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Abstract—Electrical Capacitance Tomography is an ill-posed inverse problem that aims at recovering the spatial permittivity
distribution of an inhomogeneous medium from capacitance measurements at the boundary. We consider the problem of fast
robust estimation of inclusion shape and position in binarymixtures. The boundary of the inclusion is represented implicitly
using a radial basis function representation. The inverse problem is formulated as Bayesian inference, with Markov chain Monte
Carlo sampling used to explore the posterior distribution.An affine approximation to the forward map built over the state space
significantly reduces reconstruction time, while introducing minimal extra error. Numerical examples are presented for synthetic
data sets, avoiding all inverse crimes.
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I. I NTRODUCTION

Electrical Capacitance Tomography (ECT) is a noninvasive
method that aims at recovering the spatial permittivity distribu-
tion within an object from measurements of the capacitances
between electrodes at the boundary of the object [1]. This
measurement process can be modeled as

d = F (θ) + n (1)

whered denotes the measured data,θ are parameters represent-
ing the the permittivity, andF denotes the forward map that
is the deterministic mapping from parametersθ to noise-free
data. Measurement noise is denoted by the random variablen.

Deterministic solution methods vary the parameterθ to
minimize some norm of the difference between the model
output F (θ) and measured datad. Due to the ill-posed
nature of the problem, the norm has to be augmented by a
regularization term to obtain a stable solution. The balance
between the data misfit term and the regularization term is
controlled by a regularization parameter. Typically gradient
or even Hessian information about the mapF are used to
accelerate the convergence of the optimization procedure.

Bayesian statistical inversion follows a different approach.
Uncertainties are included as probabilities, to give a ‘posterior’
probability distribution over parameters that are consistent
with measured data, thereby quantifying uncertainty in the
solution. Solutions to an ill-posed inverse problem are then
well determined problems of statistical inference over the
posterior distribution. This paradigm has many advantages
over deterministic approaches, such as giving robust estimates,
and the ability to treat arbitrary forward maps and error
distributions. One non-obvious advantage is the ability touse
a wide range of representations of the unknown permittivity,
including parameter spaces that are discrete, discontinuous, or
even variable dimension.

Whereas regularization gives point estimates, Bayesian
methods present averages over all solutions consistent with
the data. This leads to a marked improvement in robustness
of properties calculated from solutions, since the regularized
solution is typically unrepresentative of the bulk of feasible
solutions in high dimensional nonlinear problems. However,
the better results achieved by Bayesian methods come at the
cost of greater modeling and computational effort.

The primary cost in computational implementations of
Bayesian inference is the repeated evaluation of the forward
map F when using Markov chain Monte Carlo (MCMC)
algorithms, that we discuss in section III. Hence, an efficient
implementation of the forward map is mandatory to obtain
results within an acceptable time. In this paper we use a fast,
affine, approximation toF to accelerate the MCMC sampling.

Recently, two approaches have been developed to allow the
use of approximate forward maps within statistical inversion,
while maintaining the accuracy of calculated uncertainties. The
enhanced error model augments the noise model by a Gaussian
model for the difference between accurate and approximate
forward maps [2], and has been shown to drastically reduce
computation time at the expense of a small increase in uncer-
tainty. The second is the delayed-acceptance MCMC [3] that
modifies the MCMC algorithm, to sample from the correct
posterior distribution while avoiding computation of the exact
forward map for most steps.

The paper is structured as follows: The next section briefly
introduces the physical forward problem of ECT and the
modeling of closed contours used to represent material in-
clusions. Section III addresses the formulation of ECT in a
Bayesian framework, and the MCMC algorithm. Section IV
introduces two strategies for accelerating the MCMC algo-
rithm. Reconstruction results and a comparison of the achieved
improvement in terms of computational effort are presentedin
section V.



II. FRAMEWORK FOR ELECTRICAL CAPACITANCE

TOMOGRAPHY

A. The forward problem
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Fig. 1. Schematic of an ECT-sensor.

Figure 1 shows a schematic of a typical ECT sensor for
process tomography applications.Nelec electrodes are mounted
on the exterior of a pipe. The whole problem domain is
bounded by an electrical shield. The aim is the reconstruction
of the material distribution (i.e. the shape and position ofan
inclusion) in the pipe using120 independent measurements of
the coupling capacitances between theNelec = 16 electrodes.

The electrostatic field problem is modeled by the governing
equation

∇ · (ε0εr∇Φ) = 0 (2)

whereε0 andεr denote the absolute and the relative permittiv-
ity, andΦ denotes the electric scalar potential. The boundary
conditions are of Dirichlet type and given by

Φ = VT on ΓT (3)

Φ = 0 on ΓR andΓshield (4)

whereΓT represents the boundary of the transmitting electrode
andΓR refers to the boundaries of the receiver electrodes. The
coupling capacitances between the active electrode and each
receiver electrode can be obtained by evaluating Gauss’s law,

Ci = −
1

VT

∫

ΓR,i

~n · ε∇ΦdΓ (5)

for each receiver electrode.
Equation (2) is solved by means of the finite element method

(FEM). For the computation of the forward problem in this
paper, a mesh with about 560 finite elements is used.

B. Shape description using RBFs

The representation of unknowns within a reconstruction
algorithm forms a fundamental classification between different
algorithms. In general one can distinguish between algorithms
which either provide pixel or voxel images, that aim at
recovering the shapes of objects. Since we are interested inre-
constructing shape and position of piecewise constant material
inclusions in an otherwise uniform background material, we
use a contour model to describe closed boundaries. In general
one can distinguish between non-parametric models (i.e. level

sets) and parameterized shape models (e.g. spline models,
Fourier descriptions). In this work we use a shape description
based on radial basis functions (RBFs) [5]. With the RBF
approach an object is represented in implicit form given by
f(xi) = 0, wherexj represents the Cartesian coordinates of
a point on the boundary of the shape. The functionf is of
form

f(xi) =

N
∑

j

λiφ(||xi − cj ||) (6)

where ci represent given locations on the boundary of the
object (i.e. scatter data) and the functionφ includes the
individual RBFs. We use the thin plate splines

φ(r) = r2 · log(r), (7)

where r is the Euclidean distance between two points. The
weightsλi can be found by forming the constraintf(xi =
ci) = hi, leading to the linear system of equations

Aλ = h, (8)

which can be solved forλ. With thin plate splines, the set
of basis functions needs to be augmented by a linear function
P ((x, y)) = ax + by + c, with equation (6) is extended to

f(xi) =

N
∑

j

λiφ(||xi − cj ||) + P (xi). (9)

Equation (8) is extended to
[

A Q

QT
0

] [

λ

cp

]

=

[

h

0

]

, (10)

whereQ =
[

xp 1
]

andcp =
[

a b c
]T

. The contour
of an object can be determined by solving (10) forf(xi) = 0
given the locationsxp, and asserting a nonzero value interior
to the object.

The reconstruction algorithm manipulates the boundary of
the inclusion through locationsxp. The permittivity is then
mapped onto the finite element grid for computation of the
forward problem.

III. STATISTICAL INVERSION

The presence of uncertainties, such as ubiquitous mea-
surement noise, means that the measurement and imaging
processes are probabilistic and the inverse problem is naturally
a stated as statistical inference. In the Bayesian formulation,
inference aboutθ is based on the posterior distribution

π(θ|d) =
π(d|θ)π(θ)

π(d)
∝ π(d|θ)π(θ) (11)

where π(θ) is the prior density expressing the information
about θ independent of the measurementsd, and π(d|θ) is
the likelihood function that shows how measurements affect
knowledge aboutθ. The posterior distributionπ(θ|d) is the
probability distribution overθ given the prior information and
the measurements. The solution of the inverse problem usually
involves summarizing the posterior distribution, though in ex-
ploratory analyses we often simply display several reconstruc-
tions drawn from the posterior distribution. The denominator



π(d) is a finite normalizing constant once measurementsd are
made.

Given the posterior distribution, any statistics of interest
can be computed. Commonly used summary statistics are the
maximuma posteriori (MAP) estimate

θMAP = argmax π(θ|d) (12)

and the conditional mean

θCM =

∫

θπ(θ|d)dθ. (13)

In addition, statements on parameter variability and reliability
of solutions can be given. Another appealing feature is the the
ease of taking into account prior information about parameters.

In the case of Gaussian measurement noise the likelihood
can be written as

π(d|θ) ∝ exp

(

−
1

2
(d − F (θ))T Σ−1 (d − F (θ))

)

, (14)

whereΣ denotes the covariance of the measurement noise. For
a detailed review about this topic we we refer to [6].

Analytic evaluation of integrals such as (13) is intractable
in practical cases because the posterior distribution is complex
and a function of many variables. Hence, numerical methods
that draw samples fromπ(dm|θ) are used to explore the
feasible solution space, and to evaluate integrals using Monte
Carlo integration.

A. Markov Chain Monte Carlo sampling with Metropolis
Hastings Green kernel

The efficient exploration of the posterior distribution
π(dm|θ) becomes the major computational concern when
implementing Bayesian inference. Grid based exploration and
quadrature are only applicable if the space ofθ is of low
dimension. A very general class of algorithms for performing
sample-based Bayesian inference are the Markov Chain Monte
Carlo (MCMC) sampling methods, see e.g. [4].

We use MCMC with Metropolis Hastings Green (MHG)
kernel, summarized in algorithm 1. Starting from a candidate
θ, the MHG-MCMC algorithm proposes a new candidate
θ′ and computes the acceptance probabilityα (code line
5). The candidateθ′ is accepted with probabilityα, and is
otherwise rejected. The acceptance ratio includes the Jacobian
determinant

|Jm| =

∣

∣

∣

∣

∂(θ′, γ′)

∂(θ, γ)

∣

∣

∣

∣

(15)

for the mapping from composite parameter(θ, γ) to composite
parameter(θ′, γ′).

Although the algorithm is simple to code, the computational
burden is given by line 5, as the computation ofπ(θ′|d) re-
quires the computation of the forward problem. As the number
of sampling stepsNMCMC is typically several thousand [4], [6].

The generation of a new candidate requires varying the pa-
rametersθ in a random way. We typically use several ‘moves’
to make up the proposal distribution. A simple random walk
of a single randomly chosen control pointxp is used to
guarantee convergence, though leads to inefficient sampling
by itself. We make further specific manipulations to increase

Algorithm 1 Basic Structure of MH MCMC

1: Pick a valid initial stateθ and the priorπ(θ) and likelihood
π(d|θ)

2: for i = 1 to NMCMC do
3: Generate a proposal candidateθ′

4: if π(θ′) > 0 then
5: Computed′ = F (θ′) and the acceptance ratio

α(θ, θ′) = min
(

1,
π(d|θ′)π(θ′)
π(d|θ)π(θ) |Jm|

)

6: Draw u ∼ U(0, 1)
7: if u < α(θ, θ′) then
8: θ = θ′

9: π(θ) = π(θ′)
10: π(d|θ) = π(d|θ′)
11: end if
12: end if
13: end for

the efficiency of the MCMC sampler. As the shape of an object
is reconstructed, suitable moves are rotational and translational
movements as well as scaling of the boundary [6].

Choice of the prior distributionπ(θ) is critical, as it has a
direct impact on the results. If the true material distribution has
a low probability with respect to the prior distributionπ(θ),
the bulk of feasible probability will be biased away from the
true distribution. For a review on prior models we refer to [4]
and [6]. In the present work we use a prior which penalizes
small contours, only allows contours wholly inside the pipe,
and penalizes local curvature in the boundary contour.

IV. A CCELERATING MCMC METHODS

To accelerate the used sampling algorithm a strategy has to
be found to decrease the number of costly evaluations of the
forward mapF in line 5 of the MCMC algorithm given in 1.
Hence, it seems obvious that an approximation ofF has to be
introduced for the time-critical computation of the likelihood
of the proposal. However, the use of an approximationF̃

causes a model error

ñ = F (θ) − F̃ (θ̃). (16)

In deterministic inversion theory this error may become
critical. In the framework of Bayesian inversion the model
error can be incorporated as an additional additive noise [2].
Assuming independence, the probability density function of
the sum of the two noises is given by

π(nsum) = π(n) ∗ π(ñ), (17)

which is the convolution of the model error and the mea-
surement noise. The statisticsπ(ñ) of ñ can be obtained by
sampling, as we show later.

A. Delayed acceptance algorithm

The delayed acceptance Metropolis Hastings (DAMH) algo-
rithm was introduced by A. Christen and C. Fox in 2005 [3],
to gain advantage from a cheap state-dependent approximation
of F for computing the likelihood function. In case of an



accepted state the accurate forward map is computed and a
modified acceptance probability used to ensure convergenceto
the correct posterior distribution. Hence, the DAMH algorithm
shows an excellent performance gain in the case of a low
acceptance rate. A simple approximation is the first-order
series expansion ofF

F (θ′) ≈ F (θ) +
∂F

∂θ

∣

∣

∣

∣

θ

∆θ, (18)

where∆θ = θ′ − θ. Only a matrix operation has to be com-
puted to evaluate the likelihood function of a new proposal.
The second term in (18) denotes the Jacobian ofF with respect
to the elements ofθ. We calculate the Jacobian with respect to
the material valuesεr of the finite elements, and use mapping
from contourθ to the finite element grid via the chain rule
to evaluate desired Jacobian. In this work we compute the
Jacobian matrix using an adjoint calculation. The time for
this calculation can be removed by maintaining the Green’s
functions of a self-adjoint version of the forward map, as
outlined in [3]. The local approximation given by (18) restricts
proposal statesθ′ to be close to the current statθ, to keep the
approximation error low.

B. Approximated forward model

The use of the Jacobian for a local linear approximation
is reasonable from the physical point of view. However, any
approximation to the forward map may be used, even if not
physically motivated. Typical examples for such approxima-
tions are neural networks or polynomial approaches, while
coarse grid approximations are suggested by the numerical
computation. In the following we propose using an affine
transformation to approximate the accurate ECT forward map.
This is motivated by the procedure that we use to calibrate the
offset and gain of the ECT sensor [6].

Hence we approximate,

C = Pε′
r, (19)

whereε′
r is the augmented permittivity vector given by

ε′
r =

[

1 εT
r

]T
(20)

whereεr is the vector of relative permittivities on the finite
element mesh. The augmentation is required to obtain an affine
mapping.

To obtain the elements of the matrixP , we use a least
squares fit of form







1 εT
r,j

1 . . .
...

...






pi = ci (21)

wherepi denotes the i-th row of the matrixP andci is the
corresponding capacitance. The vectorsεr,j are representitive
samples of of expected permittivity distributions. These sam-
ples could be drawn from the prior distributionπ(θ), however,
we decided to generate samples ofεr,j using the procedure in
algorithm 2.

Using this approach to draw samplesεr,j of the material
distribution, a mapP can be established by solving (21) in a

Algorithm 2 Algorithm to draw samplesεr,j .

1: Set all elements in the FEM grid to permittivity value one
2: Draw #incl ∼ U({1, 2, 3})
3: for i = 1 to #incl do
4: Draw (xcenter , ycenter) ∼ U(in ROI)
5: Draw εr ∼ U(εr,min, εr,max)
6: Draw rincl ∼ U(rmin, rmax)
7:

8: Map circular inclusion with parameters to FEM grid
9: end for

10: Compute the forward problem

least squares sense using the pseudo inverse. To evaluate the
performance of the mapP another set of samples ofεr,j has
been generated, and the errorñ was calculated.

Figure 2 shows the trend of the meanµ and the standard
deviation σ of ñ for all capacitances. Two relevant aspects
can be observed from the results depicted in figure 2. Firstly,
the meanµ is almost zero and, hence, the mapP is unbiased.
Secondly, the standard deviationσ is in the range of the typical
measurement error of our ECT sensor, which has a standard
deviation of σ = 5 × 10−3 [7]. The determined standard
deviation is even smaller than that of a typical measurement
error.

To verify the quality of the estimator, the signal to noise
ratio (SNR) of our ECT sensor were performed. Figure 3 il-
lustrates the measured SNR and the SNR of the approximation
error. The SNR from the sensor was measured for an empty
(air filled) sensor. One can see that the approximation has
almost the same quality as the measurements.

Figure 4 depicts a specific distribution ofñ for a particular
measurement and an equivalent Gaussian distribution. The
distribution π(ñ) is slightly non symmetric and has a small
tail towards positive values of̃n. For simplicity reasons, we
used an equivalent Gaussian distribution given the measured
mean and the standard deviation. Hence, the distribution of
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Fig. 2. Standard deviation and mean of the approximation error for the
15×16=240 measurements.
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Fig. 3. Signal to noise ratio (SNR) of the approximation model and of the
real ECT sensor.

π(nsum) remains Gaussian, as the convolution of two Gaus-
sian functions remains a Gaussian function.
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Fig. 4. Probability density function of the approximation error and approx-
imated Gaussian fit.

V. EVALUATION AND RESULTS

To evaluate the performance of the different algorithms,
we performed two reconstruction tasks. In the first case a
circular object is reconstructed, in the second experiment
a more complex contour consisting of two merged circular
bubbles is reconstructed. In order to avoid an inverse crime,
the reconstruction data was generated using a different finite
element mesh (2662 finite elements). In addition, the data was
corrupted with zero mean Gaussian noise with a variance of
σ2 = 1× 10−5. As initializing contour for all reconstructions,
we chose a circular inclusion in the center of the pipe.

A. Reconstruction of a circular contour

Figure 5 depicts the reconstruction results of the first
example using the affine transformation to approximate the
accurate forward map. In figure 5(a) the MAP state and the
CM estimate are illustrated, while figure 5(b) depicts the

True Object
MAP
CM

(a) MAP and CM estimates of a
circular contour.

(b) Scatter Plot.

Fig. 5. Results from the reconstruction of a circular inclusion
(εr,inclusion=2 in εr=1).
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Fig. 6. Results from the reconstruction of a circular inclusion
(εr,inclusion=2 in εr=1).
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Fig. 7. Results from the reconstruction of a circular inclusion.

scatter plot highlighting the posterior variability of inclusion
shape. MAP and CM are in good accordance indicating a
distinct mode in the posterior distribution.

Figure 6 depicts the MCMC output trace of the log-
likelihood function and the autocorrelation function, which
is a measure of the statistical efficiency. The faster the au-
tocorrelation function decays the less correlation is between



consecutive states of the Markov chain and consequently more
reliable estimates are obtainable. In particular, the autocorre-
lation function should be after falling off smoothly to zero
distributed with some noise about the x-axis. Figure 7 shows
the distribution of inclusion area of the reconstructed inclusion
for 15000 MCMC steps.

B. Speed comparison

The identification of the test distribution in subsection V-A
was carried out with the delayed acceptance algorithm and
the full (accurate) forward model. The reconstruction results
are similar to the results presented in subsection V-A. Table I
summarizes the computation times for the first1500 MCMC
steps.tC denotes the cumulated computation time for solving
the forward problem,tJ is the cumulated computation time for
calculating the JacobianJ , which is necessary in the delayed
acceptance algorithm. As we noted previously, this cost can
be avoided using more sophisticated schemes for operating by
the Jacobian, rather than forming it.rAccept represents the
acceptance ratio, which is comparatively high, i.e. in [6] an
acceptance ratio of2 − 5% is stated, when the Markov chain
reaches its equilibrium. However, in the starting phase of the
MCMC procedure, such a high ratio can occur causing a high
computation time for the two stage algorithm. ComparingtC
for all three methods the advantage of the fast approximation
is obvious.

TABLE I
COMPARISON OF THE COMPUTATION TIMES FOR1500 MCMCSTEPS.

Method rAccept tC tJ

% s s
Accurate forward model 67.1 318 x
Two stage algorithm 61.1 244 397

Affine transformation 64.8 0.93 x

C. Reconstruction of a more complex contour

In a second experiment, a more complex contour consisting
of two partially merged circular contours is reconstructed.
The shape offers several difficulties for the reconstruction ap-
proach. First, the rotation move is an almost useless move, for
this shape. Second, the shape offers a characteristic contraction
placed in the center of the pipe, which is the region where the
sensitivity is lowest.

Figure 8(a) shows the reconstruction results which were
obtained after20000 MCMC steps by the proposed algorithm
using the fast approximation model. We limited the spatial
resolution of the contour model to 20 control points (corners of
contour). Given the challenging contour of the true object,the
posterior variability indicated by the scatter plot in figure 8(b)
shows a reasonable variance. Calculated MAP state and CM
estimate match the true object quite well. The zigzag behavior
of the point estimates could be decreased by using more
control points or a stricter prior model regarding the angles
between the adjacent elements of contour. However, we note
that these represent preliminary results that could be improved
upon by more comprehensive sampling.

True Object
MAP
CM

(a) MAP and CM estimates. (b) Scatter Plot.

Fig. 8. Results after20000 MCMC steps using the fast approximation model
(affine transformation).

VI. CONCLUSION

We have presented an accelerated Markov chain Monte
Carlo methods for performing sample-based inference in ECT,
using an appropriate approximation of the forward model. The
approximation consisted of an affine model to the forward
map, best fit to sampled permittivity distributions that repre-
sent the type of inclusion we expect to find. Compared to an
MCMC using the accurate electrical capacitance tomography
forward problem, a reduction in computation time by a factor
of 340 can be obtained using the affine transformation. We
have demonstrated that a tolerably small increase in posterior
uncertainty of relevant parameters (inclusion area, contour
shape) is traded for a huge reduction in computing time
without introducing bias in estimates. The proposed cheap
approximation indicates that accurate real-time inversion of
capacitance data using statistical inversion is possible.
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