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Outline

• Naive MCMC: components of straightforward implementation

• Two-step modification to M-H MCMC

• Conjugate direction sampler

• Wrap up



Metropolis-Hastings algorithm

To sample from π(·)

1. given state xt at time t generate candidate state x′ from a proposal distribution q (.|xt)

2. With probability α
(
xt → x′

)
= min

(
1,

π(x′)q (xt|x′)
π(xt)q (x′|xt)

)
set Xt+1 = x′

otherwise Xt+1 = xt

3. Repeat

q (.|xt) can be any distribution that ensures the chain is irreducible and aperiodic.



Electrical Impedance Tomography

For fixed current patterns {I}
A : σ 7→ {U}

Simulate A by solving the BVP
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Material type prior

πpr(σ|τ) ∝ π+(σ) exp

−α
∑

i

∑
j∼iandτj=τi

(σi − σj)2

 M∏
i=1

exp
(
− 1

2ξ2
i

(σi − η(τi))2
)

Segmented MRF conditioned on material type τi ∈ {1, 2, . . . , C} modelled as a Potts MRF

on the pixel latice

πpr(τ) ∝ exp

β

M∑
i=1

∑
j∼i

δτi,τj


Multiple move M-H algorithm: pick at random

1. Set a random pixel to random type and value

2. Flip a pixel type and value near a material boundary

3. Swap a pair of pixels connected by an update edge

4. Assign new values for pixels connected by an update edge

5. Draw new conductivity value for a pixel

Nicholls and F 1998



Material type prior - results
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Figure 3: Results with the Material type MRF-prior. Top left: Photograph
of the measurement setup. Top right: Posterior mean for the conductivity.
Bottom left: Posterior variance of the conductivity. Bottom right: One
sample from the posterior.

tation; Thus, I believe that the individual chains would eventually con-
verge to same estimates if we run the simulation long enough. Longer
test runs with simulated and real data will be carried out. After these
tests we can decide whether modifications for more efficient moves are
needed.

• Systematic errors: The EIT-system in Kuopio had some systematic
errors in calibration when the data was measured. Thus, the forward
model had to be calibrated against empty tank measurement in order
to get rid of the systematic errors. This may be bit questionable thing
to do but is acceptable for the purpose of this paper. In addition,
we are working on the system calibration, and some new data will be

9

Kolehmainen, Fox and Nicholls, MCMC Inversion of Measured EIT Data, 200?



Speeding-Up MCMC Sampling from π(·)
1. At x(t) generate proposal y from q(· | x(t))

2. Let

g(x, y) = min
{

1,
q(x | y)
q(y | x)

π∗x(y)
π∗x(x)

}
w.p. g(x(t), y), “promote” y. New proposal distribution is

q∗(y | x) = g(x, y)q(y | x) + (1− r(x))δx(y)

3. Let

ρ(x, y) = min
{

1,
q∗(x | y)
q∗(y | x)

π(y)
π(x)

}
w.p. ρ(x(t), y) accept y setting x(t+1) = y, otherwise x(t+1) = x(t)

e.g.

π∗x(x + ∆x|d) ∝ exp {−χ (d− (A(x) + J∆x))− ρ (x)}

Christen F, MCMC using an Approximation, Journal of Computational and Graphical Statistics, 2005
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Recovering Resistor Values in a Network

Resistor values, known to be either 2Ω or 3Ω in a square grid with 24 resistors per side,

hence n = 1200 resistors. Measurements made by injecting current into each of 16 boundary

electrodes in turn, and measuring the resulting voltage at all electrodes: 300 independent

measurements.

(Yσ)lm =


−σlm l 6= m
N∑

k=1

σlk l = m

Yσv = i

Measurements are of vj : j ∈ E = 1, 2, . . . , |E| ≤ N for a set of fixed i : ij , j ∈ E being

determined, with other components being zero.

Defines forward map

A : σ 7→
(
Y −1

σ

)
E,E

Inverse problem is to find σ from noisy measurement of
(
Y −1

σ

)
E,E



Approximation and Phantom

• Exact solution: Cholesky factorize Y and solve

• First order approximation: For σlm → σlm + ∆σ is

Y −1
EE → Y −1

EE −∆σUUT

where U = Y −1
El − Y −1

Em with the associated term absent if l = N or m = N .

π(r|D) ∝ exp

−
∥∥D − Y −1

EE

∥∥2

F

2s2
+ θ

∑
rlm∈r

∑
rlm∼rpq

δrlm,rpq





Computational Results
exact linearization plus correction
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MCMC updates

Two-step algorithm gives speed up by factor of 25



Time to converge (in expectation) in EIT problem

Using calibrated forward map, complete electrode model, Gaussian smoothness prior in 2-

dimensions

1. Weeks Standard FEM solver, straightforward Metropolis-Hastings dynamics using Langevin

move.



Time to converge (in expectation) in EIT problem

Using calibrated forward map, complete electrode model, Gaussian smoothness prior in 2-

dimensions

1. Weeks Standard FEM solver, straightforward Metropolis-Hastings dynamics using Langevin

move.

2. Days Fast Jacobian calculation, fast stiffness-matrix assembly exploiting rank-2 local

stiffness matrix.



Time to converge (in expectation) in EIT problem

Using calibrated forward map, complete electrode model, Gaussian smoothness prior in 2-

dimensions

1. Weeks Standard FEM solver, straightforward Metropolis-Hastings dynamics using Langevin

move.

2. Days Fast Jacobian calculation, fast stiffness-matrix assembly exploiting rank-2 local

stiffness matrix.

3. Hours Two-step MCMC using linear approximation to forward map



Time to converge (in expectation) in EIT problem

Using calibrated forward map, complete electrode model, Gaussian smoothness prior in 2-

dimensions

1. Weeks Standard FEM solver, straightforward Metropolis-Hastings dynamics using Langevin

move.

2. Days Fast Jacobian calculation, fast stiffness-matrix assembly exploiting rank-2 local

stiffness matrix.

3. Hours Two-step MCMC using linear approximation to forward map

4. O(1) calculation: Minutes ? Approximate calculation of forward map, only, with

separation time greater than run length



Time to converge (in expectation) in EIT problem

Using calibrated forward map, complete electrode model, Gaussian smoothness prior in 2-

dimensions

1. Weeks Standard FEM solver, straightforward Metropolis-Hastings dynamics using Langevin

move.

2. Days Fast Jacobian calculation, fast stiffness-matrix assembly exploiting rank-2 local

stiffness matrix.

3. Hours Two-step MCMC using linear approximation to forward map

4. O(1) calculation: Minutes ? Approximate calculation of forward map, only, with

separation time greater than run length

5. Near real time ? More computers running something other than MatLab



A Conjugate Direction Sampler for Gaussian Random

Fields with Generalization



Conjugate Gradient Optimization

• Basic CG algorithm was introduced by Hestenes and Stiefel (1952)

• Solves the matrix equation Ax = b where A is a symmetric positive definite (SPD) matrix.

• Equivalently minimizes the quadratic form

Q (x) =
1
2
xTAx− bTx

using a sequence of search directions derived from the gradient of Q projected onto the

space conjugate to all previous directions.

• Terminates in < dim(x) steps (exact arithmetic)

• Actually in < number distinct eigenvalues of A (Jennings 1977)

• Requires storage of two vectors, and one operation by A per iteration.



Efficient sampling from a Gaussian

To sample from a Gaussian distribution with density

π (x) =

√
det (A)
2πm

exp
{
−1

2
xTAx

}
where A ∈ Rm×m is SPD, dim (x) = m. Denote A−1 = Σ.

Standard efficient samplers use the Cholesky factorization

• of covariance Σ (classical algorithm)

RRT = Σ

then if z ∼ N (0, Im), x = Rz ∼ N (0,Σ)

• of precision matrix A (Rue 2000)

LLT = A

then if z ∼ N (0, Im), solving z = LTx gives x ∼ N
(
0, A−1

)
.

Markov RF ⇒ A is sparse, allowing computationally efficient algorithms.

Generally, if z ∼ N (µ,Σ) then x = Sz ∼ N
(
Sµ, SΣST

)
.



Mutually conjugate vectors (and factorizations)

Definition 1 A set of non-zero vectors s(i), i = 0, 1, . . . ,m− 1, is mutually conjugate w.r.t.

A (SPD) if

s(i)TAs(j) = 0 ∀i 6= j.

Note that s(i)TAs(i) > 0 ∀i, as A is strictly positive definite. Denote s(i)TAs(i) = di,

hence, if S ∈ Rm×m is the matrix with columns s(i), i = 0, 1, . . . ,m − 1, and D =
diag (d0, d1, . . . , dm−1) (also pd), then

STAS = D.

Hence if z ∼ N (0, Im), y =
√

D−1z ∼ N
(
0, D−1

)
, and x = Sy ∼ N (0,Σ). This follows

since STAS = D so A−1 = SD−1ST.

The expression for x can be written x =
∑m−1

i=0

(
zi/
√

di

)
s(j). Since the zi are i.i.d. ∼

N (0, 1), this shows how a sample from π may be generated using a sequence of standard

normal random numbers.



Some examples you know of

Example 2 Cholesky factorizaton of Σ. Since RRT = Σ, RTAR = I, so the columns of R

are mutually conjugate w.r.t. A.

Example 3 Cholesky factorizaton of A. Since LLT = A,
(
LT
)−1

L−1 = A−1, so
(
LT
)−1 =

R and so the columns of
(
LT
)−1

are mutually conjugate w.r.t. A.

Example 4 Eigen decomposition of A or Σ. Consider

A = UDUT

where U is unitary (columns are normalised eigenvectors) and D is diagonal (eigenvalues on

diagonal). Then UTAU = D, so the eigenvectors are mutually conjugate w.r.t. A.

These examples show that the algorithms based on the Cholesky and eigen factorizations are

examples of the more general notion of mutually conjugate w.r.t. A, and also establishes that

these algorithms do indeed sample from π.



Some properties

Lemma 5 The elements of any set of mutually conjugate vectors are linearly independent.

Proof. Suppose that
∑

αis
(i) = 0. Then 0 =

(∑
αis

(i)
)T

As(j) = αjdj =⇒ αj = 0.

Proposition 6 Let
{
s(i)
}

i=0,1,...,n−1
be a set of n mutually conjugate vectors w.r.t. A. A

sample from the conditional distribution

π
(
x|x ∈ span

(
s(0), s(1), . . . , s(n−1)

))
may be generated by a sequence of samples from the one-dimensional conditional distributions

in directions s(0), s(1), . . . , s(n−1).

Thus, a sample from π (x) may be generated by a sequence of exactly m independent uni-

variable samples taken from the conditional distributions in directions s(0), s(1), . . . , s(m−1)

with components in previous directions fixed.



Proof. First consider a sample from the whole space, i.e. span
(
s(0), s(1), . . . , s(m−1)

)
,

x =
m−1∑
i=0

αis
(i).

From above, x ∼ N (0,Σ) when α ∼ N
(
0, D−1

)
hence αk ∼ N (0, 1/dk) are independent

Gaussian. Now consider the conditional distribution along line s(k) when α0, α1, . . . , αk are

fixed, i.e. for

π
(
x|x ∈ α0s

(0) + α1s
(1) + · · ·αk−1s

(k−1) + span
(
s(k)
))

.

Write x = α0s
(0) + α1s

(1) + · · ·αk−1s
(k−1) + λs(k). How is λ distributed?

π (λ) ∝ exp

−1
2

(
k−1∑
i=0

αis
(i) + λs(k)

)T

A

(
k−1∑
i=0

αis
(i) + λs(k)

)
= exp

{
−1

2

(
k−1∑
i=0

α2
i di + λ2dk

)}

i.e. λ ∼ N (0, 1/dk) which is the same as the distribution of αk in a sample from π (x).



Auxiliary vector and Quadratic Form

Given x = α0s
(0)+α1s

(1)+· · ·αk−1s
(k−1) define b(k) = α0As(0)+α1As(1)+· · ·αk−1As(k−1).

Proposition 7 x(k) = α0s
(0) + α1s

(1) + · · ·αk−1s
(k−1) minimises the quadratic form

Qk (x) =
1
2
xTAx− b(k)Tx

in the subspace span
(
s(0), s(1), . . . , s(k−1)

)
.

Proof. The minimum occurs when for j = 0, 1, . . . , k − 1

0 =
∂Qk

(∑k−1
i=0 ais

(i)
)

aj

=
∂

aj

1
2

(
k−1∑
i=0

ais
(i)

)T

A

(
k−1∑
i=0

ais
(i)

)
−

(
k−1∑
i=0

αiAs(i)

)T(k−1∑
i=0

ais
(i)

)
=

∂

aj

(
1
2

k−1∑
i=0

a2
i di −

k−1∑
i=0

αiaidi

)
= ajdj − αjdj .



Generating mutually conjugate vectors

Given any set of linearly independent independent vectors
{
r(i)
}

k=0,2,...,m−1
, we can form a

mutually conjugate set
{
s(i)
}

k=0,2,...,m−1
(spanning the same space) using a modified Gram-

Schmidt process. First set s(0) = r(0) and then define

s(k) = r(k) −
k−1∑
i=0

r(k)TAs(i)

di
for k = 1, 2, . . . ,m− 1. (1)

It is easy to check that the set
{
s(i)
}

k=0,2,...,m−1
has the right properties.

This requires storage of all previous vectors to evaluate the summation. However, if the set{
r(i)
}

k=0,2,...,m−1
is chosen carefully, most of the terms in the summation evaluate to zero,

e.g.

r(k) = −∇Qk

(
x(k)

)
= b(k) −Ax(k)

= ∇ log π
(
x(k)

)
+ b(k). (2)



Naive algorithm

Algorithm 8 Set initial values for x(0) and b(0) (not both zero)

Initialize s(0) = ∇ log π
(
x(0)

)
+ b(0) = r(0) = b(0) − Ax(0). Drawing a sample from the

conditional distribution

π
(
x|x ∈ x(0) + span

(
s(0)
))

gives the next point x(1) = x(0) +
(
α0 − s(0)TAx(0)

d0

)
s(0), b(1) = b(0) +

(
α0 − s(0)TAb(0)

d0

)
As(0)

Given the current point x(k), evaluate new residual vector r(k) is using 2. The sampling

direction s(k) is calculated and 1 so as to be conjugate to all previous sampling directions.

Conditional sampling from x(k) in direction s(k) may be achieved by drawing αk ∼ N (0, 1/dk)
and setting

x(k+1) = x(k) +

(
αk −

s(k)TAx(k)

dk

)
s(k)

the auxiliary vector is updated as

b(k+1) = b(k) +

(
αk −

s(k)Tb(k)

dk

)
As(k).



Some nifty results

Lemma 9 The vector r(k) is orthogonal to the space span
(
s(0), s(1), . . . , s(k−1)

)
.

Proof. By proposition 2, x(k) is the point in the space span
(
s(0), s(1), . . . , s(k−1)

)
at which

Qk is minimised. Hence the projection of the gradient r(k) = −∇Qk

(
x(k)

)
onto the space is

zero, i.e. r(k) is orthogonal to the space.

Lemma 10 r(i)Tr(j) = 0 for all i 6= j.

Proof. By construction, span
(
s(0), s(1), . . . , s(k−1)

)
is the same space as span

(
r(0), r(1), . . . , r(k−1)

)
,

hence from last Lemma, r(k) is orthogonal to r(j) for all j < k. The result follows from sym-

metry.



The key nifty result

Proposition 11 In algorithm 1, all the terms in the summation in 1 vanish, except for i =
k − 1.

Proof. Consider the case x(0) = 0, so the update rule is x(k+1) = x(k) + αks
(k). Hence

r(i+1) = b(i+1) −Ax(i+1)

= b(i) +

(
αi −

s(i)Tb(i)

di

)
As(i) −A

(
x(i) + αis

(i)
)

= r(i) +
s(i)Tb(i)

di
As(i).

So As(i) =
(
r(i+1) − r(i)

)
di

s(i)TAb(i)
. Hence the summation is

k−1∑
i=0

r(k)TAs(i)

di
=

k−1∑
i=0

r(k)T
(
r(i+1) − r(i)

)
s(i)Tb(i)

=
r(k)Tr(k)

s(k−1)Tb(k−1)
.

Note: including full update for x(i+1) leaves As(i) a scalar multiple of r(i+1) − r(i), hence

proposition holds with modified expression for sum.



The algorithm

Algorithm 12 initialise x(0) and b(0) (not both zero)

r(0) = b(0) −Ax(0)

s(0) = r(0)

for k = 1 to m do

begin

dk−1 = s(k−1)TAs(k−1)

αk−1˜N (0, 1) /
√

dk−1

x(k) = x(k−1) +
(
αk−1 − s(k−1)TAx(k−1)

dk−1

)
s(k−1)

b(k) = b(k−1) +
(
αk−1 − s(k−1)Tb(k−1)

dk−1

)
As(k−1)

r(k) = b(k−1) −Ax(k−1)

s(k) = r(k) − r(k)Tr(k)

s(k−1)Tb(k−1)

end



A bonus!

Algorithm generates x(n)˜N
(
0, A−1

)
Lemma 13 If

{
s(i)
}

k=0,2,...,m−1
are mutually conjugate w.r.t. A (spd), then

{
q(i)
}

k=0,2,...,m−1
={

As(i)
}

k=0,2,...,m−1
are mutually conjugate w.r.t. A−1.

Proof. QTA−1Q = (AS)T A−1 (AS) = STATA−1AS = STAS = D.

It follows that b(n)˜N (0, A), i.e. with A as covariance matrix rather than precision matrix.



Generalization for non-Gaussian distributions

To sample from π(·), f = log π

Algorithm 14 initialize x0, b0 (b0 6= ∇f(x0))

Evaluate r0 = b0 −∇f(x0)

Set p0 = r0

k = 0

while ‖rk‖ 6= 0 do

sample conditional density xk+1 ∼ π(xk+1span{pk})

Evaluate ∇f(xk+1)

Set bk+1 = bk + γkpk

Set rk+1 = bk+1 −∇f(xk+1)

Set pk+1 = rk+1 + βk+1pk

k = k + 1

end (while)



Conclusions

1. There is much work still to make Bayesian inference a robust off-the-shelf solution to

inverse problems

2. Time to convergence depends on efficient simulation of the forward map, fast MCMC

algorithms, good proposal distributions

3. BMIP fit into the Physics intuition easily (and much was developed by Physicists)

4. Deterministic sampling algorithms?
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