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In this talk

• An example in geothermal model calibration

• Inferential solutions to inverse problems, noise and all

• The need to integrate: pixel-wise degraded binary images

• Monte Carlo integration

• Computation (MCMC)

• Output analysis for geothermal problem

• Next talk :: better sampling algorithms



An inverse problem in geothermal fields



Schematic of a geothermal field
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Given near-surface measurements of temperature, pressure, flow, want

• Model calibration :: rock type, porosity, fracture : heat sources

• Predict :: long term (50 year) power generation, land subsidence, etc

• Decide :: robust investment plan



Wairakei geothermal power generator



Bayesian formulation of inverse problems

d = Ax + n: data d, image x, measurement noise n, forward map A

image space
data space

xtrue

xML d

dnf

forward
map
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A
-1

π (x|d, m) ∝ Pr (d|x, m)Pr (x|m) (Bayes’ rule)

Likelihood: measurement and noise (Physics, instrumentation, probability)

Prior / state space: stochastic modelling, physical laws, previous measurements, expert opinion

Inference based on posterior distribution conditioned on data (computational statistics)
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Stochastic Model
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Prior distribution πpr(x) uses physical laws, expert knowledge, stochastic modelling

Focus of inference is posterior distribution for x given d

π (x|d) ∝ Pr (d|x) πpr (x)



Solutions to Inverse Problem = Summary Statistics

Posterior distribution π (x|d) encapsulates all information about x

Regularized Inversion - Modes

x̂MLE = arg max Pr (d|x) x̂MAP = arg max π (x|d)

(least-squares, Moore-Penrose inverse, Tikhonov regularization, Kalman filtering, Backus-

Gilbert, Prussian-hat cleaning)

Inferential Solutions

“Answers” are expectations over the posterior π (x|d)

Eπ [f (x)] =
∫

X
f (x) π (x|d) dx

If

f (x) = indicator function that image shows cancer

E [f (x)] is posterior probability (based on measurements, prior) that patient has cancer.



Two modes over 100×100 pixel image
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Two modes over 100×100 pixel image

x

π(x|d)

if maximum value (at mode) is twice the value of the lower local maximum

width of global mode is half the width of the lower local mode

in each of the coordinate directions x1, x2, · · · , x100×100

there is 210000−1 ≈ 103010 times more probability mass in the lower, broader, peak than around

the mode ∫
X

π (x|d) dx =
∫

X
π (x|d) dx1 dx2 · · · dx10000



Mode vs Mean

true noisy
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Pixel-wise noise on binary image, Ising prior with “lumping” constant θ

F and Nicholls “Exact MAP states and expectations from perfect sampling: Greig, Porteous and Seheult

revisited” 2001



Monte Carlo integration + importance sampling

If x(1), . . . , x(n) ∼ π (·|d)

Eπ [f (x)] ≈ 1
n

n∑
i=1

f
(
x(i)

)
Construct x(1), . . . , x(n) as iterates of an ergodic map

Deterministic iteration: x(n+1) = M
(
x(n)

)
π(x) =

∑
M(y)=x

π(y)
|M ′(y)|

(Frobenius-Perron)

Stochastic Iteration: Markov chain with transition kernel p (x, y)

∫
X

π (x) p (x, y) dx =
∫

X
π (y) p (y, x) dx (global balance)

π (x) p (x, y) = π (y) p (y, x) (detailed balance)
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Sampling Algorithms in Physics

Hamiltonian Dynamics

Equate unknowns x to ‘position’ variables q with potential energy

E(q) = −T log (π(x))− T log (Z)

Auxiliary ’momentum’ variables p with kinetic energy K(p) = 1
2‖p‖

2.

Hamiltonian H(q, p) = E(q) + K(p) has canonical distribution

P (q, p) =
1

ZP
exp (−E(q))

1
ZK

exp (−K(p))

Hamiltonian dynamics leave P (q, p) invariant + stochastic transitions for ergodicity

Langevin diffusion

dx = s dB +
s2

2
∇ log (π(x)) dt



Metropolis-Hastings algorithm

1. given state xt at time t generate candidate state x′ from a proposal distribution q (.|xt)

2. With probability α
(
xt → x′

)
= min

(
1,

π(x′)q (xt|x′)
π(xt)q (x′|xt)

)
set Xt+1 = x′

otherwise Xt+1 = xt

3. Repeat

q (.|xt) can be any distribution that ensures the chain is irreducible and aperiodic.

Pros

• Provably convergent to any property, e.g. ‘best’ estimate, uncertainty in estimate

• State space can be continuous, discrete, stochastic, or variable dimension

Cons

• Can be (very) slow
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2. With probability α
(
xt → x′

)
= min

(
1,

π(x′)q (xt|x′)
π(xt)q (x′|xt)

)
set Xt+1 = x′

otherwise Xt+1 = xt

3. Repeat

q (.|xt) can be any distribution that ensures the chain is irreducible and aperiodic.

Pros

• Provably convergent under mild requirements

• State space can be continuous, discrete, stochastic, or variable dimension

Cons

• Can be (very) slow



Results for geothermal field
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Wellhead pressure (top) and flowing enthalpy (bottom).

Black line is estimated result, triangles and squares are observed data.

Tiangang Cui, Bayesian Inference for Geothermal Model Calibration MEng Auckland, 2005



Output analysis for geothermal field

MCMC Updates
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Autocorrelation and MCMC output trace. Histogram for the marginal distribution of param-

eters. Scatter plot of the joint marginal distribution for log(k), p0 and ps. Histogram for the

marginal distribution of Sv0 and Sls and scatter plot of their joint marginal distribution.

Tiangang Cui, Bayesian Inference for Geothermal Model Calibration MEng Auckland, 2005



Inferred iso-temperature surface



Conclusions

1. Bayesian methods can solve substantial real-world inverse problems

2. Time to convergence depends on efficient simulation of the forward map, fast MCMC

algorithms, good proposal distributions

3. Computation required is feasible
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