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Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer

abyssal advection

Oxygen, run 1
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McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal

Neutral Density Layer



Adapting computational linear algebra to sampling

Optimization ...

Gauss-Seidel Cheby-GS CG/Lanczos

Sampling ...

Gibbs Cheby-Gibbs Lanczos



Normal distributions, quadratic forms, linear systems

We want to sample from Gaussian density with precision matrix A ∈ Rn×n, SPD, dim (x) = n

π (x) =

√
det (A)

2πn
exp

{
−1

2
xTAx + bTx

}
Covariance matrix is Σ = A−1 is also SPD.

Write x ∼ N(µ,A−1) where mean is

µ = arg min
x

{
1

2
xTAx− bTx

}
= x∗ : Ax∗ = b

Particularly interested in case where A is sparse (GMRF) and n large



Matrix formulation of Gibbs sampling from N(0,A−1)

Let y = (y1, y2, ..., yn)T

Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions.

One ‘sweep’ over all n components can be written

y(k+1) = −D−1Ly(k+1) −D−1LTy(k) + D−1/2z(k)

where: D = diag(A), L is the strictly lower triangular part of A, z(k−1) ∼ N(0, I)

y(k+1) = Gy(k) + c(k)

c(k) is iid ’noise’ with zero mean, finite covariance

(stochastic AR(1) process = first order stationary iteration plus noise)

Goodman & Sokal, 1989



Matrix splitting form of stationary iterative methods

The splitting A = M−N converts linear system Ax = b to Mx = Nx + b.

If M is nonsingular

x = M−1Nx + M−1b.

Iterative methods compute successively better approximations by

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b

spot the similarity to Gibbs

y(k+1) = −D−1Ly(k+1) −D−1LTy(k) + D−1/2z(k)

Goodman & Sokal, 1989; Amit & Grenander, 1991
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Gibbs converges ⇐⇒ solver converges

Theorem 1 Let A = M−N, M invertible. The stationary linear solver

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + M−1b

converges, if and only if the random iteration

y(k+1) = M−1Ny(k) + M−1c(k)

= Gy(k) + M−1c(k)

converges in distribution. Here c(k)
iid∼ π has zero mean and finite variance.

Proof. Both converge iff %(G) < 1. �

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor %(G), covariance with %(G)2

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001

Parker F 2011



Some not so common Gibbs samplers for N(0,A−1)

splitting/sampler M Var
(
c(k)

)
= MT + N converge if

Richardson 1
ω I

2
ω I−A 0 < ω <

2

%(A)

Jacobi D 2D−A A SDD

GS/Gibbs D + L D always

SOR/B&F 1
ωD + L 2−ω

ω D 0 < ω < 2

SSOR/REGS ω
2−ωMSORD

−1MT
SOR

ω
2−ω

(
MSORD

−1MT
SOR 0 < ω < 2

+NT
SORD

−1NSOR

)
Want: convenient to solve Mu = r and sample from N(0,MT + N)

Relaxation parameter ω can accelerate Gibbs.

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997



A closer look at convergence

To sample from N(µ,A−1) where Aµ = b

Split A = M−N, M invertible. G = M−1N, and c(k)
iid∼ N(0,MT + N)

The iteration

y(k+1) = Gy(k) + M−1
(

(c(k) + b
)

implies

E
(
y(m)

)
− µ = Gm

[
E
(
y(0)

)
− µ

]
and

Var
(
y(m)

)
−A−1 = Gm

[
Var

(
y(0)

)
−A−1

]
Gm

(Hence asymptotic average convergence factors %(G) and %(G)2)

Errors go down as the polynomial

Pm (I−G) = (I− (I−G))m =
(
I−M−1A

)m
Pm(λ) = (1− λ)m

note Pm(0) = 1

can we do better?
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Controlling the error polynomial

Consider the splitting

A =
1

τ
M +

(
1− 1

τ

)
M−N

giving the iteration operator

Gτ =
(
I− τM−1A

)
and error polynomial Pm (λ) = (1− τλ)m.

Taking the sequence of parameters τ1, τ2, . . . , τm gives the error polynomial

Pm (λ) =

m∏
l=1

(1− τlλ)

... we can choose the zeros of Pm !

Equivalently, can post-process chain by taking linear combination of states.

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, Parker & F 2011



The best (Chebyshev) polynomial

Choose
1

τl
=
λn + λ1

2
+
λn − λ1

2
cos

(
π

2l + 1

2p

)
l = 0, 1, 2, . . . , p− 1

where λ1 λn are extreme eigenvalues of M−1A.



Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable (iteration operators can have spectral

radius � 1)

Numerical stability, and optimality at each step, is given by the second-order iteration

y(k+1) = (1− αk)y(k−1) + αky
(k) + αkτkM

−1(c(k) −Ay(k))

with αk and τk chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 Solver converges ⇒ sampler converges (given correct noise distribution)

Error polynomial is optimal for both mean and covariance.

Asymptotic average reduction factor (Axelsson 1996) is

σ =
1−

√
λ1 /λn

1 +
√
λ1 /λn

F & Parker 2011



Algorithm 1: Chebyshev accelerated SSOR sampling from N(0,A−1)

input : The SSOR splitting M, N of A; smallest eigenvalue λmin of M−1A; largest eigenvalue λmax of

M−1A; relaxation parameter ω; initial state y(0); kmax

output: y(k) approximately distributed as N(0,A−1)

set γ =
(
2
ω
− 1

)1/2
, δ =

(
λmax−λmin

4

)2
, θ = λmax+λmin

2
;

set α = 1, β = 2/θ, τ = 1/θ, τc =
2
τ
− 1;

for k = 1, . . . , kmax do

if k = 0 then

b = 2
α
− 1, a = τcb, κ = τ ;

else

b = 2(1− α)/β + 1, a = τc + (b− 1) (1/τ + 1/κ− 1), κ = β + (1− α)κ;

end

sample z ∼ N(0, I);

c = γb1/2D1/2z;

x = y(k) +M−1(c−Ay(k));

sample z ∼ N(0, I);

c = γa1/2D1/2z;

w = x− y(k) +M−T (c−Ax);

y(k+1) = α(y(k) − y(k−1) + τw) + y(k−1);

β = (θ − βδ)−1;

α = θβ;

end



10× 10 lattice (n = 100) sparse precision matrix

[A]ij = 10−4δij +


ni if i = j

−1 if i 6= j and ||si − sj ||2 ≤ 1

0 otherwise

.
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Cholesky

≈ 104 times faster



100× 100× 100 lattice (n = 106) sparse precision matrix
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only used sparsity, no other special structure



Some observations

In the Gaussian setting

• stochastic relaxation is fundamentally equivalent to classical relaxation

• If you can solve it then you can sample it

• ... with the same computational cost

• A sequence of (sub-optimal) kernels can outperform repeated application of the optimal

kernel

more generally

• acceleration of convergence in mean and covariance is not limited to Gaussian targets

• ... but is unlikely to hold for densities without special structure

• Convergence also follows for bounded perturbation of a Gaussian (Amit 1991 1996)

• ... but no results for convergence rate



MCM’beach-BBQ-surf
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