Polynomial acceleration of Gibbs sampling (sampling using lessons from CSE)

Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer abyssal advection

Oxygen, run 1

McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer

Adapting computational linear algebra to sampling

Optimization ...

Gauss-Seidel

Cheby-GS

CG/Lanczos

Sampling ...

Gibbs

Lanczos

Normal distributions, quadratic forms, linear systems

We want to sample from Gaussian density with precision matrix $\mathbf{A} \in \mathbb{R}^{n \times n}, \operatorname{SPD}, \operatorname{dim}(\mathbf{x})=n$

$$
\pi(\mathbf{x})=\sqrt{\frac{\operatorname{det}(\mathbf{A})}{2 \pi^{n}}} \exp \left\{-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}\right\}
$$

Covariance matrix is $\Sigma=\mathbf{A}^{-1}$ is also SPD.

Write $x \sim \mathrm{~N}\left(\mu, \mathbf{A}^{-1}\right)$ where mean is

$$
\begin{aligned}
\mu & =\arg \min _{\mathbf{x}}\left\{\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right\} \\
& =\mathbf{x}^{*}: \mathbf{A} \mathbf{x}^{*}=\mathbf{b}
\end{aligned}
$$

Particularly interested in case where \mathbf{A} is sparse (GMRF) and n large

Matrix formulation of Gibbs sampling from $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$
Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions.

One 'sweep' over all n components can be written

$$
\mathbf{y}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{y}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{T} \mathbf{y}^{(k)}+\mathbf{D}^{-1 / 2} \mathbf{z}^{(k)}
$$

where: $\mathbf{D}=\operatorname{diag}(\mathbf{A}), \mathbf{L}$ is the strictly lower triangular part of $\mathbf{A}, \mathbf{z}^{(k-1)} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{c}^{(k)}
$$

$\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance
(stochastic $\operatorname{AR}(1)$ process $=$ first order stationary iteration plus noise)

Matrix splitting form of stationary iterative methods

The splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$ converts linear system $\mathbf{A x}=\mathbf{b}$ to $\mathbf{M x}=\mathbf{N x}+\mathbf{b}$. If \mathbf{M} is nonsingular

$$
\mathbf{x}=\mathbf{M}^{-1} \mathbf{N} \mathbf{x}+\mathbf{M}^{-1} \mathbf{b}
$$

Iterative methods compute successively better approximations by

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b} \\
& =\mathbf{G} \mathbf{x}^{(k)}+\mathbf{g}
\end{aligned}
$$

Many splittings use terms in $\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}$. Gauss-Seidel sets $\mathbf{M}=\mathbf{L}+\mathbf{D}$

$$
\mathbf{x}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{\top} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}
$$

Matrix splitting form of stationary iterative methods

The splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$ converts linear system $\mathbf{A x}=\mathbf{b}$ to $\mathbf{M x}=\mathbf{N x}+\mathbf{b}$. If \mathbf{M} is nonsingular

$$
\mathbf{x}=\mathbf{M}^{-1} \mathbf{N} \mathbf{x}+\mathbf{M}^{-1} \mathbf{b}
$$

Iterative methods compute successively better approximations by

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b} \\
& =\mathbf{G} \mathbf{x}^{(k)}+\mathbf{g}
\end{aligned}
$$

Many splittings use terms in $\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}$. Gauss-Seidel sets $\mathbf{M}=\mathbf{L}+\mathbf{D}$

$$
\mathbf{x}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{\top} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}
$$

spot the similarity to Gibbs

$$
\mathbf{y}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{y}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{T} \mathbf{y}^{(k)}+\mathbf{D}^{-1 / 2} \mathbf{z}^{(k)}
$$

Gibbs converges \Longleftrightarrow solver converges

Theorem 1 Let $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. The stationary linear solver

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b} \\
& =\mathbf{G} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b}
\end{aligned}
$$

converges, if and only if the random iteration

$$
\begin{aligned}
\mathbf{y}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{y}^{(k)}+\mathbf{M}^{-1} \mathbf{c}^{(k)} \\
& =\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1} \mathbf{c}^{(k)}
\end{aligned}
$$

converges in distribution. Here $\mathbf{c}^{(k)} \stackrel{i i d}{\sim} \pi$ has zero mean and finite variance.
Proof. Both converge iff $\varrho(\mathbf{G})<1$. \square
Convergent splittings generate convergent (generalized) Gibbs samplers
Mean converges with asymptotic convergence factor $\varrho(\mathbf{G})$, covariance with $\varrho(\mathbf{G})^{2}$

[^0]Parker F 2011

Some not so common Gibbs samplers for $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

splitting/sampler	\mathbf{M}	$\operatorname{Var}\left(\mathbf{c}^{(k)}\right)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega} \mathbf{I}$	$\frac{2}{\omega} \mathbf{I}-\mathbf{A}$	$0<\omega<\frac{2}{\varrho(\mathbf{A})}$
Jacobi	\mathbf{D}	$2 \mathbf{D}-\mathbf{A}$	\mathbf{A} SDD
GS/Gibbs	$\mathbf{D}+\mathbf{L}$	\mathbf{D}	always
SOR/B\&F	$\frac{1}{\omega} \mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega} \mathbf{D}$	$0<\omega<2$
SSOR/REGS	$\frac{\omega}{2-\omega} \mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{\top}$	$\frac{\omega}{2-\omega}\left(\mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{T}\right.$ $\left.+\mathbf{N}_{\text {SOR }}^{T} \mathbf{D}^{-1} \mathbf{N}_{\text {SOR }}\right)$	$0<\omega<2$

Want: convenient to solve $\mathbf{M u}=\mathbf{r}$ and sample from $\mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$

Relaxation parameter ω can accelerate Gibbs.
SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting
SOR: Adler 1981; Barone \& Frigessi 1990, Amit \& Grenander 1991, SSOR: Roberts \& Sahu 1997

A closer look at convergence

To sample from $\mathrm{N}\left(\mu, \mathbf{A}^{-1}\right)$ where $\mathbf{A} \mu=\mathbf{b}$
Split $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. $\mathbf{G}=\mathbf{M}^{-1} \mathbf{N}$, and $\mathbf{c}^{(k)} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$
The iteration

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1}\left(\left(\mathbf{c}^{(k)}+\mathbf{b}\right)\right.
$$

implies

$$
\mathrm{E}\left(\mathbf{y}^{(m)}\right)-\mu=\mathbf{G}^{m}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right)-\mu\right]
$$

and

$$
\operatorname{Var}\left(\mathbf{y}^{(m)}\right)-\mathbf{A}^{-1}=\mathbf{G}^{m}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right)-\mathbf{A}^{-1}\right] \mathbf{G}^{m}
$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^{2}$)
Errors go down as the polynomial

$$
\begin{aligned}
P_{m}(\mathbf{I}-\mathbf{G})= & (\mathbf{I}-(\mathbf{I}-\mathbf{G}))^{m}=\left(\mathbf{I}-\mathbf{M}^{-1} \mathbf{A}\right)^{m} \\
& P_{m}(\lambda)=(1-\lambda)^{m}
\end{aligned}
$$

note $P_{m}(0)=1$

A closer look at convergence

To sample from $\mathrm{N}\left(\mu, \mathbf{A}^{-1}\right)$ where $\mathbf{A} \mu=\mathbf{b}$
Split $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. $\mathbf{G}=\mathbf{M}^{-1} \mathbf{N}$, and $\mathbf{c}^{(k)} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$
The iteration

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1}\left(\left(\mathbf{c}^{(k)}+\mathbf{b}\right)\right.
$$

implies

$$
\mathrm{E}\left(\mathbf{y}^{(m)}\right)-\mu=\mathbf{G}^{m}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right)-\mu\right]
$$

and

$$
\operatorname{Var}\left(\mathbf{y}^{(m)}\right)-\mathbf{A}^{-1}=\mathbf{G}^{m}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right)-\mathbf{A}^{-1}\right] \mathbf{G}^{m}
$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^{2}$)
Errors go down as the polynomial

$$
\begin{aligned}
P_{m}(\mathbf{I}-\mathbf{G})= & (\mathbf{I}-(\mathbf{I}-\mathbf{G}))^{m}=\left(\mathbf{I}-\mathbf{M}^{-1} \mathbf{A}\right)^{m} \\
& P_{m}(\lambda)=(1-\lambda)^{m}
\end{aligned}
$$

note $P_{m}(0)=1$

Controlling the error polynomial

Consider the splitting

$$
\mathbf{A}=\frac{1}{\tau} \mathbf{M}+\left(1-\frac{1}{\tau}\right) \mathbf{M}-\mathbf{N}
$$

giving the iteration operator

$$
\mathbf{G}_{\tau}=\left(\mathbf{I}-\tau \mathbf{M}^{-1} \mathbf{A}\right)
$$

and error polynomial $P_{m}(\lambda)=(1-\tau \lambda)^{m}$.
Taking the sequence of parameters $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ gives the error polynomial

$$
P_{m}(\lambda)=\prod_{l=1}^{m}\left(1-\tau_{l} \lambda\right)
$$

... we can choose the zeros of P_{m} !

Equivalently, can post-process chain by taking linear combination of states.

The best (Chebyshev) polynomial

Choose

$$
\frac{1}{\tau_{l}}=\frac{\lambda_{n}+\lambda_{1}}{2}+\frac{\lambda_{n}-\lambda_{1}}{2} \cos \left(\pi \frac{2 l+1}{2 p}\right) \quad l=0,1,2, \ldots, p-1
$$

where $\lambda_{1} \lambda_{n}$ are extreme eigenvalues of $\mathbf{M}^{-1} \mathbf{A}$.

Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable (iteration operators can have spectral radius $\gg 1$)
Numerical stability, and optimality at each step, is given by the second-order iteration

$$
\mathbf{y}^{(k+1)}=\left(1-\alpha_{k}\right) \mathbf{y}^{(k-1)}+\alpha_{k} \mathbf{y}^{(k)}+\alpha_{k} \tau_{k} \mathbf{M}^{-1}\left(\mathbf{c}^{(k)}-\mathbf{A} \mathbf{y}^{(k)}\right)
$$

with α_{k} and τ_{k} chosen so error polynomial satisfies Chebyshev recursion.
Theorem 2 Solver converges \Rightarrow sampler converges (given correct noise distribution)
Error polynomial is optimal for both mean and covariance.
Asymptotic average reduction factor (Axelsson 1996) is

$$
\sigma=\frac{1-\sqrt{\lambda_{1} / \lambda_{n}}}{1+\sqrt{\lambda_{1} / \lambda_{n}}}
$$

Algorithm 1: Chebyshev accelerated SSOR sampling from $\mathrm{N}\left(\mathbf{0}, \mathbf{A}^{-1}\right)$

input : The SSOR splitting \mathbf{M}, \mathbf{N} of \mathbf{A}; smallest eigenvalue $\lambda_{\min }$ of $\mathbf{M}^{-1} \mathbf{A}$; largest eigenvalue $\lambda_{\max }$ of $\mathbf{M}^{-1} \mathbf{A}$; relaxation parameter ω; initial state $\mathbf{y}^{(0)} ; k_{\text {max }}$
output: $\mathbf{y}^{(k)}$ approximately distributed as $N\left(\mathbf{0}, \mathbf{A}^{-1}\right)$

```
set \(\gamma=\left(\frac{2}{\omega}-1\right)^{1 / 2}, \delta=\left(\frac{\lambda_{\max }-\lambda_{\text {min }}}{4}\right)^{2}, \theta=\frac{\lambda_{\max }+\lambda_{\text {min }}}{2}\);
    set \(\alpha=1, \beta=2 / \theta, \tau=1 / \theta, \tau_{c}=\frac{2}{\tau}-1\);
    for \(k=1, \ldots, k_{\max }\) do
        if \(k=0\) then
            \(b=\frac{2}{\alpha}-1, \quad a=\tau_{c} b, \quad \kappa=\tau ;\)
    else
        \(b=2(1-\alpha) / \beta+1, \quad a=\tau_{c}+(b-1)(1 / \tau+1 / \kappa-1), \quad \kappa=\beta+(1-\alpha) \kappa ;\)
    end
    sample \(\mathbf{z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})\);
    \(\mathbf{c}=\gamma b^{1 / 2} \mathbf{D}^{1 / 2} \mathbf{z}\);
    \(\mathbf{x}=\mathbf{y}^{(k)}+\mathbf{M}^{-1}\left(\mathbf{c}-\mathbf{A} \mathbf{y}^{(k)}\right)\);
    sample \(\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})\);
    \(\mathbf{c}=\gamma a^{1 / 2} \mathbf{D}^{1 / 2} \mathbf{z}\);
    \(\mathbf{w}=\mathbf{x}-\mathbf{y}^{(k)}+\mathbf{M}^{-T}(\mathbf{c}-\mathbf{A x})\);
    \(\mathbf{y}^{(k+1)}=\alpha\left(\mathbf{y}^{(k)}-\mathbf{y}^{(k-1)}+\tau \mathbf{w}\right)+\mathbf{y}^{(k-1)} ;\)
    \(\beta=(\theta-\beta \delta)^{-1} ;\)
    \(\alpha=\theta \beta ;\)
    end
```


10×10 lattice ($n=100$) sparse precision matrix

$$
[\mathbf{A}]_{i j}=10^{-4} \delta_{i j}+\left\{\begin{array}{cc}
n_{i} & \text { if } i=j \\
-1 & \text { if } i \neq j \text { and }\left\|s_{i}-s_{j}\right\|_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$\approx 10^{4}$ times faster

$100 \times 100 \times 100$ lattice $\left(n=10^{6}\right)$ sparse precision matrix

only used sparsity, no other special structure

Some observations

In the Gaussian setting

- stochastic relaxation is fundamentally equivalent to classical relaxation
- If you can solve it then you can sample it
- ... with the same computational cost
- A sequence of (sub-optimal) kernels can outperform repeated application of the optimal kernel
more generally
- acceleration of convergence in mean and covariance is not limited to Gaussian targets
- ... but is unlikely to hold for densities without special structure
- Convergence also follows for bounded perturbation of a Gaussian (Amit 1991 1996)
- ... but no results for convergence rate

MCM'beach-BBQ-surf

[^0]: Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman \& Sokal, 1989, Galli \& Gao 2001

