The University of Auckland - Applied Mathematics http://www.math.auckland.ac.nz/~fox

Statistical Solutions to Inverse Problems: some examples

Colin Fox

In this talk

- Inferential formulation
- What problem are we trying to solve? (Questions and answers)
- Some inverse problems and image models
- A taste of the details

Bayesian Formulation for Inverse problems

$d=A x+n$: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$
\pi(x \mid d, m) \propto \operatorname{Pr}(d \mid x, m) \operatorname{Pr}(x \mid m)
$$

(Bayes' rule)

Bayesian Formulation for Inverse problems

$d=A x+n$: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$
\pi(x \mid d, m) \propto \operatorname{Pr}(d \mid x, m) \operatorname{Pr}(x \mid m)
$$

(Bayes' rule)
Likelihood determined by measurement and noise process

Bayesian Formulation for Inverse problems

$d=A x+n$: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$
\pi(x \mid d, m) \propto \operatorname{Pr}(d \mid x, m) \operatorname{Pr}(x \mid m)
$$

(Bayes' rule)
Likelihood determined by measurement and noise process
Prior, state space determined by modelling

Bayesian Formulation for Inverse problems

$d=A x+n$: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$
\pi(x \mid d, m) \propto \operatorname{Pr}(d \mid x, m) \operatorname{Pr}(x \mid m)
$$

(Bayes' rule)
Posterior distribution is sole basis for inference
Often

$$
\pi(x \mid d, m) \propto \exp \{-\chi(d-A(x))-\rho(x)\}
$$

Interpreting the Posterior Distribution

Unique solution

Interpreting the Posterior Distribution

Unique solution

Solution localized

Interpreting the Posterior Distribution

Unique solution

Solution localized

Solution not localized

Interpreting the Posterior Distribution

Unique solution

Solution not localized

Solution localized

Multiple solutions

Solutions = Summary Statistics

Bayes' rule produces the posterior distribution $\pi(x \mid d)$ containing all information
Traditional Solutions - modes

$$
\hat{x}_{\mathrm{MLE}}=\arg \max \operatorname{Pr}(d \mid x) \quad \hat{x}_{\mathrm{MAP}}=\arg \max \pi(x \mid d)
$$

e.g. Gaussian noise and prior: $\operatorname{Pr}(x) \propto \exp \left(-|x|^{2} / 2 \lambda^{2}\right)$

$$
\hat{x}_{\mathrm{MAP}}=\arg \min |d-A(x)|^{2}+\alpha|x|^{2} \quad \alpha=s^{2} / \lambda^{2}
$$

- Tikhonov regularization, Kalman filtering, Backus-Gilbert, $\alpha=0$ least-squares Inferential Solutions - expectations

$$
\mathrm{E}[f(x)]=\int \pi(x \mid d) f(x) d x
$$

E.g. if $\quad f(x)=$ indicator function that image shows cancer
$\mathrm{E}[f(x)]$ is posterior probability (based on measurements, prior) that patient has cancer.

What questions are we trying to answer?

- "best" image
- If I know the image is binary (black and white) how many blobs are there?
- What is the area of the blob ?
- Does the blob have an inclusion (' C ' or ' O ')
- what is the cost of getting that decision wrong?

Coloured Continuum Triangulation

$$
X=\bigcup_{i=0}^{\infty}\{[0,1] \times[0,1]\}^{i}, \text { coloured }
$$

Geoff Nicholls, Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangulation models JRSSB 60:3 643-659 (1998)

Neolithic hill fort (Maori pa)

A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density, (D1-3) samples from posterior

Electrical Impedance Tomography

For fixed current patterns $\{I\}$

$$
A: \sigma \mapsto\{U\}
$$

Simulate A by solving the BVP

$$
\begin{aligned}
\nabla \cdot \sigma \nabla u=0 & \\
\int_{e_{l}} \sigma \frac{\partial u}{\partial n} d S & =I_{l} \\
\left.\sigma \frac{\partial u}{\partial n}\right|_{\partial \Omega \backslash \cup_{l} e_{l}} & =0 \\
\left.\left(u+z_{l} \sigma \frac{\partial u}{\partial n}\right)\right|_{e_{l}} & =U_{l}
\end{aligned}
$$

Posterior density

$$
\pi(\sigma \mid V) \sim \exp \left\{-\left(\frac{1}{2}(V-U(\sigma))^{\mathrm{T}} C_{n}^{-1}(V-U(\sigma))\right)\right\} \pi_{\mathrm{pr}}(\sigma)
$$

Gaussian smoothness prior

Figure 1: Results with the Gaussian smoothness MRF-prior. Top left: Photograph of the measurement setup. Top right: Maximum a posteriori estimate $\sigma_{\text {MAP }}$ by the Gauss-Newton optimization algorithm. Bottom left and right: Posterior mean σ_{CM} and variance based on the MCMC simulation.

Kolehmainen, Fox and Nicholls, MCMC Inversion of Measured EIT Data, 200?

Material type prior - Nicholls, F 1998

Figure 3: Results with the Material type MRF-prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: One sample from the posterior.

[^0]
Uncertainty due to shielding

Nicholls, F (1998)

Circular inclusions prior

Figure 5: Results with the circle prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: Sample from the posterior.

Estimation coefficient in a PDE :: diffusion

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

[^1]
Oceanography :: abyssal advection

Oceanography :: 2 samples

Tree/Graph Model of Language Evolution

Stochastic Dollo Model

$\theta=$ branching rate, $\lambda=$ cognate birth rate, $\mu=$ per capita death rate. Exact integral over θ, λ, MCMC for μ and graphs.

Nicholls, Gray (2002)

U.N. voting patterns since 1990

thanks to David Bryant

Marked Point Process

Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn (2003)

Marked Point Process (cont)

[^2]
Details :: Markov chain Monte Carlo

- Monte Carlo integration: If $\left\{X_{t}, t=1,2, \ldots, n\right\}$ are sampled from $\pi(x)$

$$
\mathrm{E}[f(x)] \approx \frac{1}{n} \sum_{t=1}^{n} f\left(X_{t}\right)
$$

- Markov chain: Generate $\left\{X_{t}\right\}_{t=0}^{\infty}$ as a Markov chain of random variables $X_{t} \in X$, with a t-step distribution $\operatorname{Pr}\left(X_{t}=x \mid X_{0}=x^{(0)}\right)$ that tends to $\pi(x)$, as $t \rightarrow \infty$.

Metropolis-Hastings algorithm

1. given state x_{t} at time t generate candidate state x^{\prime} from a proposal distribution $q\left(. \mid x_{t}\right)$
2. With probability $\alpha\left(x_{t} \rightarrow x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right) q\left(x_{t} \mid x^{\prime}\right)}{\pi\left(x_{t}\right) q\left(x^{\prime} \mid x_{t}\right)}\right)$ set $X_{t+1}=x^{\prime}$ otherwise $X_{t+1}=x_{t}$
3. Repeat
$q\left(. \mid x_{t}\right)$ can be any distribution that ensures the chain is irreducible and aperiodic.

Conclusions

1. Inferential formulation quantifies uncertainty in unknown x
2. Bayesian methods give a machinery for combining uncertainties, forward modelling, expert knowledge, cost of decisions, etc
3. Provide posterior uncertainties for given data (cf. CRLB)
4. In principle all desired computations possible using MCMC
5. These methods solve substantial problem in tomography, image classification, economics, biology, history,
6. Lots of outstanding research issues

[^0]: Kolehmainen F Nicholls MCMC Inversion of Measured EIT Data, 200?

[^1]: PHYSICS 707 Inverse Problems, Course notes F, Nicholls Tan, The University of Auckland

[^2]: Josiane Zerubia, Xavier Descombes, C. Lacoste, M. Ortner, R. Stoica (2000, 2003)

