Polynomial acceleration of Gibbs sampling (sampling using lessons from CSE)

Colin Fox, Al Parker fox@physics.otago.ac.nz

Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer abyssal advection

McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer

Adapting computational linear algebra to sampling

Optimization ...

Gauss-Seidel

Cheby-GS

CG/Lanczos

Sampling ...

Gibbs

Cheby-Gibbs

Lanczos

Normal distributions, quadratic forms, linear systems

We want to sample from Gaussian density with *precision matrix* $\mathbf{A} \in \mathbb{R}^{n \times n}$, SPD, dim $(\mathbf{x}) = n$

$$\pi\left(\mathbf{x}\right) = \sqrt{\frac{\det\left(\mathbf{A}\right)}{2\pi^{n}}} \exp\left\{-\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x}\right\}$$

Covariance matrix is $\Sigma = \mathbf{A}^{-1}$ is also SPD.

Write $x \sim N(\mu, \mathbf{A}^{-1})$ where mean is

$$\mu = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{x} \right\}$$
$$= \mathbf{x}^* : \mathbf{A} \mathbf{x}^* = \mathbf{b}$$

Particularly interested in case where A is sparse (GMRF) and n large

Matrix formulation of Gibbs sampling from $N(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions.

One 'sweep' over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \operatorname{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A} , $\mathbf{z}^{(k-1)} \sim \operatorname{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

 $\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

(stochastic AR(1) process = first order stationary iteration plus noise)

Goodman & Sokal, 1989

Matrix splitting form of stationary iterative methods

The *splitting* A = M - N converts linear system Ax = b to Mx = Nx + b. If M is nonsingular

$$\mathbf{x} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b}.$$

Iterative methods compute successively better approximations by

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$
$$= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{g}$$

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Matrix splitting form of stationary iterative methods

The *splitting* A = M - N converts linear system Ax = b to Mx = Nx + b. If M is nonsingular

$$\mathbf{x} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b}.$$

Iterative methods compute successively better approximations by

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$
$$= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{g}$$

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

spot the similarity to Gibbs

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

Goodman & Sokal 1989; Amit & Grenander 1991

Gibbs converges \iff **solver converges**

Theorem 1 Let A = M - N, M invertible. The stationary linear solver

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$
$$= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$

converges, if and only if the random iteration

$$\mathbf{y}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$
$$= \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$

converges in distribution. Here $\mathbf{c}^{(k)} \stackrel{iid}{\sim} \pi$ has zero mean and finite variance.

Proof. Both converge iff $\rho(\mathbf{G}) < 1$. \Box

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor $\rho(\mathbf{G})$, covariance with $\rho(\mathbf{G})^2$

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001 Parker F 2011

Some not so common Gibbs samplers for $N(0, \mathbf{A}^{-1})$

splitting/sampler	Μ	$\mathbf{Var}\left(\mathbf{c}^{\left(k ight)} ight)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega}\mathbf{I}$	$\frac{2}{\omega}\mathbf{I}-\mathbf{A}$	$0 < \omega < \frac{2}{\varrho(\mathbf{A})}$
Jacobi	D	$2\mathbf{D} - \mathbf{A}$	A SDD
GS/Gibbs	$\mathbf{D} + \mathbf{L}$	D	always
SOR/B&F	$rac{1}{\omega}\mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega}\mathbf{D}$	$0 < \omega < 2$
SSOR/REGS	$\frac{\omega}{2-\omega}\mathbf{M}_{SOR}\mathbf{D}^{-1}\mathbf{M}_{SOR}^{T}$	$rac{\omega}{2-\omega} \left(\mathbf{M}_{SOR} \mathbf{D}^{-1} \mathbf{M}_{SOR}^T ight)$	$0 < \omega < 2$
		$+\mathbf{N}_{SOR}^T\mathbf{D}^{-1}\mathbf{N}_{SOR}ig)$	

Want: convenient to solve $\mathbf{M}\mathbf{u} = \mathbf{r}$ and sample from $N(0, \mathbf{M}^T + \mathbf{N})$

Relaxation parameter ω can accelerate Gibbs.

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997

A closer look at convergence

To sample from $N(\mu, A^{-1})$ where $A\mu = b$ Split A = M - N, M invertible. $G = M^{-1}N$, and $c^{(k)} \stackrel{\text{iid}}{\sim} N(0, M^T + N)$ The iteration

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\left((\mathbf{c}^{(k)} + \mathbf{b}\right)$$

implies

$$\mathrm{E}\left(\mathbf{y}^{(m)}\right) - \mu = \mathbf{G}^{m}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right) - \mu\right]$$

and

$$\operatorname{Var}\left(\mathbf{y}^{(m)}\right) - \mathbf{A}^{-1} = \mathbf{G}^{m}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right) - \mathbf{A}^{-1}\right]\mathbf{G}^{m}$$

(Hence asymptotic average convergence factors $\rho(\mathbf{G})$ and $\rho(\mathbf{G})^2$)

Errors go down as the polynomial

$$P_m \left(\mathbf{I} - \mathbf{G} \right) = \left(\mathbf{I} - \left(\mathbf{I} - \mathbf{G} \right) \right)^m = \left(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A} \right)^m$$
$$P_m(\lambda) = (1 - \lambda)^m$$

note $P_m(0) = 1$

A closer look at convergence

To sample from $N(\mu, A^{-1})$ where $A\mu = b$ Split A = M - N, M invertible. $G = M^{-1}N$, and $c^{(k)} \stackrel{\text{iid}}{\sim} N(0, M^T + N)$ The iteration

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\left((\mathbf{c}^{(k)} + \mathbf{b}\right)$$

implies

$$\mathrm{E}\left(\mathbf{y}^{(m)}\right) - \mu = \mathbf{G}^{m}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right) - \mu\right]$$

and

$$\operatorname{Var}\left(\mathbf{y}^{(m)}\right) - \mathbf{A}^{-1} = \mathbf{G}^{m}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right) - \mathbf{A}^{-1}\right]\mathbf{G}^{m}$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^2$)

Errors go down as the polynomial

$$P_m \left(\mathbf{I} - \mathbf{G} \right) = \left(\mathbf{I} - \left(\mathbf{I} - \mathbf{G} \right) \right)^m = \left(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A} \right)^m$$
$$P_m(\lambda) = (1 - \lambda)^m$$

note $P_m(0) = 1$

can we do better?

Controlling the error polynomial

Consider the splitting

$$\mathbf{A} = \frac{1}{\tau}\mathbf{M} + \left(1 - \frac{1}{\tau}\right)\mathbf{M} - \mathbf{N}$$

giving the iteration operator

$$\mathbf{G}_{\tau} = \left(\mathbf{I} - \tau \mathbf{M}^{-1} \mathbf{A}\right)$$

and error polynomial $P_m(\lambda) = (1 - \tau \lambda)^m$.

Taking the sequence of parameters $\tau_1, \tau_2, \ldots, \tau_m$ gives the error polynomial

$$P_m(\lambda) = \prod_{l=1}^m (1 - \tau_l \lambda)$$

... we can choose the zeros of P_m !

Equivalently, can post-process chain by taking linear combination of states.

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, Parker & F 2011

The best (Chebyshev) polynomial

Choose

$$\frac{1}{\tau_l} = \frac{\lambda_n + \lambda_1}{2} + \frac{\lambda_n - \lambda_1}{2} \cos\left(\pi \frac{2l+1}{2p}\right) \quad l = 0, 1, 2, \dots, p-1$$

where $\lambda_1 \lambda_n$ are extreme eigenvalues of $\mathbf{M}^{-1}\mathbf{A}$.

Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable (iteration operators can have spectral radius $\gg 1$)

Numerical stability, and optimality at each step, is given by the second-order iteration

$$\mathbf{y}^{(k+1)} = (1 - \alpha_k)\mathbf{y}^{(k-1)} + \alpha_k \mathbf{y}^{(k)} + \alpha_k \tau_k \mathbf{M}^{-1} (\mathbf{c}^{(k)} - \mathbf{A}\mathbf{y}^{(k)})$$

with α_k and τ_k chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 Solver converges \Rightarrow sampler converges (given correct noise distribution) Error polynomial is optimal for both mean and covariance.

Asymptotic average reduction factor (Axelsson 1996) is

$$\sigma = \frac{1 - \sqrt{\lambda_1 / \lambda_n}}{1 + \sqrt{\lambda_1 / \lambda_n}}$$

Algorithm 1: Chebyshev accelerated SSOR sampling from $N(0, A^{-1})$

input : The SSOR splitting M, N of A; smallest eigenvalue λ_{\min} of $M^{-1}A$; largest eigenvalue λ_{\max} of $M^{-1}A$; relaxation parameter ω ; initial state $y^{(0)}$; k_{max} output: $\mathbf{y}^{(k)}$ approximately distributed as $N(\mathbf{0}, \mathbf{A}^{-1})$ set $\gamma = \left(\frac{2}{\omega} - 1\right)^{1/2}$, $\delta = \left(\frac{\lambda_{\max} - \lambda_{\min}}{4}\right)^2$, $\theta = \frac{\lambda_{\max} + \lambda_{\min}}{2}$; set $\alpha = 1$, $\beta = 2/\theta$, $\tau = 1/\theta$, $\tau_c = \frac{2}{\tau} - 1$; for $k = 1, \ldots, k_{\text{max}}$ do if k = 0 then $b = \frac{2}{\alpha} - 1$, $a = \tau_c b$, $\kappa = \tau$; else $b = 2(1-\alpha)/\beta + 1, \ a = \tau_c + (b-1)(1/\tau + 1/\kappa - 1), \ \kappa = \beta + (1-\alpha)\kappa;$ end sample $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$; $\mathbf{c} = \gamma b^{1/2} \mathbf{D}^{1/2} \mathbf{z}$: $\mathbf{x} = \mathbf{y}^{(k)} + \mathbf{M}^{-1}(\mathbf{c} - \mathbf{A}\mathbf{y}^{(k)});$ sample $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$; $\mathbf{c} = \gamma a^{1/2} \mathbf{D}^{1/2} \mathbf{z};$ $\mathbf{w} = \mathbf{x} - \mathbf{y}^{(k)} + \mathbf{M}^{-T}(\mathbf{c} - \mathbf{A}\mathbf{x});$ $\mathbf{y}^{(k+1)} = \alpha(\mathbf{y}^{(k)} - \mathbf{y}^{(k-1)} + \tau \mathbf{w}) + \mathbf{y}^{(k-1)};$ $\beta = (\theta - \beta \delta)^{-1};$ $\alpha = \theta \beta$:

end

 $pprox 10^4$ times faster

$100 \times 100 \times 100$ lattice ($n = 10^6$) sparse precision matrix

only used sparsity, no other special structure

Some observations

In the Gaussian setting

- *stochastic relaxation* is fundamentally equivalent to classical *relaxation*
- If you can solve it then you can sample it
- ... with the same computational cost
- A sequence of (sub-optimal) kernels can outperform repeated application of the optimal kernel

more generally

- acceleration of convergence in mean and covariance is not limited to Gaussian targets
- ... but is unlikely to hold for densities without special structure
- Convergence also follows for bounded perturbation of a Gaussian (Amit 1991 1996)
- ... but no results for convergence rate

MCM'beach-BBQ-surf

,).消