Auckland University - Department of Mathematics

http://www.math.auckland.ac.nz/~fox

Prior Modeling and Posterior Sampling in Conductivity Imaging

Colin Fox (and thanks to Geoff Nicholls)
fox@math.auckland.ac.nz

Overview

- Conductivity Imaging
- Statistical model for inverse problems
- Markov chain Monte Carlo
- Conductivity Imaging using various prior models
- Mid- and high-level models

Conductivity Imaging Measurements

- Electrodes at $x_{1}, x_{2}, \cdots, x_{E}$
- Assert currents at electrodes $j=\left(j\left(x_{1}\right), j\left(x_{2}\right), \cdots, j\left(x_{E}\right)\right)^{T}$
- Measure voltages $v=\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{E}\right)\right)^{T}$.

Unknown $\sigma(x)$ related to measurements via Neumann BVP

$$
\begin{aligned}
\nabla \cdot \sigma(x) \nabla \phi(x) & =0 & & x \in \Omega \\
\sigma(x) \frac{\partial \phi(x)}{\partial n(x)} & =j(x) & & x \in \partial \Omega
\end{aligned}
$$

- Set of measurements is current-voltage pairs

$$
\left\{j^{n}, v^{n}\right\}_{n=1}^{N}
$$

Inverse problem is to find σ from these measurements (non linear)

Green's Functions

Unknown image $\sigma(x)$ related to measurements via Neuman BVP:

$$
\begin{aligned}
\nabla \cdot \sigma(x) \nabla \phi(x) & =s(x) & & x \in \Omega \\
\sigma(x) \frac{\partial \phi(x)}{\partial n(x)} & =j(x) & & x \in \partial \Omega
\end{aligned}
$$

plus potential reference
If σ is compiled into a certain matrix, measurements correspond to certain elements of the inverse.

Neuman Green's function $g(x \mid \xi)$:

$$
\begin{aligned}
\nabla \cdot \sigma(x) \nabla g(x \mid \xi) & =\delta(x-\xi) & & \forall x \in \Omega \\
\sigma(x) \frac{\partial g(x \mid \xi)}{\partial n(x)} & =\frac{1}{\partial \Omega \mid} & & \forall x \in \partial \Omega \\
\int_{\partial \Omega} g(x \mid \xi) d l(x) & =0 & & \\
g(x \mid \xi) & =g(\xi \mid x) . & &
\end{aligned}
$$

Solutions to BVP:

$$
\phi(x)=\int_{\Omega} g(x \mid \xi) s(\xi) d \xi+\int_{\partial \Omega} g(x \mid \xi) j(\xi) d l(\xi)
$$

- $\Gamma_{\sigma}: j \rightarrow \phi$ (Neumann to Dirichlet map) is linear.
- $\sigma \rightarrow \Gamma_{\sigma}$ is not linear.
- Inverse problem: Measure Γ_{σ}, want σ.

Properties of the Inverse Problem

- $\sigma \mapsto \Gamma_{\sigma}$ is invertible for $\sigma \in C^{\infty}\left(\Omega \subset \mathbb{R}^{2}\right)$

$$
0<\sigma_{\min } \leq \sigma \leq \sigma_{\max }<\infty
$$

- Fréchet derivative $\frac{\partial \Gamma_{\sigma}}{\partial \sigma}$ has singular-values that decrease \sim geometrically

$$
\hat{\sigma}_{i}=\frac{\sigma_{i} s_{i}+n_{i}}{s_{i}}=\sigma_{i}+\frac{n_{i}}{s_{i}}
$$

roughly, data measured when $\frac{s_{\text {max }}}{s_{i}} \leq$ SNR

- Inverse discontinuous
- Measurements cannot define image uniquely

Statistical Model for Imaging

If $n \sim f_{N}(n)$ then $d \sim f_{D \mid \Sigma}(d \mid \sigma)=f_{N}(d-P K \sigma)$
Given measurements v, the likelihood for σ is

$$
L_{d}(\sigma) \equiv \operatorname{Pr}(d \mid \sigma)=f_{N}(d-P K \sigma)
$$

Posterior distribution for σ conditional on v

$$
\operatorname{Pr}(\sigma \mid d)=\frac{f_{D \mid \Sigma}(d \mid \sigma) \operatorname{Pr}(\sigma)}{\sum_{\sigma \in \Sigma_{\Omega}} f_{D \mid \Sigma}(d \mid \sigma)}
$$

(Bayes rule)

In subjectivist formulation, prior and posterior distributions for σ are quantified representations of our state of knowledge

Summary Statistics

All information contained in posterior distribution $\operatorname{Pr}(\sigma \mid v)$
"Answers" are expectations over the posterior

$$
\mathrm{E}[f(\sigma)]=\int \operatorname{Pr}(\sigma \mid v) f(\sigma) d \sigma
$$

Decision based on utility function

Image is an intermediate step

Nuisance parameters

Data depends on image σ and parameters θ

$$
\operatorname{Pr}(\sigma \mid v)=\int_{\Theta} \operatorname{Pr}(\sigma, \theta \mid v) d \theta
$$

e.g. true currents or voltages

Monte Carlo Integration

$$
I=\mathrm{E}[f(\sigma)]=\int_{\Sigma} \pi(\sigma) f(\sigma) d \sigma
$$

Simple case

Draw $\sigma^{(1)}, \ldots, \sigma^{(m)}$ uniformly on Σ

$$
\hat{I}=\frac{1}{m}\left\{f\left(\sigma^{(1)}\right)+\cdots+f\left(\sigma^{(m)}\right)\right\}
$$

$\hat{I}=I+O\left(m^{-1 / 2}\right)$
c.f. $\left\{\sigma^{(i)}\right\}$ regular grid on $\Sigma, \hat{I}=I+O\left(m^{-1}\right)$

Importance sampling

- $\sigma^{(1)}, \ldots, \sigma^{(m)}$ drawn from $g(\cdot)$
- Importance weight $w^{(i)}=\pi\left(\sigma^{(i)}\right) / g\left(\sigma^{(i)}\right)$

$$
\hat{I}=\frac{\left\{w^{(1)} f\left(\sigma^{(1)}\right)+\cdots+w^{(m)} f\left(\sigma^{(m)}\right)\right\}}{\left\{w^{(1)}+\cdots+w^{(m)}\right\}}
$$

c.f. unbiased estimate $\hat{I}=\frac{1}{m} \sum_{i} w^{(i)} f\left(\sigma^{(i)}\right)$

Only need $\pi(\cdot) / g(\cdot)$ up to multiplicative constant
Choose $g(\cdot)$ close to shape of $\pi(\cdot) / f(\cdot)$

Bayesian Formulation for Conductiv-

ity Imaging

	current in Ω	potential in Ω	voltage electrode	current electrode	conductivity
r.v.	R	Φ	V	J	Σ
value	ρ	ϕ	v	j	σ

Joint Posterior

$$
\begin{aligned}
& \operatorname{Pr}\left\{\sigma, \phi^{n}, \rho^{n} \mid\left\{j^{n}, v^{n}\right\}\right\} \\
& =\operatorname{Pr}\left\{\left\{j^{n}, v^{n}\right\} \mid \sigma, \phi^{n}, \rho^{n}\right\} \times \operatorname{Pr}\left\{\sigma, \phi^{n}, \rho^{n}\right\} \\
& \phi=\Gamma_{\sigma}\left(\left.\rho\right|_{\partial \Omega}\right) \text { and } \rho=-\sigma \nabla \phi \\
& \operatorname{Pr}\left\{\sigma, \phi^{n}, \rho^{n}\right\}=\operatorname{Pr}\left\{\sigma, \rho^{n}\right\}
\end{aligned}
$$

Stipulate $\operatorname{Pr}\{\sigma\}$ only in examples - usually a MRF

$$
\begin{aligned}
L\left(\sigma, \phi^{n}, \rho^{n}\right) & =\operatorname{Pr}\left\{\left\{j^{n}, v^{n}\right\} \mid \sigma, \phi^{n}, \rho^{n}\right\} \\
& =\operatorname{Pr}\left\{\left\{v^{n}\right\} \mid \phi^{n}\left(\sigma, \rho^{n}\right)\right\} \times \operatorname{Pr}\left\{\left\{j^{n}\right\} \mid \rho^{n}\right\}
\end{aligned}
$$

Errors i.i.d.

$$
L\left(\sigma, \phi^{n}, \rho^{n}\right)=\Pi_{n=1}^{N} \operatorname{Pr}\left\{v^{n} \mid \Gamma_{\sigma}\left(\left.\rho^{n}\right|_{\partial \Omega}\right)\right\} \times \operatorname{Pr}\left\{j^{n} \mid \rho^{n}\right\} .
$$

Markov chain Monte Carlo

- Monte Carlo integration

$$
\begin{aligned}
& \text { If }\left\{X_{t}, t=1,2, \ldots, n\right\} \text { are sampled from } \operatorname{Pr}(\sigma \mid v) \\
& \qquad \mathrm{E}[f(\sigma)] \approx \frac{1}{n} \sum_{t=1}^{n} f\left(X_{t}\right)
\end{aligned}
$$

- Markov chain

Generate $\left\{X_{t}\right\}_{t=0}^{\infty}$ as a Markov chain of random variables X_{t} $\in \Sigma_{\Omega}$, with a t-step distribution $\operatorname{Pr}\left(X_{t}=\sigma \mid X_{0}=\sigma^{(0)}\right)$ that tends to $\operatorname{Pr}(\sigma \mid v)$, as $t \rightarrow \infty$.

Metopolis-Hastings algorithm

1. given state σ_{t} at time t generate candidate state σ^{\prime} from a proposal distribution $q\left(. \mid \sigma_{t}\right)$
2. Accept candidate with probability

$$
\alpha(X \mid Y)=\min \left(1, \frac{\operatorname{Pr}(Y \mid v) q(X \mid Y)}{\operatorname{Pr}(X \mid v) q(Y \mid X)}\right)
$$

3. If accepted, $X_{t+1}=\sigma^{\prime}$ otherwise $X_{t+1}=\sigma_{t}$
4. Repeat
$q\left(. \mid \sigma_{t}\right)$ can be any distribution that ensures the chain is:

- irreducible
- aperiodic

Three-Move Metropolis Hastings

Choose one of 3 moves with probability $\zeta_{p}, p=1,2,3$
Transition probabilities $\operatorname{Pr}^{(p)}$ reversible w.r.t. $\operatorname{Pr}(\sigma \mid v)$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t+1}\right. & \left.=\sigma_{t+1} \mid X_{t}=\sigma_{t}\right) \\
& =\sum_{p=1}^{3} \zeta_{p} \operatorname{Pr}^{(p)}\left(X_{t+1}=\sigma_{t+1} \mid X_{t}=\sigma_{t}\right) .
\end{aligned}
$$

If at least one of the moves is irreducible on Σ_{Ω}, then the equilibrium distribution is $\operatorname{Pr}(\sigma \mid v)$.

A pixel n is a near-neighbour of pixel m if their lattice distance is less than $\sqrt{8}$.

An update-edge is a pair of near-neighbouring pixels of unequal conductivity. $\left(\mathcal{N}^{*}(\sigma), \mathcal{N}_{m}^{*}(\sigma)\right)$

Move 1 Flip a pixel. Select a pixel m at random and assign σ_{m} a new conductivity σ_{m}^{\prime} chosen uniformly at random from the other $\mathcal{C}-1$ conductivity values.

Move 2 Flip a pixel near a conductivity boundary. Pick an update-edge at random from $\mathcal{N}^{*}(\sigma)$. Pick one of the two pixels in that edge at random, pixel m say. Proceed as in Move 1.

Move 3 Swap conductivities at a pair of pixels. Pick an updateedge at random from $\mathcal{N}^{*}(\sigma)$. Set $\sigma_{m}^{\prime}=\sigma_{n}$ and $\sigma_{n}^{\prime}=\sigma_{m}$.

Experiment 1

(discrete variables - three conductivity levels)

Experiment 2

(continuous variables - three conductivity types)

Experiment 3

(shielding)

Accurate FEM Model

sample 4650

Mid-level Model (triangles)

High-level Model (templates)

Ngood = 23, Nbad $=39$

Summary

- If you can simulate the forward map then you can sample and calculate expectations over the posterior, i.e., 'solve' the inverse problem
- Statistical inference provides a unifying framework for inverse problems
- Image "analysis" can be part of the "reconstruction"

References

[1] Colin Fox and Geoff Nicholls Statistical Estimation of the Parameters of a PDE, Canadian Applied Mathematics Quarterly, 2002.
[2] G. K. Nicholls, "Bayesian image analysis with Markov chain Monte Carlo and coloured continuum triangulation mosaics," Journal of the Royal Statistical Society B 60, pp. 643-659, 1998.
[3] A.J. Baddeley and M.N.M van Lieshout. Stochastic geometry models in high level vision. In KV Mardia and GK Kanji, editors, Statistics and Images, Vol 1, volume 20 of J. Applied Statistics, pages 231-256. 1993.
[4] G. K. Nicholls and C. Fox, "Prior Modelling and Posterior sampling in Impedance Imaging," In A. Mohammad-Djafari editor, Bayesian Inference for Inverse Problems, SPIE conference proceedings volume 3459, pp 116-127, 1998.

