
1

FPGA-based Electrical Impedance Tomography
Patrick Suggate, Tim Molteno, and Colin Fox

Electronics Research Group, Department of Physics
University of Otago

Dunedin, New Zealand
Email: {patrick,tim,fox}@physics.otago.ac.nz

Abstract—We are building a compiler to help map large com-
putations into FPGAs because we are also developing hardware
to perform Electrical Impedance Tomography (EIT) in real-time.
The EIT inverse problem is non-linear and severely ill-posed
and the sampling algorithms that calculate good solutions have
a high computational cost. These algorithms require performing
many forward-map solves and this is the calculation that is being
mapped into dedicated hardware. We expect that the FPGA
implementation will be significantly faster, and use much less
power, when compared to implementations that use only general-
purpose processors. This is because the raw compute-throughput
of the hardware will be very high, and code-analysis of our
compiled computation shows that the whole computation will
fit within just the static RAMs inside a moderate-sized FPGA,
therefore eliminating any memory-access I/O bottle-necks created
by having to access external RAMs. Analysis has also shown
that about 90% of all operations can be of the form of fused
multiply-and-add operations and, by using a floating-point/fixed-
point hybrid multiply-and-add functional unit, can be mapped
efficiently into Xilinx FPGAs. The compiler is then needed to
schedule our computation across an array hundreds of parallel
functional-units, and efficiently utilising the available buses and
static RAMs, to maximise hardware utilisation and, therefore,
solve-rate.

I. INTRODUCTION

We are building a compiler to assist in mapping a very-large
computation into a FPGA (Field-Programmable Gate Array).
This computation is a statistical inference algorithm that is
used to evaluate the inverse-problem arising from Electrical
Impedance Tomography (EIT). Generating the desired number
of samples requires (as many as) hundreds-of-thousands of
solves of the forward-map of the simulated physical system.
The forward-map is evaluated to calculate the likelihood of
a proposed set of conductivities at each step of a Markov
process. We are building hardware to evaluate this algorithm
in real-time as part of an EIT imaging system that can be used
for monitoring industrial processes. This requires extremely
high-performance compute-hardware and an efficient mapping
of our algorithm into this hardware. A high-level overview of
our proposed design is shown in Figure 1.

We have decided to implement this algorithm within a
FPGA because FPGA compute-throughput can be very good,
both in terms of performance-per-dollar and performance-per-
watt [1], [2]. A downside to using FPGAs is that obtaining
real-world performance that is close to this potential perfor-
mance can be very difficult [2]. What follows is a method of
using the partial evaluation of additional information that is

SPARC
Soft-Core

Memory
and I/O

Interfaces

Virtex-5 FPGA

Forward-Map
Functional Unit

ADC

Ethernet for Image Output

DDR SDRAM

Fig. 1. An overview of our proposed design for real-time EIT.

available at compile-time to produce a simplified computation
to map into the FPGA.

II. THE ELECTRIAL IMPEDANCE TOMOGRAPHY
ALGORITHM

The EIT inverse problem can be informally stated as: given
a set of voltages and currents measured at electrodes at the
boundary of a region, what are the conductivities within this
region? An example of an EIT setup is shown in Figure 2.
A Metropolis-Hastings MCMC (Markov-chain Monte Carlo)
algorithm is used to generate samples from the posterior
distribution of solutions. At each transition of the Markov-
chain, an accept probability needs to be calculated by solving
the forward-map for the proposed state [3]. Evaluating the
forward-map requires solving a system of equations within
the FPGA, and these are equations are represented by a
sparse-matrix. This system of equations is generated from the
proposed conductivities and then solved at every iteration of
the algorithm. To generate the desired number of independent
samples requires at least tens-of-thousands of solves of the
forward-map of the simulated system (and currently more than
100,000 steps are performed).

The EIT forward-map solve, which is performed at each
step of the MCMC algorithm, is a fairly-large computation
itself and at each evaluation it solves a large system-of-
equations, therefore requiring many floating-point operations
(FLOPs). The system of equations is generated by applying
the Finite-Element Method (FEM) to the Boundary Value
Problem (BVP) of the conductivies of a fixed mesh spanning
this region, which also includes the electrodes on the boundary
of this region.

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

95

2

Fig. 2. EIT Diagram of 16 electrode EIT experiment. The potential V1 is
measured after a current I has been imposed across the core . (Molinari 2003)

The EIT forward-map consists of a fixed-mesh, finite-
element system corresponding to the conductances of each of
the elements within the domain. Generating samples from the
posterior distribution (the probability distribution of the viable
solutions) involves:

• Assembly of the system matrix and applying the bound-
ary conditions,

• Performing a Cholesky factorisation,
• Triangular solves for each of the multiple right-hand-side

vectors (of boundary currents),
• Calculating the proposal likelihood (by performing a

sum-of-squared-differences on the measured and simu-
lated electrode-potentials).

For the EIT testbed (see Figure 3), that we are using for
compiler development, the total FLOP-count for each solve
of the FEM system is about 2.2 million (see Table I), and this
solve-step is performed at every iteration of the Metropolis-
Hastings MCMC algorithm. The calculated (but unnormalised)
likelihood value represents the (scaled) probability that the set
of conductances passed to the solver is a solution to the EIT
inverse problem. This likelihood value is then combined with
any prior knowledge of the problem to give an acceptance
probability. If the proposed set of values for the conductances
(the current state of the Markov chain) is accepted then this
becomes a conditional sample.

With the current implementation of this algorithm it can
take more than one hundred of these conditional samples
to generate just one independent sample from the posterior
distribution, but the conditional-sample acceptance-rate at each
iteration is only about 0.1, so more than a thousand solves
of the forward-map are needed for just one independent
sample1 . Generating the desired number of samples from the
posterior distribution typically involves performing hundreds
of thousands of these solves as the Markov chain traverses
the state-space of the problem2. Additional details of the
algorithms discussed here can be found within [3].

1Also, thousands of initial iterations and solves are needed before the
Markov-chain even converges to the target distribution, and therefore before
we can even start taking conditional samples, and this is called the ”burn-in”
period [3]

2Yet this algorithm is very advanced and represents the state-of-the-art [3].

Fig. 3. A sample from the posterior distribution calculated by the EIT testbed,
which is used for testing and development.

The computation outlined above has properties that appear
well-suited to calculation within a FPGA:

• The size of the intermediate data (a sparse-matrix and
some working memory) are less than one MB, so can be
stored entirely within an FPGA’s internal SRAMs.

• The algorithms used within the solver have a high degree
of parallelism [4], [5].

• Due to the mesh being the same at each iteration, the
sparsity pattern of the system-matrix remains the same, so
the calculation has the same “shape” for each solve-step,
and so the same sequences of operations are repeated
many, many times.

• Fused Mulitply-and-Add (FMA) functional units, which
tend to be the dominant arithmetic operations used by
matrix algorithms, can be built moderately cheaply within
Xilinx FPGAs by using a hybrid floating-point/fixed-
point FMA unit. The accumulator of this FU can use
fixed-point partial sums, and renormalised only as neces-
sary, as was shown in [6].

But mapping this computation into an FPGA, and effectively
exploiting the available parallelism, would likely be extremely
time-consuming using existing tools.

III. COMPILE-TIME PARTIAL EVALUATION OF THE
PROBLEM

At program compile-time there is often useful information
available that could be used to compile a more efficient
computation, but such information is often domain-specific,
and therefore difficult for general-purpose compilers to make
use of. Here we present a method to use some of this additional
information when compiling a large computation into a form
more-suitable for FPGA-based computation. In the example
presented below, properties known at compile-time of the
sparse-matrices are used to simplify the resulting computation.
The method first evaluates the algorithm within an appropriate
monad3, which in this case numerically evaluates any known

3A full discussion of monads is beyond the scope of this paper, see [7] for
more information, but within the scope of this document consider a monad to
be a computational context, i.e. the computation occurs within this context,
and according to the properties of that context.

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

96

3

values, and performing symbolic evaluation on the unknowns.
This process is called partial evaluation [8] and it produces
a simplified Intermediate Representation (IR) of the problem,
which is then further transformed by subsequent stages into a
form more suitable for FPGA implementation.

By using information available at compile-time, partial eval-
uation of the given algorithm allowed extremely-aggressive
code-unrolling to be performed as well as eliminating all
memory indirection4. This is then followed by multiple trans-
formation and optimisation stages, and then passed to an
appropriate compiler back-end, which currently generates C
code for testing purposes. For FPGA-based implementations,
the compiler backend needs to schedule the task across hun-
dreds of functional units, and task-clustering and scheduling
algorithms seem suited to this task [9].

IV. OPTIMISATIONS

The compiler presented here has an additional partial-
evaluation stage that typical compilers do not have. This extra
information allows certain optimisations to be performed more
aggressively than typically done by other more-traditional
compilers. This section briefly outlines some of these opti-
misations that are currently implemented and those that are
planned for the compiler.

A. Unused-Calculation Elimination

As an example, a naive global-stiffness-matrix assembly
step would calculate the full symmetric sparse matrix, even
though both the upper- and lower-triangular are identical, and
the Cholesky factorisation that is performed during the solve
step only needs a diagonal matrix, i.e. just over half of the
matrix elements, the elements along the main diagonal and
either the strictly upper or lower elements. A compiler that is
given a dataset with the correct shape can automatically prune
all unneeded calculations that would otherwise be performed
by code generated by a naive compiler. In the above case
of assembling the system matrix, the eliminated calculations
would be the calculation of any of the stricly-upper values of
the system matrix since only the lower-triangular entries of
the matrix are passed to the solve-step.

B. Constant Propagation

Any constants known at compile-time are propagated
throughout the computation, and many can subsequently be
simplified or eliminated during partial-evaluation and optimi-
sation stages. An example of constants that were combined or
elminated were those used for stiffness-matrix assembly.

4Sparse matrices avoid storing (most) zeros of a matrix at the expense
of requiring additional data-structures which contain information necessary
to determine the locations of the non-zero elements of the sparse-matrix.
This typically results in matrix-element accesses requiring additional steps to
calculate the memory address, and this process usually consists of memory
indirection [5], i.e. first fetching the memory-address (or offset) of the desired
element from a table, which is also stored within system memory, before the
value of the element itself can then be fetched.

C. Strength Reduction

Functional Units (FU) for some operations can be expensive
in gates, like square-root or divide, but can be converted to
other operations leading to simpler and faster FUs. During
testing, the following conversions typically lead to better
Directed Acyclic Graph (DAG) optimisations or more efficient
FGPA implementation:

• Conversion of subtracts into adds and negates allows
more flexible reordering of inputs into tree-adders, and
this can be easilty done since

a− b = a+ (−b). (1)

• Fusion of negate-operations into other operations to save
a clock-cycle of latency, as a floating-point negation
requires just inverting the most-significant bit of the bit-
field of the number.

• Division-by-a-square-root operations, which are per-
formed during Cholesky factorisation, are transformed
into multiply-by-the-inverse-square-root operations, i.e.

a√
b
= a× b−

1
2 . (2)

• When possible, floating-point additions are converted to
fixed-point accumulations, and in most cases these can
then use the DSP48E prmitives built into Xilinx FPGAs.

• Conversion of divisions into multiply-by-the-recipocal
operations, because from analysis of the code, divisions
were typically performed many times with the same
denominator, and multiplications are cheaper in FPGAs,
so this is then:

a

b
= a× b−1. (3)

D. Critical-Path Length Reduction and Increasing Parallelism

The desired computation can never take less time than
the sum of the FU-latencies of the longest chain of data-
dependencies for the computation. The length of this chain
is called the Critical Path Length (CPL) of the computation.
A short CPL requires good initial choices of algorithms to be
passed to the compiler as well as appropriate optimisations that
are subsequently performed by the compiler’s transformation
stages.

Two properties of addition and multiplication, commutivity
and associativity, allow inputs into these operators to be ex-
changed arbitrarily5. Likewise, subtractions and divisions can
be transformed into additions and multiplications by applying
the appropriate inverse-operators, negate and reciprocal, to the
second-input. If these lead to a reduction in CPL and/or oper-
ation count, the compiler will perform these transformations.

Operations that reduce CPL typically increase parallelism as
well, so exploiting the commutative and associative properties
of addition and multiplication, to reduce CPL, leads to the
transformation of chains of sequential-adds, and sequential-
multiplies, into tree-adders, and tree-multipliers, respectively.
The CPL of a sequential adder is O(N) whereas a tree-
adder has path-length of O(logN) . Another important gain

5Floating-point addition is not associative in general, as order of addition
can effect the numerical accuracy of the answer [10].

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

97

4

from this transformation is that the parallelism of a sequential
adder is O(1) but the parallelism of a tree-adder is O(N)
(see Figures 4 & 5 to see what the relative “shapes” of these
operations are).

. .

.

.

.

.

.

.

 +

L R

 +

R L

 +

R L

 +

R L

 +

R L

 +

R L

 +

R L

Fig. 4. This sequential adder, which adds eight numbers together, has a
maximum path-length of seven additions.

.

 +

R L

 +

R L

 +

R L

 +

R L

 +

R L

 +

R L

 +

R L

Fig. 5. This tree adder, which adds eight numbers together, has a maximum
path-length of just three additions.

E. Data-Locality Optimisations

Appropriate partitioning algorithms allow the the results of
computations to be produced both temporally and spatially
closer to where they are needed, reducing data transportation
requirements. The best case is when as a calculation proceeds,
the data needed at each step, the inputs into each FU, are
stored locally in a cache or SRAM, or sitting on the outputs
of a neighbouring FU, so then it can be transferred only across
small distances and with little latency. Because the sparsity-
pattern of the input matrix is known at compile-time, all data-
locality calculations can be done at this time too, potentially
allowing this compiler to produce more efficient code, than
can typically be done.

In terms of an FPGA-based computation, if the needed data
has only just been calculated, and by a FU across the other
side of the FPGA, it has to be transferred via buses to the FU

where it is needed, requiring the use of a limited resource (on-
chip buses) and incurring a latency cost. These cross-chip data-
transfers can reduce the efficiency of the hardware if FUs have
to sit idle while they wait upon data, and simply increasing
bus bandwidth, and reducing bus latencies, requires more chip
area, potentially reducing the number of FUs.

F. Subtree Pattern Matching and Operator Fusion

The code-size of the completely unrolled and optimised
computation can be extremely large, since all program-loops
have been unrolled and replaced with the many similar state-
ments. Contained within this optimised IR are many smaller
and repeated computations of the same shape, like tree-adders
(see Figure 5) of various sizes. Subtree pattern-matching
algorithms [11] can then be used to recognise and count these
repeated sequences of operations.

After subtree-pattern matching has been performed, re-
peated sequences of operations can be combined into higher-
order operators, if an operation is repeated frequently enough.
This can also reduce the required code-size, because a se-
quence of operations can be replaced with just one new
higher-order operator. High-order operators, like a tree-adder,
can also increase the efficiency of the functional units (in
terms of area and latency) because some intermediate logic
can be eliminated, for example some of the denormalisation
and renormalisation stages that are required for floating-point
addition.

V. THE C BACKEND AND COMPILER TESTING

For testing and development, we generate C code from
the internal representation used by the compiler. The internal
format used by the compiler is basically an array containing
the nodes, edges, and their labels, of the computation graph.
From this representation, it is straight-forward to generate C
code 6 because the internal representation is roughly equivalent
to a simplified Static Single Assignment (SSA) graph repesen-
tation, for example, like that used by the LLVM compiler [12].

The motivation for the C backend was so that any changes to
the compiler that produced incorrect output could be identified
automatically. The code generated by the C backend can be
compiled and evaulated using the same data-sets as both the
original Octave code and the Haskell code, and the results
compared for correctness. Errors produced during optimisation
by the compiler (either by bugs, or by faulty assumptions
about which transformations can be applied, and when) can
be difficult to find unless equivalence with the original code
can be easily (and regularly) checked. Another complication is
that, with large numerical computations, even the order of the
operations can be critical for preserving numerical-stability,
i.e. even if the results would be identical when using infinite-
precision arithmetic, two algorithms could produce completely
different answers when using finite precision, so an automated
“sanity-check” is extremely useful.

6Emitting basic C-code is amazingly easy, the total number of lines of code,
including comments and spaces, for the C-code generator is only 52 lines.
The compiled C-code runs quite slowly though, as it is far too unrolled to fit
in the processor’s L1-cache.

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

98

5

VI. RESULTS

The finite-element solve-step was compiled to C to evaluate
any improvements produced by our compiler, both with and
without optimisations enabled. The results of this are shown
in Table I. The optimisations performed were:

• Common sub-expression elimination phases, and these
were repeated after any signficant IR transformations by
other optimisation stages.

• Replacement of subtract operations with additions and
negations, for the given heuristic.

• Fused negate operations into other operations.
• Replaced divisions with both a multiplication and a

reciprocal.
• Reordering sequences of repeated operators, either mul-

tiple additions or multiple multiplications, to reduce tree-
height (see Figures 4 & 5).

• Pruning any code that was not used for calculating the
final outputs of the computation, or were not used by any
subsequent operations.

• Paired off any repeated inputs into either tree-adders
or tree-multipliers to reduce memory bandwidth require-
ments.

• Reordering of the multiple-inputs into tree-adders, or tree-
multipliers, that were more likely to produce duplicated
sub-expressions which could then be eliminated.

TABLE I
COMPARISON OF CRITICAL-PATH LENGTHS AND FLOATING-POINT

OPERATION COUNTS OF THE OUTPUT OF THE COMPILER FOR VARIOUS
PARTS OF THE FINITE-ELEMENT SOLVE, AND WITH OPTIMISATIONS

EITHER OFF OR ON.

Computation Critical Path kFLOPs
Optimisations Off
Matrix Assembly 7 36
Cholesky Factorisation 703 1056
Triangular Solve 10481 1097
Partitioned Inverses 7437 1720
Optimisations On
Matrix Assembly 6 19
Cholesky Factorisation 695 1037
Triangular Solve 681 675
Partitioned Inverses 287 1210

A. Preliminary Hardware Synthesis

So far, only floating-point addition FUs have been built,
and these have not yet been fully optimised and debugged,
as getting the Leading-Zero Anticipation [13] circuit right can
be fiddly and error-prone. Floating-point addition FUs were
created first as these are the most difficult to build and debug,
both in terms of complexity and performance, and would
give a good indicaton of the upper-limit for performance.
Table II show the advantages that can be gained by specifying
additional placement information, and also by only supporting
a subset of the IEEE-754 specification. The Xilinx cores are
“black-boxes” so it is unknown as to how much placement

information that they contain7.

TABLE II
PROVISIONAL AND APPROXIMATE RESULTS FOR THE RELATIVE

PERFORMANCE OF OUR CUSTOM FLOATING-POINT FUNCTIONAL-UNITS
VERSUS THOSE THAT WERE GENERATED USING THE XILINX

COREGENTM LOGIC-CORE GENERATION TOOL. THE PERFORMANCE
NUMBERS ARE FOR THE SLOWEST (-1) SPEED-GRADE OF VIRTEX-5

FGPAS.

Functional Unit Pipeline Frequency Latency Logic
Stages (MHz) (ns) Used

24-bit Adders
Coregen 24-bit add 5 200 25 350
Coregen 24-bit add 11 350 31 400
Lava HDL 24-bit add 5 370 14 280
Lava HDL 24-bit add 6 440 14 336
32-bit Adders
Coregen 32-bit add 5 190 26 440
Coregen 32-bit add 12 350 34 600
Lava HDL 32-bit add 5 350 14 432

VII. DISCUSSION

The results presented in Table I show that the partially-
evaluated and optimised computation is able to successfully
exploit far more parallelism, while also reducing FLOP-
count and calculation latency, and completely eliminating all
memory indirection. The most significant gains are from the
improved triangular-solve step. Since only a subset of the
electrodes are used, a signficant number of calculations have
been eliminated outright, and reordering has vastly-reduced
the critical path length of the computation.

Improvements were less significant for the Cholesky factori-
sation step as this is a heavily-studied problem [5], [14], [15],
as its computational complexity is greater than the subsequent
solve-step, and we were already using an advanced and
heavily-refined algorithm [5]. But since we have the required
shape information available for the Cholesky factorisation, the
small gains made here are still useful as they are effectively
free.

The results shown in Table I contain the FLOP-counts and
CPL for two different matrix-vector solve algorithms. The
first is the standard triangular-solve algorithm [5] which has a
fairly-long critical-path, as it is by its nature a very linear
algorithm. We have managed to reduce its long paths of
subtractions by transforming the subtractions into additions
which is then followed by sequential-adder to tree-adder
transformations (see Figures 4 & 5 to see what this looks
like).

The second solve algorithm uses an algorithm that calculates
the partioned-inverse of a triangular matrix [4], so the subse-
quent solve-step is now just two matrix-vector multiplications,
but this clearly requires more FLOPs (see Table I). There is
another algorithm which uses a heuristic to perform a combi-
nation of the above two algorithms, achieving a different trade-
off between path-length and FLOP-count [16], but evaluating

7The logic-used statistic for the Xilinx floating-point FUs is extremely
generous to Xilinx because these logic-cores have significant “spill-over” into
the surrounding logic, as well as there are many “holes” within the regions
that they are placed, but this spare logic is unlikely to be utilised efficiently
by anything else.

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

99

6

the algorithm leading to efficient hardware implementation is
future work.

A. Floating-Point Hardware Considerations

We have simulated many EIT computations at varying levels
of numerical precision (but this is currently unpublished) to
verify that the EIT algorithm will still converge when using far
lower numerical precision than the commonly-used IEEE-754
double-precision floating-point format. Use of lower precision
allows far more FUs to be added to the design, and 24-bit
floating-point units could even be considered “overkill” for
the current task. Unfortunately, even the fastest Xilinx floating-
point units, that can be generated using the CoregenTM tool,
have very long pipeline-lengths, as shown in Table II. To
achieve high solve-rates, total latency is important, as the
solve-time is sum of the latencies of all operations within the
critical-path of the computation. By only implementing the
necessary subset of the IEEE-754 specification (and this has
been experimentally verified that this subset still gives correct
results), and by specifying additional placement information,
total latency has been approximately halved. The final design
is expected to operate at 500 MHz, and with just five pipeline
stages for the floating-point FUs, on the upcoming Xilinx
Kintex7TM FPGA architecture (and this has been checked
using the Xilinx synthesis tool).

Parameterised floating-point units are being built using
the Lava Hardware Description Language8 (Lava HDL). The
Lava HDL allows combinators to be used to specify relative-
placement information for all of the logic elements, so that
even parameterised circuits can be generated that have perfor-
mance close to hand-tuned implementations, and performance
far superior to the circuits generated by the Xilinx automatic
Place-And-Route (PAR) tool (see Table II). Parameterisable-
width floating-point units allow the size of the floating-
point operations to be changed, depending upon the precision
requirements. The Lava HDL placement-combinators means
that the rectangular tile-shape is maintained even as the width-
parameter is varied, and so the resulting FUs can then be easily
tiled into arrays of memories, buses, and floating-point FUs.

VIII. CONCLUSION

The cost of partial-evaluation of algorithms that are repeated
many times, and with some of the same values each time,
can be amortised in at least some situations, as we have
shown here. This seems to be particularly true for FPGA
implementations since the development effort tends to be large
anyway, and any reduction in complexity of the final system
should easily justify the extra pre-processing steps. More work
is needed to determine how beneficial any improvements due
to the simplification of the final calculation really are, and this
is future work.

8Unfortunately, the status of Lava is “experimental”, and the documentation
is very old, so Lava is very hard to learn and work with. For more information
about the Lava HDL, though now slightly out-of-date, see:
http://raintown.org/lava/

A. Future Work

Some directions for future work include:
• Partitioning the DAG using ParMETIS.
• Subtree isomorphisms to Reduce Code Size
• Complete the mapping of the computation into hardware.

The final imlementation is planned to consist of: SIMD
(Single-Instruction Multiple-Data) architecture processors
optimised for floating-point throughput; fetch-and-store
FUs, which support gather, permute, and scatter opera-
tions, to control the flow of data within the FPGA; and
special-purpose FUs for specific sequences of frequently-
repeated higher-order operations.

• Parallelising the Compiler to reduce compilation time.
• FPGA-assisted compilation for subtree pattern matching.

And maybe even hardware assisted Just-In-Time (JIT)
compilation.

• Efficient CPU compiler backends (for example, support-
ing the x86 architecture, and probably using another com-
piler backend, like LLVM’s), and possibly even support
for GPUs, using an OpenCL backend.

REFERENCES

[1] P. Suggate and T. Molteno, “N-Body Gravitational Simulation Using
Dedicated Hardware,” in Proceedings of the 13th Electronics New
Zealand Conference, ENZCon’06, 2006, pp. 147–150.

[2] T. El-Ghazawi, “The Promise of High-Performance Reconfigurable
Computing,” IEEE Computer, 2008.

[3] G. Nicholls and C. Fox, “Prior Modelling and Posterior Sampling in
Impedance Imaging,” Bayesian Inference for Inverse Problems, pp. 116–
127, 1998.

[4] F. Alvarado and R. Schreiber, “Optimal Parallel Solution of Sparse
Triangular Systems,” SIAM Journal on Scientific Computing, vol. 14,
pp. 446–460, 1990.

[5] I. Duff and J. Reid, “The multifrontal solution of indefinite sparse
symmetric linear equations,” ACM Trans. Math. Software, vol. 6, pp.
302–325, 1983.

[6] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An FPGA-specific
Approach to Floating-Point Accumulation and Sum-of-Products,” in
ICECE Technology, 2008. FPT 2008. International Conference on, 2008,
pp. 33–40.

[7] P. Wadler, “Comprehending Monads,” Mathematical Structures in Com-
puter Science, vol. 2, pp. 461–493, 1992.

[8] Y. Futamura, “Partial Evaluation of Computation Process – An Approach
to a Compiler-Compiler,” Higher-Order and Symbolic Computation,
vol. 12, pp. 381–391, 1999.

[9] M. A. Palis, J.-C. Liou, and D. S. Wei, “Task clustering and scheduling
for distributed memory parallel architectures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, pp. 46–55, 1996.

[10] IEEE, “754-2008 IEEE Standard for Floating-Point Arithmetic,” IEEE
Standards, pp. 1–58, 2008.

[11] R. Cole and R. Hariharan, “Tree Pattern Matching to Subset Matching
in Linear Time,” SIAM Journal on Computing, vol. 32, pp. 1056–1066,
2003.

[12] E. Eckstein, O. Knig, B. Scholz, and A. Krall, “Code Instruction
Selection Based on SSA-Graphs,” Lecture Notes in Computer Science,
vol. 2826, pp. 49–65, 2003.

[13] M. S. Schmookler and K. J. Nowka, “Leading zero anticipation and
detection?a comparison of methods,” Computer Arithmetic, IEEE Sym-
posium on, vol. 0, p. 0007, 2001.

[14] D. Irony, G. Shklarski, and S. Toledo, “Parallel and fully recursive
multifrontal sparse Cholesky,” Future Generation Computer Systems,
vol. 20, no. 3, pp. 425–440, 2004.

[15] N. Gould, J. Scott, and Y. Hu, “A numerical evaluation of sparse
direct solvers for the solution of large sparse symmetric linear systems
of equations,” ACM Transactions on Mathematical Software (TOMS),
vol. 33, no. 2, p. 10, 2007.

[16] P. Raghavan, “Efficient Parallel Sparse Triangular Solution with Selec-
tive Inversion,” 1995.

Proceedings of the 18th Electronics New Zealand Conference, 21-22 November, 2011

100

