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• Motivation: an inverse oceanography problem
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• Some other sampling algorithms from CSE



Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer

abyssal advection

Oxygen, run 1
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McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal

Neutral Density Layer



Accelerating MCMC (cartoon)

MH-MCMC repeatedly simulates fixed transition kernel P with

πP = π

via detailed balance (self-adjoint in metric π)

n-step distribution: π(n) = π(n−1)P = π(0)Pn

n-step distribution error: π(n) − π =
(
π(0) − π

)
Pn

Initial error is multiplied by n-th order polynomial Pn of (I−P) called the the error polynomial

error polynomial: Pn(I − P) = Pn = (I − (I − P))n or Pn(λ) = (1− λ)n

Hence convergence is geometric

Polynomial acceleration: modify iteration to give better error polynomial e.g.

(choose x(i) w.p. αi) ∼ π(0)
n∑
i=1

αiP i error poly: Qn =
n∑
i=1

αi(1− λ)i

We choose αi so can choose Qn

Can build a perfect sampler when π over finite state space, or Gaussian(!)
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Gibbs sampling from normal distributions

Gibbs samplinga repeatedly samples from (block) conditional distributions

Normal distributions

π (x) =

√
det (A)

2πn
exp

{
−1

2
xTAx + bTx

}
precision matrix A, covariance matrix Σ = A−1 (both SPD)

Mean x̄ satisfies

Ax̄ = b

Particularly interested in case where A is sparse (GMRF) and n large

When is π(0) is also normal, then so is the n-step distribution

A(n) → A Σ(n) → Σ

In what sense is “stochastic relaxation” related to “relaxation”?

What decomposition of A is this performing?
aGlauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984



Gibbs samplers and equivalent linear solvers

Optimization ...

Gauss-Seidel Cheby-GS CG/Lanczos

Sampling ...

Gibbs Cheby-Gibbs Lanczos

Parker F SISC 2012



Matrix splitting form of stationary iterative methods

Want to solve

Ax = b

The splitting A = M−N converts Ax = b to Mx = Nx + b

If M is nonsingular

x = M−1Nx + M−1b

Iterative methods compute successively better approximations by

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M = L + D

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b



Matrix formulation of Gibbs sampling from N(0,A−1)

Let y = (y1, y2, ..., yn)T

Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions

One ‘sweep’ over all n components can be written

y(k+1) = −D−1Ly(k+1) −D−1LTy(k) + D−1/2z(k)

where: D = diag(A), L is the strictly lower triangular part of A, z(k−1) ∼ N(0, I)

y(k+1) = Gy(k) + c(k)

c(k) is iid ’noise’ with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

x(k+1) = −D−1Lx(k+1) −D−1LTx(k) + D−1b

Goodman & Sokal 1989; Amit & Grenander 1991
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Gibbs converges ⇐⇒ solver converges

Theorem 1 Let A = M−N, M invertible. The stationary linear solver

x(k+1) = M−1Nx(k) + M−1b

= Gx(k) + M−1b

converges, if and only if the random iteration

y(k+1) = M−1Ny(k) + M−1c(k)

= Gy(k) + M−1c(k)

converges in distribution. Here c(k)
iid∼ πn has zero mean and finite variance

Proof. Both converge iff %(G) < 1 �

Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor %(G), covariance with %(G)2

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001

F Parker 2012



Average contractive iterated random functions

Diaconis Freedman SIAM Review 1999, Stenflo JDEA ≥2012



Some not so common Gibbs samplers for N(0,A−1)

splitting/sampler M Var
(
c(k)

)
= MT + N converge if

Richardson 1
ω I

2
ω I−A 0 < ω <

2

%(A)

Jacobi D 2D−A A SDD

GS/Gibbs D + L D always

SOR/B&F 1
ωD + L 2−ω

ω D 0 < ω < 2

SSOR/REGS ω
2−ωMSORD

−1MT
SOR

ω
2−ω

(
MSORD

−1MT
SOR 0 < ω < 2

+NT
SORD

−1NSOR

)
Good choice has: convenient to solve Mu = r and sample from N(0,MT + N)

Relaxation parameter ω can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997
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A closer look at convergence

To sample from N(µ,A−1) where Aµ = b

Split A = M−N, M invertible. G = M−1N, and c(k)
iid∼ N(0,MT + N)

The iteration

y(k+1) = Gy(k) + M−1
(

(c(k) + b
)

implies

E
(
y(n)

)
− µ = Gn

[
E
(
y(0)

)
− µ

]
and

Var
(
y(n)

)
−A−1 = Gn

[
Var

(
y(0)

)
−A−1

]
Gn

(Hence asymptotic average convergence factors %(G) and %(G)2)

Errors go down as the polynomial

Pn(λ) = (1− λ)n

solver and sampler have exactly the same error polynomial
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Controlling the error polynomial

The splitting

A =
1

τ
M +

(
1− 1

τ

)
M−N

gives the iteration operator

Gτ =
(
I− τM−1A

)
and error polynomial Qn (λ) = (1− τλ)n

The sequence of parameters τ1, τ2, . . . , τn gives the error polynomial

Qn (λ) =

m∏
l=1

(1− τlλ)

... so we can choose the zeros of Qn

This gives a non-stationary solver ≡ non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012



The best (Chebyshev) polynomial

10 iterations, factor of 300 improvement

Choose
1

τl
=
λn + λ1

2
+
λn − λ1

2
cos

(
π

2l + 1

2p

)
l = 0, 1, 2, . . . , p− 1

where λ1 λn are extreme eigenvalues of M−1A



Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

y(k+1) = (1− αk)y(k−1) + αky
(k) + αkτkM

−1(c(k) −Ay(k))

with αk and τk chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2nd-order solver converges ⇒ 2nd-order sampler converges (given correct noise

distribution)

Error polynomial is optimal, at each step, for both mean and covariance

Asymptotic average reduction factor (Axelsson 1996) is

σ =
1−

√
λ1 /λn

1 +
√
λ1 /λn

Axelsson 1996, F & Parker 2012



10× 10 lattice (d = 100) sparse precision matrix

[A]ij = 10−4δij +


ni if i = j

−1 if i 6= j and ||si − sj ||2 ≤ 1

0 otherwise

.
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SSOR, ω=1

SSOR, ω=0.2122

Cheby−SSOR, ω=1

Cheby−SSOR, ω=0.2122
Cholesky

≈ 104 times faster



CG (Krylov space) sampling
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CG sampling & optimization

Mutually conjugate vectors (wrt A) are independent directions

VTAV = D⇒ A−1 = VD−1VT

so if z ∼ N (0, I) then x = V
√
D−1z ∼ N(0,A−1)

Schneider & Willsky 2003, F 2008, Parker & F SISC 2012



CG sampling algorithm

• Apart from step 3, this is exactly (linear) CG optimization

• Var(yk) is the CG polynomial

Parker & F SISC 2012



CG sampling example

So CG (by itself) over-smooths : initialize Gibbs with CG

Parker & F SISC 2012, Schneider & Willsky 2003



Evaluating f (A) = A−1/2

If z ∼ N(0, I) then x = A−1/2z ∼ N(0, A−1)

Compute a rational approximation

x = A−1/2z ≈
∑
j=1

Nαj (A− σjI)−1 x

on ‘spectrum’ {σj} of A, based on

• Lanczos approximation: x = x0 + β0VT1/2e1

• Contour integration

• Continuous deformation ODE

all using CG

Simpson Turner & Pettitt 2008, Aune Eidsvik & Pokern STCO 2012



Sampling by BFGS

BFGS optimization over log π builds an approximation to the inverse Hessian

A−1 ≈ A−1
0 +

N∑
i=1

ρisis
T
i

so if z0 ∼ N(0,A−1
0 ) and zi ∼ N(0, 1) then

z0 +
N∑
i=1

√
ρisizi ∼ N(0,A−1)

Can propagate sample covariance in large-scale EnKF ...

though CG sampler does a better job (don’t know why)

and seeding proposal in AM

Veersé 1999, Auvinen Bardsley Haario & Kauranne 2010, Bardsley Solonen Parker Haario & Howard

IJUQ 2011



Non-negativity constrained sampling

Linear inverse problem b = Ax + η η ∼ N(0, σ2I)

p(x, λ, δ|b) ∝ λn/2+αλ−1δn/2+αδ−1 exp

(
−λ

2
‖Ax− b‖2 − δ

2
xTCx− βλλ− βδδ

)
with probability mass projected to constraint boundary in metric of Hessian of log π

xk = arg min
x≥0

{
1

2
xT (λkA

TA + δkC)x− xT (λkA
Tb + w)

}
where w ∼ N(0, λkA

TA + δkC). Compute by projected-gradient CG.
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Some observations

In the Gaussian setting

• GS ≡ GS

• stochastic relaxation is fundamentally equivalent to classical relaxation

• existing fast solvers make fast samplers (mutligrid, fast multipole, parallel tools)

More generally

• acceleration of convergence in mean and covariance not limited to Gaussian targets

• ... can be applied to inverse problems

• ... but no results for rates of convergence

• A sequence of non-optimal kernels can do much better than repeated application of the

’optimal’ kernel



Summary
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