Polynomial acceleration of Gibbs sampling

(sampling using lessons from CSE )
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Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer

° abyssal advection

Oxygen, run 1
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McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal
Neutral Density Layer




Adapting computational linear algebra to sampling

Optimization ...

Contour plot of quadratic, with iterat ntour plat of quadratic, with iteration path.

001 o 001

Gauss-Seidel

Sampling ...

Contour plot of the Gaussian densil

Cheby-Gibbs Lanczos




Normal distributions, quadratic forms, linear systems

We want to sample from Gaussian density with precision matrix A € R™*" SPD, dim (x) = n

/det (A 1
7 (x) = 627T(n ) exp {—§XTAX + bTX}

Covariance matrix is ¥ = A~ ! is also SPD.

Write  ~ N(u, A=) where mean is

1
(4 = arg min {—XTAX — bTX}
x |2

=x": Ax*=Db

Particularly interested in case where A is sparse (GMRF) and n large




Matrix formulation of Gibbs sampling from N(0, A1)

Let Yy — (y17y27 "'7yn)T
Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions.

One ‘sweep’ over all n components can be written

y(k—l—l) _ _D—lLy(k—l—l) L D—lLTy(k’) 4+ D—1/2Z(k¢)

where: D = diag(A), L is the strictly lower triangular part of A, z(*~1) ~ N(0,1)

y B+ — Gy®) 4 o®)

Is iid 'noise’ with zero mean, finite covariance

(stochastic AR(1) process = first order stationary iteration plus noise)

Goodman & Sokal, 1989




Matrix splitting form of stationary iterative methods

The splitting A = M — N converts linear system Ax = b to Mx = Nx + b.
If M is nonsingular

x = M 'Nx + M 'b.
lterative methods compute successively better approximations by
x* D) = M—INx®) + M~'b
= GxW + g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M =L + D

X(k-|-1) _ _D—lLX(k—I—l) . D—lLTX(k) + D—lb




Matrix splitting form of stationary iterative methods

The splitting A = M — N converts linear system Ax = b to Mx = Nx + b.
If M is nonsingular

x = M 'Nx + M 'b.
lterative methods compute successively better approximations by
x* D) = M—INx®) + M~'b
= GxW + g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M =L + D

X(k-l—l) _ _D—lLX(k—I—l) . D—lLTX(k) + D—lb

spot the similarity to Gibbs

y(k—l—l) — _D—lLy(k—l—l) L D—lLTy(k) s D—I/QZ(k)

Goodman & Sokal 1989; Amit & Grenander 1991




Gibbs converges < solver converges

Theorem 1 Let A = M — N, M invertible. The stationary linear solver

X(k:-l—l) _ M—lNX(k) 4+ M—lb
= Gx®) + M~ b

converges, if and only if the random iteration

y(k:-|—1) — M—lNy(k) + M—lc(k)
= Gy® + M~ 1c®

e jid .. :
converges in distribution. Here c'¥) 5 7 has zero mean and finite variance.

Proof. Both converge iff o(G) < 1. [
Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor o(G), covariance with o(G)?

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001
Parker F 2011




Some Gibbs samplers for N(0, A1)
splitting /sampler M Var (c(k>) = M! + N converge if
2
Richardson 11 21— A 0<w< ——
w w Q(A)
Jacobi D 2D — A A SDD
GS/Gibbs D+ L D always
SOR/B&F 1D+ L v 0<w<2
SSOR/REGS | 5-MsorD 'Mlog | 5% (MsorD Mg | 0<w <2
+NgorD ™' Nsor)

Want: convenient to solve Mu = r and sample from N(0, M’ + N)

Relaxation parameter w can accelerate Gibbs.

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997




A closer look at convergence

To sample from N(u, A=1) where Ay =b
Split A = M — N, M invertible. G = M—'N, and ¢® S N(0, M” + N)
The iteration

y(E+D) — Gy L M1 ((C(k;) X b)

implies
B(y™)-u=c"[E(y?”) -4

and

Var (y<m>> _Al=—g" [Var (y<0>> _ A‘l} G"

Errors go down as the polynomial
P(I-G)=I-I-G)"=(I-M"'A)"
Prn(A) = (1 =)™




A closer look at convergence

To sample from N(u, A=1) where Ay =b
Split A = M — N, M invertible. G = M—'N, and ¢® S N(0, M” + N)
The iteration

y(E+D) — Gy L M1 ((C(k;) X b)

implies
B(y™)-u=c"[E(y?”) -4

and

Var (y<m>> _Al=—g" [Var (y<0>) _ A‘l} G"

Errors go down as the polynomial
P(I-G)=I-I-G)"=(I-M"'A)"
Prn(A) = (1 =)™

can we do better?



Controlling the error polynomial

Consider the splitting
1 1
A=-M-+ <1——)1\/I—N

T T

giving the iteration operator
G,=(I-7M'A)

and error polynomial P, (A\) = (1 — 7)™

Taking the sequence of parameters 71, 7o, ..., Ty gives the error polynomial

ﬁ 1 —7A)
=1

. we can choose the zeros of P,

Equivalently, can post-process chain by taking linear combination of states.

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, Parker & F 2011




The best (Chebyshev) polynomial

T 2 2

where \; \,, are extreme eigenvalues of M—1A.

1 An + A1 Ap, — A\ ( 20+ 1
—+ cos |

[=0,1,2,...,p—1
2p) A R Y




Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable (iteration operators can have spectral
radius > 1)

Numerical stability, and optimality at each step, is given by the second-order iteration
y* Y = (1 — ap)y™ Y + apy™ + apreM ! () — Ay™)
with oy and 75 chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 Solver converges = sampler converges (given correct noise distribution)

Error polynomial is optimal for both mean and covariance.

Asymptotic average reduction factor (Axelsson 1996) is

1=/
o =
1+ /A /)\n

F & Parker 2011



Algorithm 1: Chebyshev accelerated SSOR sampling from N(O, A_l)

input : The SSOR splitting M, N of A; smallest eigenvalue \phin, of M1 A largest eigenvalue Amax of
M1 A: relaxation parameter w; initial state y(O); kax
output: y(¥) approximately distributed as N(0,A™ 1)

1/2 o\ 2 :
Set’y: (% _1) / ,5: (Amax4Am1n> '9: Amax‘;Amln;

seta:1,622/9,7':1/9,TC:%—1;

fOI‘ kzl,..-,kmaxdo

if £ =0 then
| bzg—l, a=1T1b, K=m;
else

| b=201-a)/B+1, a=T+(b-1)(1/r+1/k—1), K=+ (1— )k
end
sample z ~ N(0, I);
c= fybl/QDl/Qz;
x=y® f M-1(c— Ay(k));
sample z ~ N(0,I);
c= ’yal/le/Qz;
w=x—-yF + M-T(c - Ax);
y b+ = o(y(k) — y(b=1) 4 7w) 4 y(k—1).
B=(0-p65)""
a = 0p;

end




10 x 10 lattice (n = 100) sparse precision matrix

(

n; if’i:j

[A];j = 107%6; + ¢ —1 if i#7 and ||s; —sjll2<1.

otherwise

SSOR, w=1
— — — SSOR, w=0.2122
Cheby-SSOR, w=1
— — — Cheby-SSOR, w=0.2122| |
Cholesky

relative error

~ 10% times faster




100 x 100 x 100 lattice (n = 10%) sparse precision matrix

only used sparsity, no other special structure




Some observations

In the Gaussian setting
e stochastic relaxation is fundamentally equivalent to classical relaxation
e |f you can solve it then you can sample it
e ... with the same computational cost

e A sequence of (sub-optimal) kernels can outperform repeated application of the optimal

kernel
more generally
e acceleration of convergence in mean and covariance is not limited to Gaussian targets
e ... but is unlikely to hold for densities without special structure
e Convergence also follows for bounded perturbation of a Gaussian (Amit 1991 1996)

e ... but no results for convergence rate



MCM’beach-BBQ-surf
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