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Two newish technologies

• Gibbs sampling for impedance tomography (EIT)

– and other inverse problems

– where Hamiltonian is quadratic in field and linear in material properties

– (heat, sound, mechanics, electricity, ...)

• Polynomial acceleration of Gibbs sampling

– optimal convergence of first and second moments

– derived for Gaussians

– learn covariance adaptively for Gaussian-like distributions (EIT)

• Some computational timings



Electrical impedance tomography (EIT)

Infer unknown spatial field x(s) from observations y with Gaussian errors e

y = η(x) + e

L(y|x) ∝ exp

{
−1

2
(y − η(x))TΣ−1

e (y − η(x))

}



Bayesian inference for the EIT inverse problem

Mathematical model for measurements η : x 7→ y is the Neumann boundary value problem

∇ · x(s)∇v(s) = 0, s ∈ Ω

x(s)u
∂v(s)

∂n(s)
= j(s), s ∈ ∂Ω

where j(s) is the current at boundary location s. Voltages v at electrodes gives data y.

Solve for 16 currents: injection at one electrode and uniform removal from all electrodes.

Numerically solve using FEM discretization, e.g. m = 24× 24 pixels.

Consider a low level pixel representation for x(s) with MRF prior, giving posterior

π(x|y) ∝ exp

{
−1

2
(y − η(x))TΣ−1

e (y − η(x))

}
exp

β∑
i∼j

u(xi − xj)


Not Gaussian, but can be evaluated (expensive) so is amenable to MH MCMC

F Nicholls 1997, Moulton F Svyatskiy 2007, Higdon Reese Moulton Vrugt F 2011



Gibbs sampling for EIT

EIT operator is a WSWT system: ∇ · x∇
W is geometry, S is diagonal matrix of material properties

FEM discretization preserves (or creates) this

Kv = j where system matrix K = WSxW
T

Maintain Greens functions = columns of K−1 corresponding to electrodes

(K + ∆K)−1 = K−1 −K−1W
(
I + S∆S−1

x W̃−TW
)−1

SxW
TK−1

where W̃−T is a psuedo-inverse of WT that can be pre-evaluated

The matrix pencil (
I + γS∆S−1

x W̃−TW
)
u = c

solve for ≈free in co-ordinate directions, cheaply when . 20 components non-zero

Hence we can evaluate the likelihood cheaply in these directions, and perform Gibbs sampling

(e.g. by ARS)

Strang Intro. to App. Math., Meyer Cai Perron 2008, Neumayer PhD 2011



Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel P with

πP = π

via detailed balance (self-adjoint in metric π)

n-step distribution: π(n) = π(n−1)P = π(0)Pn

n-step distribution error: π(n) − π =
(
π(0) − π

)
Pn

Initial error is multiplied by n-th order polynomial Pn of (I−P) called the the error polynomial

error polynomial: Pn(I − P) = Pn = (I − (I − P))n or Pn(λ) = (1− λ)n

Hence convergence is geometric

Polynomial acceleration: modify iteration to give better error polynomial e.g.

(choose x(i) w.p. αi) ∼ π(0)
n∑
i=1

αiP i error poly: Qn =
n∑
i=1

αi(1− λ)i

We choose αi so can choose Qn

Can build a perfect sampler when π over finite state space, or Gaussian(!)
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Gibbs sampling from normal distributions

Gibbs samplinga repeatedly samples from (block) conditional distributions

Normal distributions

π (x) =

√
det (A)

2πn
exp

{
−1

2
xTAx + bTx

}
precision matrix A, covariance matrix Σ = A−1 (both SPD)

Mean x̄ satisfies

Ax̄ = b

Particularly interested in case where A is sparse (GMRF) and n large

When is π(0) is also normal, then so is the n-step distribution

A(n) → A Σ(n) → Σ

In what sense is “stochastic relaxation” related to “relaxation”?

What decomposition of A is this performing?
aGlauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984



Gibbs samplers and equivalent linear solvers

Optimization ...

Gauss-Seidel Cheby-GS CG/Lanczos

Sampling ...

Gibbs Cheby-Gibbs Lanczos

Parker F SISC 2012



Matrix splitting form of stationary iterative methods

Want to solve

Ax = b

The splitting A = M−N converts Ax = b to Mx = Nx + b

If M is nonsingular

x = M−1Nx + M−1b

Iterative methods compute successively better approximations by

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b



Matrix formulation of Gibbs sampling from N(0,A−1)

Let y = (y1, y2, ..., yn)T

Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions

One ‘sweep’ over all n components can be written

y(k+1) = −D−1Ly(k+1) −D−1LTy(k) + D−1/2z(k)

where: D = diag(A), L is the strictly lower triangular part of A, z(k−1) ∼ N(0, I)

y(k+1) = Gy(k) + c(k)

c(k) is iid ’noise’ with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b

Goodman & Sokal 1989; Amit & Grenander 1991
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Gibbs converges ⇐⇒ solver converges

Theorem 1 Let A = M−N, M invertible. The stationary linear solver

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + M−1b

converges, if and only if the random iteration

y(k+1) = M−1Ny(k) + M−1c(k)

= Gy(k) + M−1c(k)

converges in distribution. Here c(k) iid∼ πn has zero mean and finite variance

Proof. Both converge iff %(G) < 1 �

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor %(G), covariance with %(G)2

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001

F Parker 2012



Average contractive iterated random functions

Diaconis Freedman SIAM Review 1999, Stenflo JDEA ≥2012



Some not so common Gibbs samplers for N(0,A−1)

splitting/sampler M Var
(
c(k)

)
= MT + N converge if

Richardson 1
ω I

2
ω I−A 0 < ω <

2

%(A)

Jacobi D 2D−A A SDD

GS/Gibbs D + L D always

SOR/B&F 1
ωD + L 2−ω

ω D 0 < ω < 2

SSOR/REGS ω
2−ωMSORD

−1MT
SOR

ω
2−ω

(
MSORD

−1MT
SOR 0 < ω < 2

+NT
SORD

−1NSOR

)
Good choice has: convenient to solve Mu = r and sample from N(0,MT + N)

Relaxation parameter ω can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997
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A closer look at convergence

To sample from N(µ,A−1) where Aµ = b

Split A = M−N, M invertible. G = M−1N, and c(k) iid∼ N(0,MT + N)

The iteration

y(k+1) = Gy(k) + M−1
(

(c(k) + b
)

implies

E
(
y(n)

)
− µ = Gn

[
E
(
y(0)

)
− µ

]
and

Var
(
y(n)

)
−A−1 = Gn

[
Var

(
y(0)

)
−A−1

]
Gn

(Hence asymptotic average convergence factors %(G) and %(G)2)

Errors go down as the polynomial

Pn(λ) = (1− λ)n

solver and sampler have exactly the same error polynomial
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Controlling the error polynomial

The splitting

A =
1

τ
M +

(
1− 1

τ

)
M−N

gives the iteration operator

Gτ =
(
I− τM−1A

)
and error polynomial Qn (λ) = (1− τλ)n

The sequence of parameters τ1, τ2, . . . , τn gives the error polynomial

Qn (λ) =

m∏
l=1

(1− τlλ)

... so we can choose the zeros of Qn

This gives a non-stationary solver ≡ non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012



The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose
1

τl
=
λn + λ1

2
+
λn − λ1

2
cos

(
π

2l + 1

2p

)
l = 0, 1, 2, . . . , p− 1

where λ1 λn are extreme eigenvalues of M−1A



Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

y(k+1) = (1− αk)y(k−1) + αky
(k) + αkτkM

−1(c(k) −Ay(k))

with αk and τk chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2nd-order solver converges ⇒ 2nd-order sampler converges (given correct noise

distribution)

Error polynomial is optimal, at each step, for both mean and covariance

Asymptotic average reduction factor (Axelsson 1996) is

σ =
1−

√
λ1 /λn

1 +
√
λ1 /λn

Axelsson 1996, F & Parker 2012



10× 10 lattice (d = 100) sparse precision matrix

[A]ij = 10−4δij +


ni if i = j

−1 if i 6= j and ||si − sj ||2 ≤ 1

0 otherwise

.
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Cholesky

≈ 104 times faster



Polynomial acceleration of parameter estmation in EIT

Second-order Chebyshev acceleration of Gibbs give optimal convergence of first and second

moments – given mean and inverse of covariance matrix A = Σ−1 where Σ = cov(π(x|y))

We don’t have A, so we adapt to it.

Initialize µ = xMAP and A = Hessian of − log π at xMAP

Algorithm 1 At state xl with values for τ and α:

1. Simulate x′ via generalised scaled Gibbs sweep with parameter τ from xl

2. Set xl+1 = αx′ + (1− α)xl−1

3. Evaluate recursion on α and τ

4. Update µ and A using empirical estimates (as AM)

IACT for Gibbs was ≈ 3 sweeps bit slower than optimization

‘IACT’ after acceleration is ∼ 1 sweep bit faster than optimization

passes all numerical tests, but no proof of convergence



Some observations

In the Gaussian setting

• GS ≡ GS

• stochastic relaxation is fundamentally equivalent to classical relaxation

• existing fast solvers make fast samplers (mutligrid, fast multipole, parallel tools)

More generally

• acceleration of convergence in mean and covariance not limited to Gaussian targets

• ... can be applied to inverse problems

• A sequence of non-optimal kernels can do much better than repeated application of the

’optimal’ kernel


	Two newHardToSeeish technologies
	Electrical impedance tomography (EIT)
	Bayesian inference for the EIT inverse problem
	Gibbs sampling for EIT
	Accelerating MCMC HardToSee(cartoon)
	Accelerating MCMC HardToSee(cartoon)
	Accelerating MCMC HardToSee(cartoon)
	Accelerating MCMC HardToSee(cartoon)
	Gibbs sampling from normal distributions
	Gibbs samplers and equivalent linear solvers
	Matrix splitting form of stationary iterative methods
	Matrix formulation of Gibbs sampling from N(0,A-1)
	Matrix formulation of Gibbs sampling from N(0,A-1)
	Gibbs converges -3mu solver converges
	whiteAverage contractive iterated random functions
	Some HardToSeenot so common Gibbs samplers for N(0,A-1)
	Some HardToSeenot so common Gibbs samplers for N(0,A-1)
	A closer look at convergence
	A closer look at convergence
	Controlling the error polynomial
	The best (Chebyshev) polynomial
	Second-order accelerated sampler
	1010 lattice (d=100) sparse precision matrix
	Polynomial acceleration of parameter estmation in EIT
	Some observations

