x1 +
[
Āx − A1x1

]
+ e = A1x1 + ε+ e︸ ︷︷ ︸

ν

(5)

where
ε = A0x0

is the approximation error.
• Gaussian (smoothness) prior π(x) = (x∗, Γx) + linear

model→
π(ν | x) = N (ν∗|x , Γν|x)

has closed form solution.
• MAP estimate

min
x1
{∥Lν|x(y − A1x1 − ν∗|x)∥2 + ∥Lx1(x1 − x∗,1)∥2}
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Experimental sparse-angle local tomography data
from a tooth specimen

A B C D
Top: Whole image domain Ω, bottom: ROI detail (Ω1)

A Target (reconstruction from global tomography data)
B Local tomography with accurate projection model and CEM (y = Āx + e)
C Local tomography with ROI only model and CEM (y = A1x1 + e)
D Local tomography with ROI only model and AEM (y = A1x1 + ε+ e)
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EIT with inaccurately known body shape
• EIT problem: estimate the electrical conductivity σ̄, given

measured voltages V ∈ Rm at ∂Ω and the model

V = U(σ̄, γ) + e, (6)

where γ ∈ Rq denotes a parameterization of ∂Ω.
• Mapping U : σ̄, γ 7→ U is based on FEM approximation of

the associated conductivity equation (elliptic PDE).
• Left image: Measurement setup. Right image: Estimated

conductivity using correct boundary ∂Ω in the
computational models.
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• When EIT is used, for example, in intensive care units,
there is no possibility for measuring the exact shape of the
patient⇒ Reconstructions are computed using a model
domain Ω̃, i.e., using the model

V ≈ U(σ, γ̃) + e, (7)

where γ̃ is parameterization of ∂Ω̃.
• Middle image: true domain Ω (gray), boundary of Ω̃ (solid

line).
• Right image: estimated conductivity using incorrect

boundary ∂Ω̃.
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Approximation error model

• We write measurement model

V =U(σ, γ̃)+(U(σ̄, γ)−U(σ, γ̃))+e =U(σ, γ̃)+ε(σ̄, γ)+e (8)

• The relation of conductivities is σ̄(x) = σ(T (x)), where
T (Ω, Ω̃) : Ω 7→ Ω̃ is a bijective mapping that models the
deformation of domain Ω to Ω̃.

• T is not unique and not known, and one has to choose a
model for the deformation.

• Numerical implementation: Pσ̄ = σ
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Prior models
π(σ): Proper Gaussian smoothness prior, construction

σ(x) = σin(x) + σhg(x), where
• σin(x) ∼ N (0, Γin) (spatially inhomogeneous part)
• σhg(x) = cI, R ∋ c ∼ N (σ∗, µ

2
hg) (spatially homogeneous

background conductivity).

⇒ π(σ) = N (σ∗I, Γσ), where Γσ = Γin + µ2
hgIIT.

π(γ): Sample based Gaussian π(γ) = N (γ∗, Γγ), where
• γ∗ = 1

Npr

∑Npr

k=1 γ
(k)

• Γγ = 1
Npr−1

∑Npr

k=1(γ
(k) − γ∗)(γ

(k) − γ∗)
T.

• Sample boundaries {∂Ω(ℓ), ℓ = 1,2, . . . ,Npr} from chest CT
images of Npr = 150 different individuals.

• Fourier parameterization of the boundaries.
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Estimation of the approximation error statistics
• Sample based approximation for
π(σ, ε):

1. Take Ns random draws {γ(ℓ), σ̄(ℓ)}
from π(σ̄) and π(γ) (image on the
left shows four samples).

2. Map σ(ℓ) = P(ℓ)σ̄(ℓ), where
P(ℓ) = P(ℓ)(Ω(ℓ), Ω̃) interpolates
conductivity from Ω(ℓ) to Ω̃
according to the deformation
model T .

3. Compute realizations
ε(ℓ) = U(σ̄(ℓ), γ(ℓ))− U(σ(ℓ), γ̃)

4. Estimate the means and
covariances by sample averages.



Part 1: Approximation error model Part 2: Computational Examples Part 3: Modification for high-dimensional data

Results
• We make further approximation of modelling σ and ε as

mutually independent (i.e, Γεσ = 0)⇒ MAP-AEM estimate

σMAP =arg min
σ≥0

{
∥Le+ε(V − U(σ, γ)−e∗ −ε∗)∥2 +∥Lσ(σ −σ∗)∥2

}
where LT

e+εLe+ε = (Γe + Γε)
−1.

• Images from left to right: a) Measurement setup, b) Ω
(gray) and ∂Ω̃ (solid line), c) MAP-CEM using Ω̃, d)
MAP-AEM using Ω̃.
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Modification of AEM for high-dimensional data
• When dimension of data y is large, the computation (and

storage) of Γν|x and especially Lν|x can be prohibitive tasks.
• In the following, we make technical approximations:

• x and ε are approximated mutually independent.
• Γe diagonal
• We have access to a sample based low rank approximation

of Γε (with rank q < m).
• Since ε− ε∗ ∈ sp{v1, . . . , vq}, where vi are the

eigenvectors of Γε, we write

ε = ε∗ +

p∑
k=1

αkvk︸ ︷︷ ︸
εp

+

q∑
j=p+1

βjvj︸ ︷︷ ︸
ε−p

. (9)
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• Now, we write

εp = ε∗ +

p∑
k=1

βp,kvk ,

where βp ∈ Rp and Vp = (v1, . . . , vp) ∈ Rm×p, and write

y = A(x) + εp + ε−p + e = A(x) + Vpβp + ε∗ + ε−p + e

• MAP estimate for the HD modification:

min
x ,βp
{∥Le+ε−p(y−A(x)−Vpβp−e∗−ε∗)∥2+∥Lx(x−x∗)∥2+∥Lpβp∥2}

where Lp = diag (λ−1/2
1 , . . . , λ

−1/2
p ).

• Low rank approximation for the eigensystem of Γε can be
computed with the orthogonal iterations without explicit
formation of Γε.

• We can tune dimension p s.t. Le+ε−p ≈ Le.
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Local tomography (continued)

A B C
Top: Whole image domain Ω, bottom: ROI detail (Ω1)

A Local tomography with accurate projection model and CEM (y = Āx + e)
B Local tomography with ROI only model and AEM (y = A1x1 + ε+ e)
C Local tomography with ROI only model and HD modification of the AEM

(y = A1x1 + Vpβp + ε∗ + e)
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EIT (continued)
• Using the augmented form, we write

V = U(σ, γ̃) + Vpβp + ε∗ + ε−p + e

• Once MAP estimate (σ̂, β̂p) has been found, we compute
estimate for the boundary shape as

γ̂ = ΓγεpΓ
−1
εp ε̂p + γ∗, ε̂p = Vpβ̂p

where γ∗ is the mean of π(γ).
• Conductivity mapped from Ω̃ to reconstructed domain by

ˆ̄σ = P̃σ̂, where P̃ implements interpolation according to the
inverse T−1 of the domain deformation model.
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• Top right: MAP-CEM
estimate using the
correct domain Ω.

• Bottom left: MAP-CEM
using the incorrect
model domain Ω̃.

• Bottom right: MAP-AEM
using the incorrect
model domain Ω̃.
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