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Outline

• Why worry about the Jacobian and its transpose?

• Simplest example – symmetric matrix equation

• The real deal – FEM discretization of complete electrode model



Jacobian and Jacobian Transpose

d = Ax: data d, image x, forward mapA

image space
data space

x
d
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map

A

derivatives, gradients map as

∆d = J∆x and ∇x = JT∇d

where the Jacobian is

Jij(x) =
∂Ai

∂xj
(x)
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Least Squares

x̂ = arg min
x
‖dm −A (x)‖2

2

gradient-based optimization algorithms (quasi-Newton, conjugate gradients) use

∇x ‖dm −A (x)‖2
2 = 2JT (dm −A (x))

Linearization

A (x + ∆x) = A (x) + J∆x + O
(
‖x‖2

)

Gauss-Newton approximation

∇∇‖dm −A (x)‖2
2 ≈ 2JTJ



Speeding-Up MCMC Sampling from f (·)
1. At x(t) generate proposal y from q(· | x(t))

2. Let

g(x, y) = min
{

1,
q(x | y)
q(y | x)

f∗
x(y)

f∗
x(x)

}
W.p. g(x(t), y), “promote” y. New proposal distribution is

q∗(y | x) = g(x, y)q(y | x) + (1− r(x))δx(y)

3. Let

ρ(x, y) = min
{

1,
q∗(x | y)
q∗(y | x)

f(y)
f(x)

}
W.p. ρ(x(t), y) accept y setting x(t+1) = y, otherwise x(t+1) = x(t)

e.g.

f∗
x(x + ∆x|d) ∝ exp {−χ (d− (A(x) + J∆x))− ρ (x)}

J. Andrés Christen and Colin Fox, MCMC using an Approximation, Journal of Computational and

Graphical Statistics, 2005/6
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Simplest case: Matrix equation

Consider the inverse problem where simulation of measurements requires solving the matrix

equation

Yσv = i

i is fixed, v is measured (data)

Yσ is a symmetric nonsingular (positive definite) linear N ×N matrix function of σ ∈ RM

Initially think of i as a single vector

Typically measurements are of vj : j ∈ E = 1, 2, . . . , |E| ≤ N for a set of fixed i : ij , j ∈ E

are determined, with other components being zero.

Defines forward map

A : σ 7→
(
Y −1

σ

)
E,E

Inverse problem is to find σ from noisy measurement of
(
Y −1

σ

)
E,E

What is the Jacobian?



Change in v due to change in Y , σ

(Yσ + dYσ) (v + dv) = i ⇒ Yσdv = −dYσ (v + dv)

To first order
dv

dσj
= −Y −1

σ

dYσ

dσj
v

Chain rule gives a general change

dv = Jdσ = −
∑

j

Y −1
σ

dYσ

dσj
vdσj

= −Y −1
σ

∑
j

dYσ

dσj
dσj

 v

= −Y −1
σ Ydσv

A minimum simulation of all measurements generates G =
(
Y −1

σ

)
:,E

. Since
(
Y −1

σ

)
E,:

= GT

Jdσ = d
(
Y −1

σ

)
E,E

= −GTYdσG



Cheap calculation for sparse Ydσ

For ‘local’ changes, dσ, when local stiffness matrix is small, Ydσ is sparse

e.g. (Yσ)lm =


−σlm l 6= m
N∑

k=1

σlk l = m

For single site change ∆σlm

Ydσ = ∆σlm



...
...

· · · 1 · · · −1 · · ·
...

...

· · · −1 · · · 1 · · ·
...

...


= (el − em)(el − em)T

Jdσ = −∆σlm (Gl,E −Gm,E)T (Gl,E −Gm,E)

Fox and Nicholls, Sampling Conductivity Images via MCMC, 1997



Fast Jacobian using low rank of Yσj

When Ydσj
is positive semi-definite with rank p ≈ 1

( e.g. resistor network p = 1, FEM with triangulation for EIT p = 2)

Yej = wj1w
T
j1 + · · ·+ wjpw

T
jp

Yσ =
∑

j

σj

p∑
l=1

wjlw
T
jl

Let Wl =


...

...
...

w1l w2l · · · wNl

...
...

...

 for l = 1, . . . , p

Jdσ = −GTYdσG = −
p∑

l=1

GTWlσWT
l G

Kolehmainen, Fox and Nicholls, MCMC Inversion of Measured EIT Data, 200?



Fast Transpose of Jacobian

J : σ 7→ v where σ is N × 1 and v is |E| × |E|

Calculation of

JT : v 7→ σ

is similar

JTv =
∑
ij

∂vij

∂σ
vij

= −
p∑

l=1

(
GTWl

)T
v

(
GTWl

)



Complete Electrode Model for EIT

For fixed current patterns {I}
A : σ 7→ {U}

Simulate A by solving the BVP

∇ · σ∇u = 0∫
el

σ
∂u

∂n
dS = Il

σ
∂u

∂n

∣∣∣∣
∂Ω\

⋃
l el

= 0(
u + zlσ

∂u

∂n

)∣∣∣∣
el

= Ul

Likelihood

L (σ|V ) ∝ exp
{
− 1

2ε2
‖V −A (σ)‖2

F

}



(Kuopio) FEM Discretization

u =
Nn∑
i=1

αiϕi U =
|E|−1∑
j=1

βjnj

nj is jth column of D, the |E| − 1 dim basis of current patterns. Weak form of BVP is

Mb = f

where

b =

 α

β

 f =

 0

DT I

 A =

 B C

CT G


and

Bi,j =
∫

Ω
σ∇ϕi · ∇ϕjdr +

|E|∑
l=1

1
zl

∫
el

ϕiϕjdS 1 ≤ i, j ≤ Nn

C and G due to electrode BC. Then U = Dβ.

Assemble FEM matrix system, solve |E| times.



Implementing ‘Matrix’ Scheme

Symmetrize calculation by picking a suitable set of |E| currents that span space and solve for

Green’s functions, e.g.

K = 1− 1
|E|

G = M−1f =

 0

K


Measurements patterns MT = KM1, so

(
A−1MT

)T = MT
1 G, and f = Kf1 so b = Gf1

Jσl = −
(
A−1IT

)T ∂A

∂σl
b = −IT

1 GT ∂A

∂σl
Gf1

turns out that in Kuopio FEM K = I, MT = −K

Jσ =
p∑

l=1

(
GTWl

)
σ

(
GTWl

)T

JTv =
p∑

l=1

(
GTWl

)T
v

(
GTWl

)



Summary

• Operating by Jacobian and transpose is (∼ 10×) faster than forming Jacobian with matrix

multiplication

• Useful in implementing Langevin diffusion, gradient ascent, linearization, etc

• Scheme works for EIT, narrow-band acoustic backscatter, etc
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