Monitoring milk-powder dryers via Bayesian inference in an FPGA

Colin Fox fox@physics.otago.ac.nz Markus Neumayer, Al Parker, Pat Suggate

Three newish technologies

- Gibbs sampling for capacitance tomography (ECT)
 - and other inverse problems
 - where Hamiltonian is quadratic in field and linear in material properties
- Polynomial acceleration of Gibbs sampling
 - optimal convergence of first and second moments
 - derived for Gaussians
 - learn covariance adaptively for Gaussian-like distributions (ECT)
- Large-scale computation in an FPGA
 - the compiler

Two Paradigms for Imaging

- Signal processing
 - solution is *function* of data
- Model fitting
 - optimization (best solution)
 - statistical inference (summarize all solutions)

Two Paradigms for Imaging

- Signal processing
 - solution is *function* of data
- Model fitting
 - optimization (best solution)
 - statistical inference (summarize all solutions)

Bayesian inference is the 'gold standard' though intensive in computing and modelling We currently implement statistical inference for:

- Wildlife tracking (DoC, Sirtrack, Rakon)
- Dairy processing (TetraPak, Synlait)
- Agritech (Truetest, Silverfern Farms)
- Geothermal electricity generation (Contact Energy, iwi)

Fast-fix wildlife tags

- inference reduces fix time from 30 seconds to 2 milli-seconds!
- which means less power, less (battery) weight, longer life
- current model weighs 6 gram, runs for 1 year

http://www.physics.otago.ac.nz/tags/

Capacitance tomography

- non-contact measurements
- low electric fields (below ambient)
- images permittivity: good contrast for fat, solids, water
- measures bulk properties (total fat, average flow)
- with spatial resolution

Embed FPGA processing with sensors to perform real-time quantified inference

Edendale plant

Burt Munro

528M0

Sample-based Bayesian inference

Parameters $x \mapsto d = A(x) + e$, errors e, d is a sample from $l(d|x) = \pi_e (d - A(x))$

Posterior estimates

$$\mathsf{E}_{\pi}\left[f\left(x\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x^{(i)}\right)$$

Bayes' rule

where $x^{(1)}, \ldots, x^{(n)} \sim \pi(\cdot | d)$ constructed as iterates of an ergodic map

A posterior distribution for ECT

Mathematical model for measurements $\eta: x \mapsto y$ is the Neumann boundary value problem

$$abla \cdot x(s) \nabla v(s) = 0, \qquad s \in \Omega$$
 $x(s) u \frac{\partial v(s)}{\partial n(s)} = j(s), \qquad s \in \partial \Omega$

where j(s) is the current at boundary location s. Voltages v at electrodes gives data y. Numerically solve for each transmit-receive pattern (32 times) using FEM discretization Consider a low level pixel representation for x(s) with MRF prior, giving posterior

$$\pi(x|y) \propto \exp\left\{-\frac{1}{2}(y-\eta(x))^{\mathsf{T}}\Sigma_e^{-1}(y-\eta(x))\right\} \exp\left\{\beta\sum_{i\sim j}u(x_i-x_j)\right\}$$

Not Gaussian, but can be evaluated (expensive) so is amenable to MH MCMC

F Nicholls 1997, Moulton F Svyatskiy 2007, Higdon Reese Moulton Vrugt F 2011

Gibbs sampling for ECT

ECT operator is a $\mathbf{WSW}^{\mathsf{T}}$ system: $\nabla \cdot x \nabla$ **W** is geometry, **S** is diagonal matrix of material properties FEM discretization preserves (or creates) this

 $\mathbf{K}v = j$ where system matrix $\mathbf{K} = \mathbf{W}\mathbf{S}_x\mathbf{W}^\mathsf{T}$

Maintain Greens functions = columns of \mathbf{K}^{-1} corresponding to electrodes

$$(\mathbf{K} + \Delta \mathbf{K})^{-1} = \mathbf{K}^{-1} - \mathbf{K}^{-1} \mathbf{W} \left(\mathbf{I} + \mathbf{S}_{\Delta} \mathbf{S}_{x}^{-1} \tilde{\mathbf{W}}^{-\mathsf{T}} \mathbf{W} \right)^{-1} \mathbf{S}_{x} \mathbf{W}^{\mathsf{T}} \mathbf{K}^{-1}$$

where $\tilde{\mathbf{W}}^{-\mathsf{T}}$ is a psuedo-inverse of \mathbf{W}^T that can be pre-evaluated The matrix pencil

$$\left(\mathbf{I} + \gamma \mathbf{S}_{\Delta} \mathbf{S}_{x}^{-1} \tilde{\mathbf{W}}^{-\mathsf{T}} \mathbf{W}\right) \mathbf{u} = \mathbf{c}$$

solve for \approx free in co-ordinate directions, cheaply when $\lesssim 20$ components non-zero Hence we can evaluate the likelihood cheaply in these directions, and perform Gibbs sampling (e.g. by ARS)

Strang Intro. to App. Math., Meyer Cai Perron 2008, Neumayer PhD 2011

Gibbs sampling from normal distributions

Gibbs sampling^a repeatedly samples from (block) conditional distributions

Normal distributions

$$\pi \left(\mathbf{x} \right) = \sqrt{\frac{\det \left(\mathbf{A} \right)}{2\pi^{n}}} \exp \left\{ -\frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} \right\}$$

precision matrix \mathbf{A} , covariance matrix $\Sigma = \mathbf{A}^{-1}$ (both SPD) Mean $\bar{\mathbf{x}}$ satisfies

 $A\bar{\mathbf{x}} = \mathbf{b}$

Particularly interested in case where A is sparse (GMRF) and n large When is $\pi^{(0)}$ is also normal, then so is the n-step distribution

$$\mathbf{A}^{(n)} \to \mathbf{A} \qquad \Sigma^{(n)} \to \Sigma$$

In what sense is "stochastic relaxation" related to "relaxation"? What decomposition of A is this performing?

^aGlauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984

Gibbs samplers and equivalent linear solvers

Optimization ...

Sampling ...

Parker F SISC 2012

Matrix splitting form of stationary iterative methods

Want to solve

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

The *splitting* A = M - N converts Ax = b to Mx = Nx + bIf M is nonsingular

 $\mathbf{x} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b}$

Iterative methods compute successively better approximations by

$$egin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b} \ &= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{g} \end{aligned}$$

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Matrix formulation of Gibbs sampling from $N(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \operatorname{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A} , $\mathbf{z}^{(k-1)} \sim \operatorname{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

 $\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

Matrix formulation of Gibbs sampling from $N(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \operatorname{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A} , $\mathbf{z}^{(k-1)} \sim \operatorname{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

 $\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Goodman & Sokal 1989; Amit & Grenander 1991

Gibbs converges \iff **solver converges**

Theorem 1 Let A = M - N, M invertible. The stationary linear solver

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$
$$= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$

converges, if and only if the random iteration

$$\mathbf{y}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$
$$= \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$

converges in distribution. Here $\mathbf{c}^{(k)} \stackrel{iid}{\sim} \pi_n$ has zero mean and finite variance

Proof. Both converge iff $\rho(\mathbf{G}) < 1$

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor $\rho(\mathbf{G})$, covariance with $\rho(\mathbf{G})^2$

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001 F Parker 2012

Some not so common Gibbs samplers for $N(0, \mathbf{A}^{-1})$

splitting/sampler	Μ	$\mathbf{Var}\left(\mathbf{c}^{\left(k ight)} ight)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega}\mathbf{I}$	$\frac{2}{\omega}\mathbf{I}-\mathbf{A}$	$0 < \omega < \frac{2}{\varrho(\mathbf{A})}$
Jacobi	D	$2\mathbf{D} - \mathbf{A}$	A SDD
GS/Gibbs	$\mathbf{D} + \mathbf{L}$	D	always
SOR/B&F	$rac{1}{\omega}\mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega}\mathbf{D}$	$0 < \omega < 2$
SSOR/REGS	$\frac{\omega}{2-\omega}\mathbf{M}_{SOR}\mathbf{D}^{-1}\mathbf{M}_{SOR}^{T}$	$rac{\omega}{2-\omega} \left(\mathbf{M}_{SOR} \mathbf{D}^{-1} \mathbf{M}_{SOR}^T ight)$	$0 < \omega < 2$
		$+\mathbf{N}_{SOR}^T\mathbf{D}^{-1}\mathbf{N}_{SOR}ig)$	

Good choice has: convenient to solve Mu = r and sample from $N(0, M^T + N)$

Relaxation parameter ω can accelerate Gibbs

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997

Some not so common Gibbs samplers for $N(0, \mathbf{A}^{-1})$

splitting/sampler	Μ	$\mathbf{Var}\left(\mathbf{c}^{(k)} ight) = \mathbf{M}^T + \mathbf{N}$	converge if
Richardson	$\frac{1}{\omega}\mathbf{I}$	$\frac{2}{\omega}\mathbf{I}-\mathbf{A}$	$0 < \omega < \frac{2}{\varrho(\mathbf{A})}$
Jacobi	D	$2\mathbf{D} - \mathbf{A}$	A SDD
GS/Gibbs	$\mathbf{D} + \mathbf{L}$	D	always
SOR/B&F	$rac{1}{\omega}\mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega}\mathbf{D}$	$0 < \omega < 2$
SSOR/REGS	$\frac{\omega}{2-\omega}\mathbf{M}_{SOR}\mathbf{D}^{-1}\mathbf{M}_{SOR}^{T}$	$rac{\omega}{2-\omega} \left(\mathbf{M}_{SOR} \mathbf{D}^{-1} \mathbf{M}_{SOR}^T ight)$	$0 < \omega < 2$
		$+\mathbf{N}_{SOR}^T\mathbf{D}^{-1}\mathbf{N}_{SOR}ig)$	

Good choice has: convenient to solve Mu = r and sample from $N(0, M^T + N)$

Relaxation parameter ω can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997

Controlling the error polynomial

The splitting

$$\mathbf{A} = \frac{1}{\tau}\mathbf{M} + \left(1 - \frac{1}{\tau}\right)\mathbf{M} - \mathbf{N}$$

gives the iteration operator

$$\mathbf{G}_{\tau} = \left(\mathbf{I} - \tau \mathbf{M}^{-1} \mathbf{A}\right)$$

and error polynomial $Q_n(\lambda) = (1 - \tau \lambda)^n$

The sequence of parameters $\tau_1, \tau_2, \ldots, \tau_n$ gives the error polynomial

$$Q_n(\lambda) = \prod_{l=1}^m \left(1 - \tau_l \lambda\right)$$

... so we can choose the zeros of Q_n

This gives a non-stationary solver \equiv non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012

The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose

$$\frac{1}{\tau_l} = \frac{\lambda_n + \lambda_1}{2} + \frac{\lambda_n - \lambda_1}{2} \cos\left(\pi \frac{2l+1}{2p}\right) \quad l = 0, 1, 2, \dots, p-1$$

where $\lambda_1 \lambda_n$ are extreme eigenvalues of $\mathbf{M}^{-1}\mathbf{A}$

Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

$$\mathbf{y}^{(k+1)} = (1 - \alpha_k)\mathbf{y}^{(k-1)} + \alpha_k \mathbf{y}^{(k)} + \alpha_k \tau_k \mathbf{M}^{-1} (\mathbf{c}^{(k)} - \mathbf{A}\mathbf{y}^{(k)})$$

with α_k and τ_k chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2^{nd} -order solver converges $\Rightarrow 2^{nd}$ -order sampler converges (given correct noise distribution)

Error polynomial is optimal, at each step, for both mean and covariance

Asymptotic average reduction factor (Axelsson 1996) is

$$\sigma = \frac{1 - \sqrt{\lambda_1 / \lambda_n}}{1 + \sqrt{\lambda_1 / \lambda_n}}$$

Axelsson 1996, F & Parker 2012

 $pprox 10^4$ times faster

Polynomial acceleration of parameter estmation in ECT

Second-order Chebyshev acceleration of Gibbs give optimal convergence of first and second moments – given mean and inverse of covariance matrix $\mathbf{A} = \Sigma^{-1}$ where $\Sigma = \operatorname{cov}(\pi(x|y))$ We don't have \mathbf{A} so we adapt to it.

Initialize $\mu = x_{MAP}$ and $\mathbf{A} = \text{Hessian of} - \log \pi$ at x_{MAP}

Algorithm 1 At state x^l with values for τ and α :

- 1. Simulate x' via generalised scaled Gibbs sweep with parameter au from x^l
- 2. Set $x^{l+1} = \alpha x' + (1 \alpha)x^{l-1}$
- 3. Evaluate recursion on α and au
- 4. Update μ and A using empirical estimates (as AM)

IACT for Gibbs was ≈ 3 sweeps bit slower than optimization 'IACT' after acceleration is ~ 1 sweep bit faster than optimization passes all numerical tests, but no proof of convergence

peak	50 Giga flops	500 Giga flops	100 Giga flops
sustained	10%	1-5%	30-50%
(FEM)			
power	150 W	300-400 W	30-50 W
tools	Fortran, C,	CUDA, OpenCL	no standard
% die	10 %	80%	60%

- GPU good for dense independent calculations
- FPGA compiles to silicon, cookie-cutter gives massive parallelization

Numerics in an FPGA

- Linux kernel in FPGA (10%) for i/o
- several groups active (MIT, USC, Otago, Accelogic, Drexel, Penn State, Microsoft, ...)
- developing tools for sparse linear algebra

• floor plan from high-level language (LAVA)

Optimizing compiler

- partial evaluation at compile time
- extremely-aggressive code-unrolling
- multiple transformation and optimisation stages
 - unused-calculation elimination
 - constant propagation
 - strength reduction (subtract \rightarrow add, fusion of negates, etc)
 - critical-path length reduction
 - data-locality optimisations
 - subtree pattern matching and operator fusion
- compiler back-end (currently generates C)

Comparisons for 'toy' problem

	FLOPS	Critical path
non-perm, no-opts	2.20 M	48 k
perm, no opts	1.90 M	11 k
perm, opt. for FLOPs	1.71 M	1.4 k
perm, opt. for crit-path	2.20 M	1 k

Fill-reducing permutation is amazing for parallelism!

Optimized critical path

Conclusions

• In the Gaussian setting $GS \equiv GS$

- acceleration of convergence in mean and covariance not limited to Gaussian targets
- Optimizing compiler speeds up calculation by $\times 30$
- FPGA gives another $\times 10$ over parallel CPU
- Multiple conventional CPU per chip also good target
- Looks like real-time embedded UQ is feasible