Polynomial accelerated MCMC ...
and other sampling algorithms inspired by computational optimization

Coljn Fox fox@physics.otago.ac.nz
Al Parker, John Bardsley _ Wis

Fore-words

- Motivation: an inverse oceanography problem
- Cartoon of polynomial acceleration of MCMC
- Equivalence of Gibbs \& linear solvers
- Polynomial acceleration of Gibbs sampling
- Some other sampling algorithms from CSE

Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer abyssal advection

Oxygen, run 1

McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer

Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel \mathcal{P} with

$$
\pi \mathcal{P}=\pi
$$

via detailed balance (self-adjoint in metric π)
n-step distribution: $\pi^{(n)}=\pi^{(n-1)} \mathcal{P}=\pi^{(0)} \mathcal{P}^{n}$
n-step distribution error: $\pi^{(n)}-\pi=\left(\pi^{(0)}-\pi\right) \mathcal{P}^{n}$

Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel \mathcal{P} with

$$
\pi \mathcal{P}=\pi
$$

via detailed balance (self-adjoint in metric π)
n-step distribution: $\pi^{(n)}=\pi^{(n-1)} \mathcal{P}=\pi^{(0)} \mathcal{P}^{n}$
n-step distribution error: $\pi^{(n)}-\pi=\left(\pi^{(0)}-\pi\right) \mathcal{P}^{n}$
Initial error is multiplied by n-th order polynomial P_{n} of $(I-\mathcal{P})$ called the the error polynomial

Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel \mathcal{P} with

$$
\pi \mathcal{P}=\pi
$$

via detailed balance (self-adjoint in metric π)
n-step distribution: $\pi^{(n)}=\pi^{(n-1)} \mathcal{P}=\pi^{(0)} \mathcal{P}^{n}$
n-step distribution error: $\pi^{(n)}-\pi=\left(\pi^{(0)}-\pi\right) \mathcal{P}^{n}$
error polynomial: $P_{n}(I-\mathcal{P})=\mathcal{P}^{n}=(I-(I-\mathcal{P}))^{n} \quad$ or $\quad P_{n}(\lambda)=(1-\lambda)^{n}$ Hence convergence is geometric for this iteration

Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel \mathcal{P} with

$$
\pi \mathcal{P}=\pi
$$

via detailed balance (self-adjoint in metric π)
n-step distribution: $\pi^{(n)}=\pi^{(n-1)} \mathcal{P}=\pi^{(0)} \mathcal{P}^{n}$
n-step distribution error: $\pi^{(n)}-\pi=\left(\pi^{(0)}-\pi\right) \mathcal{P}^{n}$
error polynomial: $P_{n}(I-\mathcal{P})=\mathcal{P}^{n}=(I-(I-\mathcal{P}))^{n} \quad$ or $\quad P_{n}(\lambda)=(1-\lambda)^{n}$
Hence convergence is geometric for this iteration
Polynomial acceleration: modify iteration to give better error polynomial e.g.

$$
\text { (choose } \left.x^{(i)} \text { w.p. } \alpha_{i}\right) \sim \pi^{(0)} \sum_{i=1}^{n} \alpha_{i} \mathcal{P}^{i} \quad \text { error poly: } Q_{n}=\sum_{i=1}^{n} \alpha_{i}(1-\lambda)^{i}
$$

We choose α_{i} so can choose Q_{n}
Can build a perfect sampler when π over finite state space, or Gaussian(!)

Gibbs sampling from normal distributions

Gibbs sampling ${ }^{a}$ repeatedly samples from (block) conditional distributions

Normal distributions

$$
\pi(\mathbf{x})=\sqrt{\frac{\operatorname{det}(\mathbf{A})}{2 \pi^{n}}} \exp \left\{-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}\right\}
$$

precision matrix \mathbf{A}, covariance matrix $\Sigma=\mathbf{A}^{-1}$ (both SPD)
Mean $\overline{\mathrm{x}}$ satisfies

$$
\mathbf{A} \overline{\mathbf{x}}=\mathbf{b}
$$

Particularly interested in case where \mathbf{A} is sparse (GMRF) and n large When is $\pi^{(0)}$ is also normal, then so is the n-step distribution

$$
\mathbf{A}^{(n)} \rightarrow \mathbf{A} \quad \Sigma^{(n)} \rightarrow \Sigma
$$

In what sense is "stochastic relaxation" related to "relaxation"?
What decomposition of \mathbf{A} is this performing?

[^0]
Gibbs samplers and equivalent linear solvers

Optimization ...

Cheby-GS

CG/Lanczos

Sampling ...

Gibbs

Cheby-Gibbs

Parker F SISC 2012

Matrix splitting form of stationary iterative methods

Want to solve

$$
\mathbf{A x}=\mathbf{b}
$$

The splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$ converts $\mathbf{A x}=\mathbf{b}$ to $\mathbf{M x}=\mathbf{N x}+\mathbf{b}$ If \mathbf{M} is nonsingular

$$
\mathbf{x}=\mathbf{M}^{-1} \mathbf{N} \mathbf{x}+\mathbf{M}^{-1} \mathbf{b}
$$

Iterative methods compute successively better approximations by

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b} \\
& =\mathbf{G} \mathbf{x}^{(k)}+\mathbf{g}
\end{aligned}
$$

Many splittings use terms in $\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}$. Gauss-Seidel sets $\mathbf{M}=\mathbf{L}+\mathbf{D}$

$$
\mathbf{x}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{\top} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}
$$

Matrix formulation of Gibbs sampling from $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$
Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$
\mathbf{y}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{y}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{T} \mathbf{y}^{(k)}+\mathbf{D}^{-1 / 2} \mathbf{z}^{(k)}
$$

where: $\mathbf{D}=\operatorname{diag}(\mathbf{A}), \mathbf{L}$ is the strictly lower triangular part of $\mathbf{A}, \mathbf{z}^{(k-1)} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{c}^{(k)}
$$

$\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance

Matrix formulation of Gibbs sampling from $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$
Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One 'sweep' over all n components can be written

$$
\mathbf{y}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{y}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{T} \mathbf{y}^{(k)}+\mathbf{D}^{-1 / 2} \mathbf{z}^{(k)}
$$

where: $\mathbf{D}=\operatorname{diag}(\mathbf{A}), \mathbf{L}$ is the strictly lower triangular part of $\mathbf{A}, \mathbf{z}^{(k-1)} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{c}^{(k)}
$$

$\mathbf{c}^{(k)}$ is iid 'noise' with zero mean, finite covariance Spot the similarity to Gauss-Seidel iteration for solving $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{x}^{(k+1)}=-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{L}^{\top} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}
$$

Gibbs converges \Longleftrightarrow solver converges

Theorem 1 Let $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. The stationary linear solver

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b} \\
& =\mathbf{G} \mathbf{x}^{(k)}+\mathbf{M}^{-1} \mathbf{b}
\end{aligned}
$$

converges, if and only if the random iteration

$$
\begin{aligned}
\mathbf{y}^{(k+1)} & =\mathbf{M}^{-1} \mathbf{N} \mathbf{y}^{(k)}+\mathbf{M}^{-1} \mathbf{c}^{(k)} \\
& =\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1} \mathbf{c}^{(k)}
\end{aligned}
$$

converges in distribution. Here $\mathbf{c}^{(k)} \stackrel{i i d}{\sim} \pi_{n}$ has zero mean and finite variance
Proof. Both converge iff $\varrho(\mathbf{G})<1 \square$
Convergent splittings generate convergent (generalized) Gibbs samplers
Mean converges with asymptotic convergence factor $\varrho(\mathbf{G})$, covariance with $\varrho(\mathbf{G})^{2}$

[^1]F Parker 2012

Some not so common Gibbs samplers for $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

splitting/sampler	\mathbf{M}	$\operatorname{Var}\left(\mathbf{c}^{(k)}\right)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega} \mathbf{I}$	$\frac{2}{\omega} \mathbf{I}-\mathbf{A}$	$0<\omega<\frac{2}{\varrho(\mathbf{A})}$
Jacobi	\mathbf{D}	$2 \mathbf{D}-\mathbf{A}$	\mathbf{A} SDD
GS/Gibbs	$\mathbf{D}+\mathbf{L}$	\mathbf{D}	always
SOR/B\&F	$\frac{1}{\omega} \mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega} \mathbf{D}$	$0<\omega<2$
SSOR/REGS	$\frac{\omega}{2-\omega} \mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{\top}$	$\frac{\omega}{2-\omega}\left(\mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{T}\right.$ $\left.+\mathbf{N}_{\text {SOR }}^{T} \mathbf{D}^{-1} \mathbf{N}_{\text {SOR }}\right)$	$0<\omega<2$

Good choice has: convenient to solve $\mathbf{M u}=\mathbf{r}$ and sample from $\mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$

Relaxation parameter ω can accelerate Gibbs

[^2]
Some not so common Gibbs samplers for $\mathrm{N}\left(0, \mathbf{A}^{-1}\right)$

splitting/sampler	\mathbf{M}	$\operatorname{Var}\left(\mathbf{c}^{(k)}\right)=\mathbf{M}^{T}+\mathbf{N}$	converge if
Richardson	$\frac{1}{\omega} \mathbf{I}$	$\frac{2}{\omega} \mathbf{I}-\mathbf{A}$	$0<\omega<\frac{2}{\varrho(\mathbf{A})}$
Jacobi	\mathbf{D}	$2 \mathbf{D}-\mathbf{A}$	\mathbf{A} SDD
GS/Gibbs	$\mathbf{D}+\mathbf{L}$	\mathbf{D}	always
SOR/B\&F	$\frac{1}{\omega} \mathbf{D}+\mathbf{L}$	$\frac{2-\omega}{\omega} \mathbf{D}$	$0<\omega<2$
SSOR/REGS	$\frac{\omega}{2-\omega} \mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{\top}$	$\frac{\omega}{2-\omega}\left(\mathbf{M}_{\text {SOR }} \mathbf{D}^{-1} \mathbf{M}_{\text {SOR }}^{T}\right.$ $\left.+\mathbf{N}_{\text {SOR }}^{T} \mathbf{D}^{-1} \mathbf{N}_{\text {SOR }}\right)$	$0<\omega<2$

Good choice has: convenient to solve $\mathbf{M u}=\mathbf{r}$ and sample from $\mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$

Relaxation parameter ω can accelerate Gibbs SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone \& Frigessi 1990, Amit \& Grenander 1991, SSOR: Roberts \& Sahu 1997

A closer look at convergence

To sample from $\mathrm{N}\left(\mu, \mathbf{A}^{-1}\right)$ where $\mathbf{A} \mu=\mathbf{b}$
Split $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. $\mathbf{G}=\mathbf{M}^{-1} \mathbf{N}$, and $\mathbf{c}^{(k)} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$
The iteration

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1}\left(\left(\mathbf{c}^{(k)}+\mathbf{b}\right)\right.
$$

implies

$$
\mathrm{E}\left(\mathbf{y}^{(n)}\right)-\mu=\mathrm{G}^{n}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right)-\mu\right]
$$

and

$$
\operatorname{Var}\left(\mathbf{y}^{(n)}\right)-\mathbf{A}^{-1}=\mathbf{G}^{n}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right)-\mathbf{A}^{-1}\right] \mathbf{G}^{n}
$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^{2}$)
Errors go down as the polynomial

$$
P_{n}(\lambda)=(1-\lambda)^{n}
$$

A closer look at convergence

To sample from $\mathrm{N}\left(\mu, \mathbf{A}^{-1}\right)$ where $\mathbf{A} \mu=\mathbf{b}$
Split $\mathbf{A}=\mathbf{M}-\mathbf{N}, \mathbf{M}$ invertible. $\mathbf{G}=\mathbf{M}^{-1} \mathbf{N}$, and $\mathbf{c}^{(k)} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \mathbf{M}^{T}+\mathbf{N}\right)$
The iteration

$$
\mathbf{y}^{(k+1)}=\mathbf{G} \mathbf{y}^{(k)}+\mathbf{M}^{-1}\left(\left(\mathbf{c}^{(k)}+\mathbf{b}\right)\right.
$$

implies

$$
\mathrm{E}\left(\mathbf{y}^{(n)}\right)-\mu=\mathrm{G}^{n}\left[\mathrm{E}\left(\mathbf{y}^{(0)}\right)-\mu\right]
$$

and

$$
\operatorname{Var}\left(\mathbf{y}^{(n)}\right)-\mathbf{A}^{-1}=\mathbf{G}^{n}\left[\operatorname{Var}\left(\mathbf{y}^{(0)}\right)-\mathbf{A}^{-1}\right] \mathbf{G}^{n}
$$

(Hence asymptotic average convergence factors $\varrho(\mathbf{G})$ and $\varrho(\mathbf{G})^{2}$)
Errors go down as the polynomial

$$
P_{n}(\lambda)=(1-\lambda)^{n}
$$

solver and sampler have exactly the same error polynomial

Controlling the error polynomial

The splitting

$$
\mathbf{A}=\frac{1}{\tau} \mathbf{M}+\left(1-\frac{1}{\tau}\right) \mathbf{M}-\mathbf{N}
$$

gives the iteration operator

$$
\mathbf{G}_{\tau}=\left(\mathbf{I}-\tau \mathbf{M}^{-1} \mathbf{A}\right)
$$

and error polynomial $Q_{n}(\lambda)=(1-\tau \lambda)^{n}$
The sequence of parameters $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ gives the error polynomial

$$
Q_{n}(\lambda)=\prod_{l=1}^{m}\left(1-\tau_{l} \lambda\right)
$$

... so we can choose the zeros of Q_{n}

This gives a non-stationary solver \equiv non-homogeneous Markov chain

Golub \& Varga 1961, Golub \& van Loan 1989, Axelsson 1996, Saad 2003, F \& Parker 2012

The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose

$$
\frac{1}{\tau_{l}}=\frac{\lambda_{n}+\lambda_{1}}{2}+\frac{\lambda_{n}-\lambda_{1}}{2} \cos \left(\pi \frac{2 l+1}{2 p}\right) \quad l=0,1,2, \ldots, p-1
$$

where $\lambda_{1} \lambda_{n}$ are extreme eigenvalues of $\mathbf{M}^{-1} \mathbf{A}$

Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

$$
\mathbf{y}^{(k+1)}=\left(1-\alpha_{k}\right) \mathbf{y}^{(k-1)}+\alpha_{k} \mathbf{y}^{(k)}+\alpha_{k} \tau_{k} \mathbf{M}^{-1}\left(\mathbf{c}^{(k)}-\mathbf{A} \mathbf{y}^{(k)}\right)
$$

with α_{k} and τ_{k} chosen so error polynomial satisfies Chebyshev recursion.
Theorem $22^{\text {nd }}$-order solver converges $\Rightarrow 2^{\text {nd }}$-order sampler converges (given correct noise distribution)
Error polynomial is optimal, at each step, for both mean and covariance
Asymptotic average reduction factor (Axelsson 1996) is

$$
\sigma=\frac{1-\sqrt{\lambda_{1} / \lambda_{n}}}{1+\sqrt{\lambda_{1} / \lambda_{n}}}
$$

10×10 lattice $(d=100)$ sparse precision matrix

$$
[\mathbf{A}]_{i j}=10^{-4} \delta_{i j}+\left\{\begin{array}{cc}
n_{i} & \text { if } i=j \\
-1 & \text { if } i \neq j \text { and }\left\|s_{i}-s_{j}\right\|_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$\approx 10^{4}$ times faster

CG (Krylov space) sampling

Gibbs sampling \& Gauss Seidel

CG sampling \& optimization

Mutually conjugate vectors (wrt A) are independent directions

$$
\mathbf{V}^{\top} \mathbf{A} \mathbf{V}=\mathbf{D} \Rightarrow \mathbf{A}^{-1}=\mathbf{V D}^{-1} \mathbf{V}^{\top}
$$

so if $z \sim \mathbf{N}(0, I)$ then $x=\mathbf{V} \sqrt{\mathbf{D}^{-1}} z \sim \mathbf{N}\left(0, \mathbf{A}^{-1}\right)$

CG sampling algorithm

Algorithm 1 (CG sampler from $N\left(0, A^{-1}\right)$). Given b and x^{0}, let $r^{0}=b^{0}-A x^{0}$, $p^{0}=r^{0}, d_{0}=p^{(0) T} A p^{0}, y^{0}=x^{0}$, and $k:=1$. Specify some stopping tolerance ϵ. Iterate:

1. $\gamma_{k-1}=\frac{r^{(k-1) T} r^{k-1}}{d_{k-1}}$ is the 1-D minimzer of ϕ in the direction $x^{k-1}+\gamma p^{k-1}$
2. $x^{k}=x^{k-1}+\gamma_{k-1} p^{k-1}$
3. Sample $z \sim N(0,1)$, and set $y^{k}=y^{k-1}+\frac{z}{\sqrt{d_{k-1}}} p^{k-1}$
4. $r^{k}=-\nabla_{x} \phi\left(x^{k}\right)=r^{k-1}-\gamma_{k-1} A p^{k-1}$ is the residual
5. $\beta_{k}=-\frac{r^{k T} r^{k}}{r^{(k-1) T} r^{k-1}}$
6. $p^{k}=r^{k}-\beta_{k} p^{k-1}$ is the next conjugate search direction.
7. $d_{k}=p^{(k) T} A p^{k}$
8. Quit if $\left\|r^{k}\right\|_{2}<\epsilon$. Else set $k:=k+1$ and go to step 1 .

- Apart from step 3, this is exactly (linear) CG optimization
- $\operatorname{Var}\left(y^{k}\right)$ is the CG polynomial

CG sampling example

Fig. 4.2. In the left panel is a $C G$ sample $y^{k} \dot{\sim} N\left(0, A^{-1}\right)$ from a 10^{4}-dimensional Gaussian over a 2D domain with a second order locally linear precision matrix. The realized variance $\operatorname{Var}\left(y^{k}\right)$ accounts for 80% of the variability in A^{-1}. A Cholesky sample is shown in the right panel.

So CG (by itself) over-smooths: initialize Gibbs with CG
Parker \& F SISC 2012, Schneider \& Willsky 2003

Evaluating $f(\mathbf{A})=\mathbf{A}^{-1 / 2}$

If $z \sim N(0, I)$ then $x=\mathbf{A}^{-1 / 2} z \sim N\left(0, A^{-1}\right)$
Compute a rational approximation

$$
x=\mathbf{A}^{-1 / 2} z \approx \sum_{j=1} N \alpha_{j}\left(\mathbf{A}-\sigma_{j} I\right)^{-1} x
$$

on 'spectrum' $\left\{\sigma_{j}\right\}$ of \mathbf{A}, based on

- Lanczos approximation: $x=x_{0}+\beta_{0} \mathbf{V T}^{1 / 2} \mathbf{e}_{1}$
- Contour integration
- Continuous deformation ODE
all using CG

Sampling by BFGS

BFGS optimization over $\log \pi$ builds an approximation to the inverse Hessian

$$
\mathbf{A}^{-1} \approx \mathbf{A}_{0}^{-1}+\sum_{i=1}^{N} \rho_{i} s_{i} s_{i}^{\top}
$$

so if $z_{0} \sim N\left(0, \mathbf{A}_{0}^{-1}\right)$ and $z_{i} \sim N(0,1)$ then

$$
z_{0}+\sum_{i=1}^{N} \sqrt{\rho_{i}} s_{i} z_{i} \sim N\left(0, \mathbf{A}^{-1}\right)
$$

Can propagate sample covariance in large-scale EnKF ... though CG sampler does a better job (don't know why) and seeding proposal in AM

Veersé 1999, Auvinen Bardsley Haario \& Kauranne 2010, Bardsley Solonen Parker Haario \& Howard IJUQ 2011

Non-negativity constrained sampling

Linear inverse problem $\mathbf{b}=\mathbf{A x}+\boldsymbol{\eta} \quad \boldsymbol{\eta} \sim \mathbf{N}\left(0, \sigma^{2} I\right)$

$$
p(\mathbf{x}, \lambda, \delta \mid \mathbf{b}) \propto \lambda^{n / 2+\alpha_{\lambda}-1} \delta^{n / 2+\alpha_{\delta}-1} \exp \left(-\frac{\lambda}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}-\frac{\delta}{2} \mathbf{x}^{T} \mathbf{C} \mathbf{x}-\beta_{\lambda} \lambda-\beta_{\delta} \delta\right)
$$

with probability mass projected to constraint boundary in metric of Hessian of $\log \pi$

$$
\mathbf{x}^{k}=\arg \min _{\mathbf{x} \geq \mathbf{0}}\left\{\frac{1}{2} \mathbf{x}^{T}\left(\lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{C}\right) \mathbf{x}-\mathbf{x}^{T}\left(\lambda_{k} \mathbf{A}^{T} \mathbf{b}+\mathbf{w}\right)\right\}
$$

where $\mathbf{w} \sim N\left(\mathbf{0}, \lambda_{k} \mathbf{A}^{T} \mathbf{A}+\delta_{k} \mathbf{C}\right)$. Compute by projected-gradient CG.

Some observations

In the Gaussian setting

- GS $\equiv \mathrm{GS}$
- stochastic relaxation is fundamentally equivalent to classical relaxation
- existing fast solvers make fast samplers (mutligrid, fast multipole, parallel tools)

More generally

- acceleration of convergence in mean and covariance not limited to Gaussian targets
- ... can be applied to inverse problems
- ... but no results for rates of convergence
- A sequence of non-optimal kernels can do much better than repeated application of the 'optimal' kernel

[^0]: ${ }^{\text {a }}$ Glauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984

[^1]: Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman \& Sokal, 1989, Galli \& Gao 2001

[^2]: SOR: Adler 1981; Barone \& Frigessi 1990, Amit \& Grenander 1991, SSOR: Roberts \& Sahu 1997

