
A Gibbs sampler for 
conductivity imaging 

and other 
inverse problems

Colin Fox



Two newish technologies

• Gibbs sampling for impedance tomography (EIT)

– and other inverse problems

– where PDE is linear in material properties

– (heat, sound, mechanics, electricity, ...)

• Polynomial acceleration of Gibbs sampling

– optimal convergence of first and second moments

– derived for Gaussians

– learn covariance adaptively for Gaussian-like distributions (EIT)

• Some computational timings



Electrical impedance tomography (EIT)

Infer unknown spatial field σ(x) from observations d with Gaussian errors n

d = F (σ) + n

π(d|σ) ∝ exp

{
−1

2
(d− F (σ))TΣ−1

n (d− F (σ))

}



Bayesian inference for the EIT inverse problem

Mathematical model for measurements F : σ 7→ d is the Neumann BVP

∇ · σ(x)∇φ(x) = 0, x ∈ Ω

σ(x)
∂φ(x)

∂n(x)
= j(x), x ∈ ∂Ω

j(x) is the current at boundary location x. Voltages φ at electrodes gives data d.

Solve for 16 currents: injection at one electrode and uniform removal from all electrodes.

Numerically solve using FEM discretization e.g. m = 24× 24 pixels

Consider a low level pixel representation for σ(x) with MRF prior, giving posterior

π(σ|d) ∝ exp

{
−1

2
(d− F (σ))TΣ−1

n (d− F (σ))

}
exp

β∑
i∼j

ρ(σi − σj)


Can be evaluated (expensive) so is amenable to MH MCMC

F Nicholls 1997, Moulton F Svyatskiy 2007, Higdon Reese Moulton Vrugt F 2011



Results for EIT

(a) Marginal Posterior Mode (b) Conductivity Variance

Moulton F Svyatskiy 2007



Imaging from Strong Wave Scattering

quantity being imaged governing PDE PDE classification

electrical conductivity ∇ ·(σ∇φ) = s elliptic

acoustic impedance ∇ ·(σ∇p) =
σ

c2
p̈ hyperbolic

thermal conductivity ∇ ·(σ∇u) = u̇ parabolic

∇ ·σ∇ = ATCA

A is a ‘matrix’ that contains geometric information only

C is a diagonal ‘matrix’ of material properties

Strang Intro to Applied Math 1986



Gibbs sampling

Markov chain Monte Carlo (MCMC) methods draw (random) samples σ(k) ∼ π(σ|d)

Any function g(σ) can be estimated by

E(g|d) =

∫
g(σ)π(σ|d) dσ ≈ 1

N

N∑
k=1

g
(
σ(k)

)
Variance ∝ N−1.

Algorithm 1 (Gibbs sampler) At state σ(n) = σ, simulate σ(n+1) as follows:

1. Select one component σi .

2. Update σi by sampling from the conditional distribution for σi, i.e. π(σi|σ−i, d).

Replace conditional sampling by conditional optimization to get Gauss-Seidel optimization

Glauber 1963, Turcin 1971, Geman Geman 1984, Parker F 2012



Gibbs sampling for EIT

EIT operator is a ATCA system

FEM discretization preserves (or creates) this

Kφ = j where system matrix K = ATCA

Maintain Greens functions = columns of K−1 corresponding to electrodes

(K + ∆K)−1 = K−1 −K−1AT
(
I + C∆C−1Ã−1AT

)−1
CAK−1

where Ã−1 is a psuedo-inverse of A that can be pre-evaluated

The matrix pencil (
I + γC∆C−1Ã−1AT

)
u = c

solve for ≈free in co-ordinate directions, cheaply when . 20 components non-zero

Hence we can evaluate the likelihood cheaply in these directions, and perform Gibbs sampling

(e.g. by ARS)

Meyer Cai Perron 2008, Neumayer PhD 2011



Gibbs samplers and equivalent linear solvers

Optimization ...

Gauss-Seidel Cheby-GS CG/Lanczos

Sampling ...

Gibbs Cheby-Gibbs Lanczos

Parker F SISC 2012



Matrix formulation of Gibbs sampling from N(0,A−1)

Let y = (y1, y2, ..., yn)T

Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions

One ‘sweep’ over all n components can be written

y(k+1) = −D−1Ly(k+1) −D−1LTy(k) + D−1/2z(k)

where: D = diag(A), L is the strictly lower triangular part of A, z(k−1) ∼ N(0, I)

y(k+1) = Gy(k) + c(k)

c(k) is iid ’noise’ with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b

Goodman & Sokal 1989; Amit & Grenander 1991
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Gibbs converges ⇐⇒ solver converges

Theorem 1 Let A = M−N, M invertible. The stationary linear solver

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + M−1b

converges, if and only if the random iteration

y(k+1) = M−1Ny(k) + M−1c(k)

= Gy(k) + M−1c(k)

converges in distribution. Here c(k) iid∼ πn has zero mean and finite variance

Proof. Both converge iff %(G) < 1 �

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor %(G), covariance with %(G)2

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001

F Parker 2012



Some not so common Gibbs samplers for N(0,A−1)

splitting/sampler M Var
(
c(k)

)
= MT + N converge if

Richardson 1
ω I

2
ω I−A 0 < ω <

2

%(A)

Jacobi D 2D−A A SDD

GS/Gibbs D + L D always

SOR/B&F 1
ωD + L 2−ω

ω D 0 < ω < 2

SSOR/REGS ω
2−ωMSORD

−1MT
SOR

ω
2−ω

(
MSORD

−1MT
SOR 0 < ω < 2

+NT
SORD

−1NSOR

)
Good choice has: convenient to solve Mu = r and sample from N(0,MT + N)

Relaxation parameter ω can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997
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Controlling the error polynomial

The splitting

A =
1

τ
M +

(
1− 1

τ

)
M−N

gives the iteration operator

Gτ =
(
I− τM−1A

)
and error polynomial Qn (λ) = (1− τλ)n

The sequence of parameters τ1, τ2, . . . , τn gives the error polynomial

Qn (λ) =

m∏
l=1

(1− τlλ)

... so we can choose the zeros of Qn

This gives a non-stationary solver ≡ non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012



The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose
1

τl
=
λn + λ1

2
+
λn − λ1

2
cos

(
π

2l + 1

2p

)
l = 0, 1, 2, . . . , p− 1

where λ1 λn are extreme eigenvalues of M−1A



Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

y(k+1) = (1− αk)y(k−1) + αky
(k) + αkτkM

−1(c(k) −Ay(k))

with αk and τk chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2nd-order solver converges ⇒ 2nd-order sampler converges (given correct noise

distribution)

Error polynomial is optimal, at each step, for both mean and covariance

Asymptotic average reduction factor (Axelsson 1996) is

σ =
1−

√
λ1 /λn

1 +
√
λ1 /λn

Axelsson 1996, F & Parker 2012



10× 10 lattice (d = 100) sparse precision matrix

[A]ij = 10−4δij +


ni if i = j

−1 if i 6= j and ||si − sj ||2 ≤ 1

0 otherwise
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SSOR, ω=1

SSOR, ω=0.2122

Cheby−SSOR, ω=1

Cheby−SSOR, ω=0.2122
Cholesky

≈ 104 times faster



Polynomial acceleration of parameter estmation in EIT

Second-order Chebyshev acceleration of Gibbs give optimal convergence of first and second

moments – given mean and inverse of covariance matrix P = Σ−1 where Σ = cov(π(σ|y))

Don’t have P, so adapt to it

Initialize µ = σMAP and P = Hessian of − log π at σMAP

Algorithm 2 At state σl with values for τ and α:

1. Simulate σ′ via generalised scaled Gibbs sweep with parameter τ from σl

2. Set σl+1 = ασ′ + (1− α)σl−1

3. Evaluate recursion on α and τ

4. Update µ and P using empirical estimates (as AM)

IACT for Gibbs was ≈ 3 sweeps bit slower than optimization

‘IACT’ after acceleration is ∼ 1 sweep bit slower than optimization

passes all numerical tests, but no proof of convergence



Conclusions

For Gaussians

• Gibbs sampling is fundamentally equivalent to Gauss-Seidel

• Accelerators for linear solvers also accelerate Gibbs sampling

For EIT (and other inverse problems)

• ATCA structure allows fast conditional updates

• Convergence in mean and covariance can be accelerated
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