Polynomial accelerated MCMC ... and other sampling algorithms inspired by computational optimization

Fore-words

- Motivation: an inverse oceanography problem
- Cartoon of polynomial acceleration of MCMC
- Equivalence of Gibbs & linear solvers
- Polynomial acceleration of Gibbs sampling
- Some other sampling algorithms from CSE

Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer abyssal advection

McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer

MH-MCMC repeatedly simulates fixed transition kernel ${\mathcal P}$ with

 $\pi \mathcal{P} = \pi$

via detailed balance (self-adjoint in metric π) *n*-step distribution: $\pi^{(n)} = \pi^{(n-1)}\mathcal{P} = \pi^{(0)}\mathcal{P}^n$ *n*-step distribution error: $\pi^{(n)} - \pi = (\pi^{(0)} - \pi)\mathcal{P}^n$

MH-MCMC repeatedly simulates fixed transition kernel ${\mathcal P}$ with

$$\pi \mathcal{P} = \pi$$

via detailed balance (self-adjoint in metric π)

n-step distribution: $\pi^{(n)} = \pi^{(n-1)} \mathcal{P} = \pi^{(0)} \mathcal{P}^n$

n-step distribution error: $\pi^{(n)} - \pi = (\pi^{(0)} - \pi) \mathcal{P}^n$

Initial error is multiplied by n-th order polynomial P_n of (I - P) called the the error polynomial

MH-MCMC repeatedly simulates fixed transition kernel ${\cal P}$ with

$$\pi \mathcal{P} = \pi$$

via detailed balance (self-adjoint in metric π) n-step distribution: $\pi^{(n)} = \pi^{(n-1)}\mathcal{P} = \pi^{(0)}\mathcal{P}^n$ n-step distribution error: $\pi^{(n)} - \pi = (\pi^{(0)} - \pi)\mathcal{P}^n$

error polynomial: $P_n(I - \mathcal{P}) = \mathcal{P}^n = (I - (I - \mathcal{P}))^n$ or $P_n(\lambda) = (1 - \lambda)^n$ Hence convergence is geometric for this iteration

MH-MCMC repeatedly simulates fixed transition kernel ${\cal P}$ with

$$\pi \mathcal{P} = \pi$$

via detailed balance (self-adjoint in metric π) *n*-step distribution: $\pi^{(n)} = \pi^{(n-1)}\mathcal{P} = \pi^{(0)}\mathcal{P}^n$ *n*-step distribution error: $\pi^{(n)} - \pi = (\pi^{(0)} - \pi)\mathcal{P}^n$

error polynomial: $P_n(I - \mathcal{P}) = \mathcal{P}^n = (I - (I - \mathcal{P}))^n$ or $P_n(\lambda) = (1 - \lambda)^n$ Hence convergence is geometric for this iteration

Polynomial acceleration: modify iteration to give better error polynomial e.g.

(choose
$$x^{(i)}$$
 w.p. α_i) $\sim \pi^{(0)} \sum_{i=1}^n \alpha_i \mathcal{P}^i$ error poly: $Q_n = \sum_{i=1}^n \alpha_i (1-\lambda)^i$

We choose α_i so can choose Q_n

Can build a *perfect* sampler when π over finite state space, or Gaussian(!)

Gibbs sampling from normal distributions

Gibbs sampling^a repeatedly samples from (block) conditional distributions

Normal distributions

$$\pi \left(\mathbf{x} \right) = \sqrt{\frac{\det \left(\mathbf{A} \right)}{2\pi^{n}}} \exp \left\{ -\frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} \right\}$$

precision matrix \mathbf{A} , covariance matrix $\Sigma = \mathbf{A}^{-1}$ (both SPD) Mean $\bar{\mathbf{x}}$ satisfies

 $A\bar{\mathbf{x}} = \mathbf{b}$

Particularly interested in case where A is sparse (GMRF) and n large When is $\pi^{(0)}$ is also normal, then so is the n-step distribution

$$\mathbf{A}^{(n)} \to \mathbf{A} \qquad \Sigma^{(n)} \to \Sigma$$

In what sense is "stochastic relaxation" related to "relaxation"? What decomposition of A is this performing?

^aGlauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984

Gibbs samplers and equivalent linear solvers

Optimization ...

Sampling ...

Parker F SISC 2012

Matrix splitting form of stationary iterative methods

Want to solve

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

The *splitting* A = M - N converts Ax = b to Mx = Nx + bIf M is nonsingular

 $\mathbf{x} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b}$

Iterative methods compute successively better approximations by

$$egin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b} \ &= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{g} \end{aligned}$$

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Matrix formulation of Gibbs sampling from $N(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \operatorname{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A} , $\mathbf{z}^{(k-1)} \sim \operatorname{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

 $\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

Matrix formulation of Gibbs sampling from $N(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \operatorname{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A} , $\mathbf{z}^{(k-1)} \sim \operatorname{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

 $\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Goodman & Sokal 1989; Amit & Grenander 1991

Gibbs converges \iff **solver converges**

Theorem 1 Let A = M - N, M invertible. The stationary linear solver

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$
$$= \mathbf{G}\mathbf{x}^{(k)} + \mathbf{M}^{-1}\mathbf{b}$$

converges, if and only if the random iteration

$$\mathbf{y}^{(k+1)} = \mathbf{M}^{-1}\mathbf{N}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$
$$= \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\mathbf{c}^{(k)}$$

converges in distribution. Here $\mathbf{c}^{(k)} \stackrel{iid}{\sim} \pi_n$ has zero mean and finite variance

Proof. Both converge iff $\rho(\mathbf{G}) < 1$

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor $\rho(\mathbf{G})$, covariance with $\rho(\mathbf{G})^2$

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001 F Parker 2012

Average contractive terated random functions

Diaconis Freedman SIAM Review 1999, Stenflo JDEA ≥ 2012

Some not so common Gibbs samplers for $N(0, \mathbf{A}^{-1})$

splitting/sampler	Μ	$\mathbf{Var}\left(\mathbf{c}^{\left(k ight)} ight)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega}\mathbf{I}$	$\frac{2}{\omega}\mathbf{I}-\mathbf{A}$	$0 < \omega < \frac{2}{\varrho(\mathbf{A})}$
Jacobi	D	$2\mathbf{D} - \mathbf{A}$	A SDD
GS/Gibbs	$\mathbf{D} + \mathbf{L}$	D	always
SOR/B&F	$rac{1}{\omega}\mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega}\mathbf{D}$	$0 < \omega < 2$
SSOR/REGS	$\frac{\omega}{2-\omega}\mathbf{M}_{SOR}\mathbf{D}^{-1}\mathbf{M}_{SOR}^{T}$	$rac{\omega}{2-\omega} \left(\mathbf{M}_{SOR} \mathbf{D}^{-1} \mathbf{M}_{SOR}^T ight)$	$0 < \omega < 2$
		$+\mathbf{N}_{SOR}^T\mathbf{D}^{-1}\mathbf{N}_{SOR}ig)$	

Good choice has: convenient to solve Mu = r and sample from $N(0, M^T + N)$

Relaxation parameter ω can accelerate Gibbs

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997

Some not so common Gibbs samplers for $N(0, \mathbf{A}^{-1})$

splitting/sampler	Μ	$\mathbf{Var}\left(\mathbf{c}^{(k)} ight) = \mathbf{M}^T + \mathbf{N}$	converge if
Richardson	$\frac{1}{\omega}\mathbf{I}$	$\frac{2}{\omega}\mathbf{I}-\mathbf{A}$	$0 < \omega < \frac{2}{\varrho(\mathbf{A})}$
Jacobi	D	$2\mathbf{D} - \mathbf{A}$	A SDD
GS/Gibbs	$\mathbf{D} + \mathbf{L}$	D	always
SOR/B&F	$rac{1}{\omega}\mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega}\mathbf{D}$	$0 < \omega < 2$
SSOR/REGS	$\frac{\omega}{2-\omega}\mathbf{M}_{SOR}\mathbf{D}^{-1}\mathbf{M}_{SOR}^{T}$	$rac{\omega}{2-\omega} \left(\mathbf{M}_{SOR} \mathbf{D}^{-1} \mathbf{M}_{SOR}^T ight)$	$0 < \omega < 2$
		$+\mathbf{N}_{SOR}^T\mathbf{D}^{-1}\mathbf{N}_{SOR}ig)$	

Good choice has: convenient to solve Mu = r and sample from $N(0, M^T + N)$

Relaxation parameter ω can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997

A closer look at convergence

To sample from $N(\mu, A^{-1})$ where $A\mu = b$ Split A = M - N, M invertible. $G = M^{-1}N$, and $c^{(k)} \stackrel{\text{iid}}{\sim} N(0, M^T + N)$ The iteration

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\left((\mathbf{c}^{(k)} + \mathbf{b}\right)$$

implies

$$\mathrm{E}\left(\mathbf{y}^{(n)}\right) - \mu = \mathbf{G}^{n}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right) - \mu\right]$$

and

$$\operatorname{Var}\left(\mathbf{y}^{(n)}\right) - \mathbf{A}^{-1} = \mathbf{G}^{n}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right) - \mathbf{A}^{-1}\right]\mathbf{G}^{n}$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^2$)

Errors go down as the polynomial

$$P_n(\lambda) = (1 - \lambda)^n$$

A closer look at convergence

To sample from $N(\mu, A^{-1})$ where $A\mu = b$ Split A = M - N, M invertible. $G = M^{-1}N$, and $c^{(k)} \stackrel{\text{iid}}{\sim} N(0, M^T + N)$ The iteration

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{M}^{-1}\left((\mathbf{c}^{(k)} + \mathbf{b}\right)$$

implies

$$\mathrm{E}\left(\mathbf{y}^{(n)}\right) - \mu = \mathbf{G}^{n}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right) - \mu\right]$$

and

$$\operatorname{Var}\left(\mathbf{y}^{(n)}\right) - \mathbf{A}^{-1} = \mathbf{G}^{n}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right) - \mathbf{A}^{-1}\right]\mathbf{G}^{n}$$

(Hence asymptotic average convergence factors $\rho(\mathbf{G})$ and $\rho(\mathbf{G})^2$)

Errors go down as the polynomial

$$P_n(\lambda) = (1 - \lambda)^n$$

solver and sampler have exactly the same error polynomial

Controlling the error polynomial

The splitting

$$\mathbf{A} = \frac{1}{\tau}\mathbf{M} + \left(1 - \frac{1}{\tau}\right)\mathbf{M} - \mathbf{N}$$

gives the iteration operator

$$\mathbf{G}_{\tau} = \left(\mathbf{I} - \tau \mathbf{M}^{-1} \mathbf{A}\right)$$

and error polynomial $Q_n(\lambda) = (1 - \tau \lambda)^n$

The sequence of parameters $\tau_1, \tau_2, \ldots, \tau_n$ gives the error polynomial

$$Q_n(\lambda) = \prod_{l=1}^m \left(1 - \tau_l \lambda\right)$$

... so we can choose the zeros of Q_n

This gives a non-stationary solver \equiv non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012

The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose

$$\frac{1}{\tau_l} = \frac{\lambda_n + \lambda_1}{2} + \frac{\lambda_n - \lambda_1}{2} \cos\left(\pi \frac{2l+1}{2p}\right) \quad l = 0, 1, 2, \dots, p-1$$

where $\lambda_1 \lambda_n$ are extreme eigenvalues of $\mathbf{M}^{-1}\mathbf{A}$

Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

$$\mathbf{y}^{(k+1)} = (1 - \alpha_k)\mathbf{y}^{(k-1)} + \alpha_k \mathbf{y}^{(k)} + \alpha_k \tau_k \mathbf{M}^{-1} (\mathbf{c}^{(k)} - \mathbf{A}\mathbf{y}^{(k)})$$

with α_k and τ_k chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2^{nd} -order solver converges $\Rightarrow 2^{nd}$ -order sampler converges (given correct noise distribution)

Error polynomial is optimal, at each step, for both mean and covariance

Asymptotic average reduction factor (Axelsson 1996) is

$$\sigma = \frac{1 - \sqrt{\lambda_1 / \lambda_n}}{1 + \sqrt{\lambda_1 / \lambda_n}}$$

Axelsson 1996, F & Parker 2012

 $pprox 10^4$ times faster

CG (Krylov space) sampling

Gibbs sampling & Gauss Seidel

CG sampling & optimization

Mutually conjugate vectors (wrt A) are independent directions

$$\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V} = \mathbf{D} \Rightarrow \mathbf{A}^{-1} = \mathbf{V}\mathbf{D}^{-1}\mathbf{V}^{\mathsf{T}}$$

so if
$$z \sim \mathbf{N}(0, I)$$
 then $x = \mathbf{V}\sqrt{\mathbf{D}^{-1}}z \sim \mathbf{N}(0, \mathbf{A}^{-1})$

Schneider & Willsky 2003, F 2008, Parker & F SISC 2012

CG sampling algorithm

ALGORITHM 1 (CG sampler from $N(0, A^{-1})$). Given b and x^0 , let $r^0 = b^0 - Ax^0$, $p^0 = r^0$, $d_0 = p^{(0)T}Ap^0$, $y^0 = x^0$, and k := 1. Specify some stopping tolerance ϵ . Iterate:

1.
$$\gamma_{k-1} = \frac{r^{(k-1)T}r^{k-1}}{d_{k-1}}$$
 is the 1-D minimzer of ϕ in the direction $x^{k-1} + \gamma p^{k-1}$
2. $x^k = x^{k-1} + \gamma_{k-1}p^{k-1}$
3. Sample $z \sim N(0,1)$, and set $y^k = y^{k-1} + \frac{z}{\sqrt{d_{k-1}}}p^{k-1}$
4. $r^k = -\nabla_x \phi(x^k) = r^{k-1} - \gamma_{k-1}Ap^{k-1}$ is the residual
5. $\beta_k = -\frac{r^{kT}r^k}{r^{(k-1)T}r^{k-1}}$
6. $p^k = r^k - \beta_k p^{k-1}$ is the next conjugate search direction.
7. $d_k = p^{(k)T}Ap^k$
8. Quit if $||r^k||_2 < \epsilon$. Else set $k := k+1$ and go to step 1.

- Apart from step 3, this is exactly (linear) CG optimization
- $Var(y^k)$ is the CG polynomial

Parker & F SISC 2012

CG sampling example

FIG. 4.2. In the left panel is a CG sample $y^k \sim N(0, A^{-1})$ from a 10⁴-dimensional Gaussian over a 2D domain with a second order locally linear precision matrix. The realized variance $\operatorname{Var}(y^k)$ accounts for 80% of the variability in A^{-1} . A Cholesky sample is shown in the right panel.

So CG (by itself) over-smooths : initialize Gibbs with CG

Parker & F SISC 2012, Schneider & Willsky 2003

Evaluating $f(\mathbf{A}) = \mathbf{A}^{-1/2}$

If
$$z \sim N(0, I)$$
 then $x = \mathbf{A}^{-1/2} z \sim N(0, A^{-1})$

Compute a rational approximation

$$x = \mathbf{A}^{-1/2} z \approx \sum_{j=1} N \alpha_j \left(\mathbf{A} - \sigma_j I \right)^{-1} x$$

on 'spectrum' $\{\sigma_j\}$ of **A**, based on

- Lanczos approximation: $x = x_0 + \beta_0 \mathbf{V} \mathbf{T}^{1/2} \mathbf{e}_1$
- Contour integration
- Continuous deformation ODE

all using CG $% \left({{{\left({{{{c}_{{\rm{s}}}}} \right)}_{{\rm{s}}}}} \right)$

Simpson Turner & Pettitt 2008, Aune Eidsvik & Pokern STCO 2012

Sampling by BFGS

BFGS optimization over $\log \pi$ builds an approximation to the inverse Hessian

$$\mathbf{A}^{-1} \approx \mathbf{A}_0^{-1} + \sum_{i=1}^N \rho_i s_i s_i^{\mathsf{T}}$$

so if $z_0 \sim N(0, \mathbf{A}_0^{-1})$ and $z_i \sim N(0, 1)$ then

$$z_0 + \sum_{i=1}^N \sqrt{\rho_i} s_i z_i \sim N(0, \mathbf{A}^{-1})$$

Can propagate sample covariance in large-scale EnKF ... though CG sampler does a better job (don't know why) and seeding proposal in AM

Veersé 1999, Auvinen Bardsley Haario & Kauranne 2010, Bardsley Solonen Parker Haario & Howard IJUQ 2011

Non-negativity constrained sampling

Linear inverse problem $\mathbf{b} = \mathbf{A}\mathbf{x} + \boldsymbol{\eta} \qquad \boldsymbol{\eta} \sim \mathbf{N}(0, \sigma^2 I)$

$$p(\mathbf{x},\lambda,\delta|\mathbf{b}) \propto \lambda^{n/2+\alpha_{\lambda}-1} \delta^{n/2+\alpha_{\delta}-1} \exp\left(-\frac{\lambda}{2} \|\mathbf{A}\mathbf{x}-\mathbf{b}\|^{2} - \frac{\delta}{2} \mathbf{x}^{T} \mathbf{C}\mathbf{x} - \beta_{\lambda} \lambda - \beta_{\delta} \delta\right)$$

with probability mass projected to constraint boundary in metric of Hessian of $\log \pi$

$$\mathbf{x}^{k} = \arg\min_{\mathbf{x} \ge \mathbf{0}} \left\{ \frac{1}{2} \mathbf{x}^{T} (\lambda_{k} \mathbf{A}^{T} \mathbf{A} + \delta_{k} \mathbf{C}) \mathbf{x} - \mathbf{x}^{T} (\lambda_{k} \mathbf{A}^{T} \mathbf{b} + \mathbf{w}) \right\}$$

where $\mathbf{w} \sim N(\mathbf{0}, \lambda_k \mathbf{A}^T \mathbf{A} + \delta_k \mathbf{C})$. Compute by projected-gradient CG.

Bardsley F IPSE 2011

Some observations

In the Gaussian setting

- $GS \equiv GS$
- *stochastic relaxation* is fundamentally equivalent to classical *relaxation*
- existing fast solvers make fast samplers (mutligrid, fast multipole, parallel tools) More generally
 - acceleration of convergence in mean and covariance not limited to Gaussian targets
 - ... can be applied to inverse problems
 - ... but no results for rates of convergence
 - A sequence of non-optimal kernels can do *much* better than repeated application of the 'optimal' kernel

Summary