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e Motivation: an inverse oceanography problem
Cartoon of polynomial acceleration of MCMC
Equivalence of Gibbs & linear solvers
Polynomial acceleration of Gibbs sampling

Some other sampling algorithms from CSE




Ocean circulation :: 2 samples from the posterior

Data on traces, assert physics and observational models, infer

° abyssal advection

Oxygen, run 1
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McKeague Nicholls Speer Herbei 2005 Statistical Inversion of South Atlantic Circulation in an Abyssal
Neutral Density Layer




Accelerating MCMC

MH-MCMC repeatedly simulates fixed transition kernel P with
TP =

via detailed balance

n-step distribution: 7(") = 7z(n=Hp = 7(0)pn

n

n-step distribution error: 7™ — 7 = (7r(0> — 7T) P
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MH-MCMC repeatedly simulates fixed transition kernel P with
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via detailed balance

n-step distribution: 7(") = 7z(n=Hp = 7(0)pn

n-step distribution error: ) — 1 = (w(()) — 7r) P

Initial error is multiplied by n-th order polynomial P,, of (I —P) called the the error polynomial




Accelerating MCMC

MH-MCMC repeatedly simulates fixed transition kernel P with
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via detailed balance
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n-step distribution error: 7™ — 7

error polynomial: P,(I —P)=P"=(I— (I —P))"
Hence convergence is geometric for this iteration




Accelerating MCMC

MH-MCMC repeatedly simulates fixed transition kernel P with
TP =

via detailed balance
n-step distribution: 7(" = 7z(»=Dp = 70)pn

n-step distribution error: ) — 1 = (7.‘.(0) — w) 2L

error polynomial: P,(I —P)=P*=(I—- (I —-P))" P,(A) =(1-=X)"
Hence convergence is geometric for this iteration

Polynomial acceleration: modify iteration to give better error polynomial e.g.

(choose (" w.p. ;) ~ 7¥) Z a; P’ error poly: G, = Z ai(1 =)
i=1 i=1

We choose «; so can choose @),

Can build a perfect sampler when 7 over finite state space, or Gaussian(!)



Gibbs sampling from normal distributions

Gibbs sampling® repeatedly samples from (block) conditional distributions

T (x) =1/ de2t (?) exp {—%XTAX + bTX}
T

Normal distributions

precision matrix A, covariance matrix ¥ = A~}

Mean X satisfies
Ax =D

Particularly interested in case where A is sparse (GMRF) and n large

When is 79 is also normal, then so is the n-step distribution

A A 2" 5

*Glauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984



Gibbs samplers and equivalent linear solvers

Optimization ...
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Parker F SISC 2012




Matrix splitting form of stationary iterative methods

Want to solve
Ax=Db

The splitting A = M — N converts Ax =b to Mx=Nx+Db
If M is nonsingular

x =M 'Nx+M'b
lterative methods compute successively better approximations by
x*+) = M~INx®) + M~1b

= Gx¥) 1+ g

Many splittings use terms in A = L + D + U. Gauss-Seidel sets M =L + D

X(k:—l—l) _ —D_lLX(k+1) . D—lLTX(k:) + D—lb




Matrix formulation of Gibbs sampling from N(0, A1)

Let y = (y1, 92, - Un)"
Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions

One ‘sweep’ over all n components can be written

y(k‘-l-l) _ _D—lLy(k‘-l-l) . D—lLTy(k:) 4+ D—1/2Z(k‘)

where: D = diag(A), L is the strictly lower triangular part of A, z*~1) ~ N(0,1)

y*+D — Gy®) 4 c®)

c®) is iid 'noise’ with zero mean, finite covariance

Goodman & Sokal 1989




Matrix formulation of Gibbs sampling from N(0, A1)

Let y = (y1, 92, - Un)"
Component-wise Gibbs updates each component in sequence from the (normal) conditional

distributions

One ‘sweep’ over all n components can be written

y(k‘-l-l) _ _D—lLy(k+1) . D—lLTy(k:) 4+ D—1/2Z(k‘)

where: D = diag(A), L is the strictly lower triangular part of A, z*~1) ~ N(0,1)

y(/’<7+1) _ Gy(k) + c(k)
c®) is iid 'noise’ with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving Ax = b

x*kD) — D~ lLx**+Y) — D7ILTx® + D™'p

Goodman & Sokal 1989; Amit & Grenander 1991




Gibbs converges < solver converges

Theorem 1 Let A = M — N, M invertible. The stationary linear solver

X(k:-l—l) _ M—lNX(k) 4+ M—lb
= Gx®) + M~ b

converges, if and only if the random iteration

y(k:-|—1) — M—lNy(k) + M—lc(k)
= Gy® + M~ 1c®

e jid .. ]
converges in distribution. Here c\¥) < 1, has zero mean and finite variance

Proof. Both converge iff o(G) < 1O
Convergent splittings generate convergent (generalized) Gibbs samplers

Mean converges with asymptotic convergence factor o(G), covariance with o(G)?

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001
F Parker 2012
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Some Gibbs samplers for N(0, A1)
splitting /sampler M Var (c(k>) = M! + N converge if
2
Richardson 11 21— A 0<w< ——
w w Q(A)
Jacobi D 2D — A A SDD
GS/Gibbs D+ L D always
SOR/B&F 1D+ L v 0<w<2
SSOR/REGS | 5-MsorD 'Mlor | 525 (MsorD M5 0<w<2
+NgorD ™' Nsor)

Good choice has: convenient to solve Mu = r and sample from N(0, M’ + N)

Relaxation parameter w can accelerate Gibbs

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997




Some Gibbs samplers for N(0, A1)
splitting /sampler M Var (c(k>) = M! + N converge if
2
Richardson 11 21— A 0<w< ——
w w Q(A)
Jacobi D 2D — A A SDD
GS/Gibbs D+ L D always
SOR/B&F 1D+ L v 0<w<2
SSOR/REGS | 52-MsorD 'Mlor | 525 (MsorD 1M 0<w<2
+NgorD ™' Nsor)

Good choice has: convenient to solve Mu = r and sample from N(0, M’ + N)

Relaxation parameter w can accelerate Gibbs

SSOR is a forwards and backwards sweep of SOR to give a symmetric splitting

SOR: Adler 1981; Barone & Frigessi 1990, Amit & Grenander 1991, SSOR: Roberts & Sahu 1997




A closer look at convergence

To sample from N(u, A=) where Ay =b
Split A = M — N, M invertible. G = M~!N, and ¢ " N(0, M7 + N)
The iteration

yE+D) — Gy®) 4 M ((c(k) 4 b)

implies
B(y™) —u=a"[B(y") 4]

and

Var( (”)) —At=aGg" [Var (y(o)) — A_l} G"

Errors go down as the polynomial




A closer look at convergence

To sample from N(u, A=) where Ay =b
Split A = M — N, M invertible. G = M~!N, and ¢ " N(0, M7 + N)
The iteration

yE+D) — Gy®) 4 M ((c(k) 4 b)

implies
B(y™) —u=a"[B(y") 4]

and

Var( (”)) —At=aGg" [Var (y(o)) — A_l} G"

Errors go down as the polynomial
Pr(A) = (1= A)"

solver and sampler have exactly the same error polynomial




Controlling the error polynomial

The splitting

A:1M+<1—1)M—N

T T

gives the iteration operator
G,=(I-7M'A)

and error polynomial @Q,, (\) = (1 — 7A)"
The sequence of parameters 71,7, ..., T, gives the error polynomial

QnAN)=110—-7)\

=1

. so we can choose the zeros of (),

This gives a non-stationary solver = non-homogeneous Markov chain

Golub & Varga 1961, Golub & van Loan 1989, Axelsson 1996, Saad 2003, F & Parker 2012




The best (Chebyshev) polynomial

An + A1 Ap, — A\ ( 20+ 1
+ cos |

) [=0,1,2,....,p—1

2 2 2p

where \; \,, are extreme eigenvalues of M—1A




Second-order accelerated sampler

First-order accelerated iteration turns out to be unstable

Numerical stability, and optimality at each step, is given by the second-order iteration

y P = (1 — a)y* Y + apy®™ + agm M () — Ay )

with «y, and 75 chosen so error polynomial satisfies Chebyshev recursion.

Theorem 2 2"%-order solver converges = 2"%-order sampler converges (given correct noise
distribution)

Error polynomial is optimal, at each step, for both mean and covariance
Asymptotic average reduction factor (Axelsson 1996) is

11— /A
1+

o

Axelsson 1996, F & Parker 2012



10 x 10 lattice (d = 100) sparse precision matrix

n; if’i:j

[A];j = 107%6; + ¢ —1 if i#7 and ||s; —sjll2<1.

otherwise

SSOR, w=1
— — — SSOR, w=0.2122
Cheby-SSOR, w=1
— — — Cheby-SSOR, w=0.2122| |
Cholesky

relative error

~ 10% times faster




CG (Krylov space) sampling

p<0>
$
=

X(O)

> T,
Gibbs sampling & Gauss Seidel CG sampling & optimization

Mutually conjugate vectors (wrt A) are independent directions
VIAV=D=A'1l=vD V'

so if z~N(0,I) then z = VVD~ 1z ~ N(0,A 1)

Schneider & Willsky 2003, F 2008, Parker & F SISC 2012




CG sampling algorithm

ALGORITHM 1 (CG sampler from N (0, A™1)). Given b and 1°, let 1° = b° — Az,
P =10 dy = pOTA4p0, 0 = 40 and k := 1. Specify some stopping tolerance e.

Iterate:

.,,(k—i)f.rk—l L | . o N N
Ve—1 = a s the 1-D manimzer of ¢ wn the direction x

b = ke —I—k:u) -1

Gampie z~ N(0,1), and set y* = y*=1 + \/%pk_l
k—1
= —V,o(aF) = rF=t — 41 ApF= s the residual
RT F.,
}ﬁc r(k 1)Trk 1
—1

1

+ "

P =0k — BepF is the next conjugate search direction.

Cdp = p(’%)TALp'If
. Quit if ||[1*||y < €. Else set k :=k + 1 and go to step 1.

e Apart from step 3, this is exactly (linear) CG optimization

e Var(y") is the CG polynomial

Parker & F SISC 2012




CG sampling example
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Fic. 4.2. In the left panel is a CG sample yk&-ﬁ"{ﬂ,ﬂ_l} from a 10*-dimensional Gaus-
sian over a 2I) domain with a second order locally linear precision matriz. The realized
variance Var(y®) accounts for 80% of the variability in A=*. A Cholesky sample is shoun in
the right panel.

So CG (by itself) over-smooths : initialize Gibbs with CG
Parker & F SISC 2012, Schneider & Willsky 2003




Evaluating f(A) = A~/

If z~ N(0,I) then 2 = A~1/22 ~ N(0,A7 1)
Compute a rational approximation

=AY~ ZNaj (A — ajl)_lx
j=1

on ‘spectrum’ {o;} of A, based on

e Lanczos approximation: = = g + 8o VT 2e;

e Contour integration

e Continuous deformation ODE

all using CG

Simpson Turner & Pettitt 2008, Aune Eidsvik & Pokern STCO 2012




Sampling by BFGS

BFGS optimization over log 7 builds an approximation to the inverse Hessian
N
Al ~ Aal + Z pisisiT
i=1

so if zo ~ N(0,A;") and z; ~ N(0, 1) then

N
20 + Z Vpisizi ~ N(0,A™1)
i=1

Can propagate sample covariance in large-scale EnKF ...
though CG sampler does a better job
and seeding proposal in AM

Veersé 1999, Auvinen Bardsley Haario & Kauranne 2010, Bardsley Solonen Parker Haario & Howard
JUQ 2011




Non-negativity constrained sampling

Linear inverse problem b = Ax 4+ n n ~ N(0,0°I)

A 0
p(x, A, 8|b) ox NV 2Haa—lgn/2+as=1 oy, <—§||Ax —b||* - 5xTCX — B\ — 555)

with probability mass projected to constraint boundary in metric of Hessian of log

1
x" = arg min {§XT(AkATA +8,C)x — xT (A\ATD + W)}

x>0

where w ~ N (0, \,AT A + §,,C). Compute by projected-gradient CG.

20 40 60 80 100 120

Bardsley F IPSE 2011




Some observations

In the Gaussian setting

e GS =GS

e stochastic relaxation is fundamentally equivalent to classical relaxation

e existing fast solvers make fast samplers (mutligrid, fast multipole, parallel tools)
More generally

e acceleration of convergence in mean and covariance not limited to Gaussian targets

e ... can be applied to inverse problems

e ... but no results for rates of convergence

e A sequence of non-optimal kernels can do much better than repeated application of the

‘optimal’ kernel
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