The University of Auckland – Applied Mathematics http://www.math.auckland.ac.nz/~fox

Statistical Solutions to Inverse Problems : some examples

fox@math.auckland.ac.nz

In this talk

- Inferential formulation
- What problem are we trying to solve? (Questions and answers)
- Some inverse problems and image models
- A taste of the details

d = Ax + n: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$\pi (x|d,m) \propto \Pr(d|x,m)\Pr(x|m)$$
 (Bayes' rule)

d = Ax + n: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$\pi(x|d,m) \propto \Pr(d|x,m)\Pr(x|m)$$
 (Bayes' rule)

Likelihood determined by measurement and noise process

d = Ax + n: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$\pi(x|d,m) \propto \Pr(d|x,m)\Pr(x|m)$$
 (Bayes' rule)

Likelihood determined by measurement and noise process

Prior, state space determined by modelling

d = Ax + n: data d, image x, measurement noise n, forward map A

Posterior distribution for x conditional on d

$$\pi (x|d,m) \propto \Pr(d|x,m)\Pr(x|m)$$
 (Bayes' rule)

Posterior distribution is sole basis for inference

()

ften
$$\pi(x|d,m) \propto \exp\left\{-\chi\left(d-A(x)\right) - \rho\left(x\right)\right\}$$

Unique solution

Solution localized

Solution localized

Solution not localized

Multiple solutions

Solution not localized

Solutions = Summary Statistics

Bayes' rule produces the posterior distribution $\pi(x|d)$ containing all information **Traditional Solutions - modes**

 $\hat{x}_{\mathsf{MLE}} = \arg \max \Pr(d|x) \qquad \hat{x}_{\mathsf{MAP}} = \arg \max \pi(x|d)$

e.g. Gaussian noise and prior: $\Pr(x) \propto \exp\left(-|x|^2/2\lambda^2\right)$

$$\hat{x}_{MAP} = \arg\min|d - A(x)|^2 + \alpha |x|^2 \qquad \alpha = s^2/\lambda^2$$

 $\bullet\,$ Tikhonov regularization, Kalman filtering, Backus-Gilbert, $\alpha=0$ least-squares

Inferential Solutions - expectations

$$\mathsf{E}\left[f\left(x\right)\right] = \int \pi\left(x|d\right) f\left(x\right) \, dx$$

E.g. if f(x) =indicator function that image shows cancer E[f(x)] is posterior probability (based on measurements, prior) that patient has cancer.

What questions are we trying to answer?

- "best" image
- If I know the image is binary (black and white) how many blobs are there?
- What is the area of the blob ?
- Does the blob have an inclusion ('C' or 'O')
- what is the cost of getting that decision wrong?

PHYSICS 707 Inverse Problems, Course notes F, Nicholls Tan, The University of Auckland

Coloured Continuum Triangulation

$$X = igcup_{i=0}^\infty \left\{ [0,1] imes [0,1]
ight\}^i$$
 , coloured

Geoff Nicholls, Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangulation models JRSSB **60**:3 643-659 (1998)

Neolithic hill fort (Maori pa)

A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density, (D1-3) samples from posterior

Electrical Impedance Tomography

For fixed current patterns $\{I\}$

$$A: \sigma \mapsto \{U\}$$

Simulate A by solving the BVP

$$\nabla \cdot \sigma \nabla u = 0$$
$$\int_{e_l} \sigma \frac{\partial u}{\partial n} dS = I_l$$
$$\sigma \frac{\partial u}{\partial n} \Big|_{\partial \Omega \setminus \bigcup_l e_l} = 0$$
$$\left(u + z_l \sigma \frac{\partial u}{\partial n} \right) \Big|_{e_l} = U_l$$

Posterior density

$$\pi(\sigma \mid V) \sim \exp\left\{-\left(\frac{1}{2}(V - U(\sigma))^{\mathrm{T}}C_{n}^{-1}(V - U(\sigma))\right)\right\}\pi_{\mathrm{pr}}(\sigma)$$

Gaussian smoothness prior

Figure 1: Results with the Gaussian smoothness MRF-prior. Top left: Photograph of the measurement setup. Top right: Maximum a posteriori estimate σ_{MAP} by the Gauss-Newton optimization algorithm. Bottom left and right: Posterior mean σ_{CM} and variance based on the MCMC simulation.

Kolehmainen, Fox and Nicholls, MCMC Inversion of Measured EIT Data, 200?

Material type prior – Nicholls, F 1998

Figure 3: Results with the Material type MRF-prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: One sample from the posterior.

Kolehmainen F Nicholls MCMC Inversion of Measured EIT Data, 200?

Uncertainty due to shielding

Nicholls, F (1998)

Circular inclusions prior

Figure 5: Results with the circle prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: Sample from the posterior.

Kolehmainen F Nicholls MCMC Inversion of Measured EIT Data, 200?

Estimation coefficient in a PDE :: diffusion

PHYSICS 707 Inverse Problems, Course notes F, Nicholls Tan, The University of Auckland

Oceanography :: abyssal advection

Oceanography :: 2 samples

McKeague Nicholls Speer Herbei, Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer, *Journal of Marine Research* 2005

Tree/Graph Model of Language Evolution

Bryant, Gray (2006)

Stochastic Dollo Model

 θ =branching rate, λ =cognate birth rate, μ =per capita death rate. Exact integral over θ , λ , MCMC for μ and graphs.

Nicholls, Gray (2002)

thanks to David Bryant

Marked Point Process

Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn (2003)

Marked Point Process (cont)

Josiane Zerubia, Xavier Descombes, C. Lacoste, M. Ortner, R. Stoica (2000, 2003)

Details :: Markov chain Monte Carlo

• Monte Carlo integration: If $\{X_t, t = 1, 2, ..., n\}$ are sampled from $\pi(x)$

$$\mathsf{E}\left[f\left(x\right)\right] \approx \frac{1}{n} \sum_{t=1}^{n} f\left(X_{t}\right)$$

Markov chain: Generate {X_t}[∞]_{t=0} as a Markov chain of random variables X_t ∈ X, with a t-step distribution Pr(X_t = x|X₀ = x⁽⁰⁾) that tends to π(x), as t → ∞.

Metropolis-Hastings algorithm

- 1. given state x_t at time t generate candidate state x' from a proposal distribution $q(.|x_t)$
- 2. With probability $\alpha (x_t \to x') = \min \left(1, \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)} \right)$ set $X_{t+1} = x'$ otherwise $X_{t+1} = x_t$
- 3. Repeat

 $q(.|x_t)$ can be any distribution that ensures the chain is irreducible and aperiodic.

Conclusions

- 1. Inferential formulation quantifies uncertainty in unknown x
- 2. Bayesian methods give a machinery for combining uncertainties, forward modelling, expert knowledge, cost of decisions, etc
- 3. Provide posterior uncertainties for given data (cf. CRLB)
- 4. In principle all desired computations possible using MCMC
- 5. These methods solve substantial problem in tomography, image classification, economics, biology, history,
- 6. Lots of outstanding research issues