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Statistical Estimation
of the

Parameters of a PDE

Colin Fox, Geoff Nicholls

(University of Auckland)

• Nomenclature for image recovery

• Statistical model for inverse problems

• Traditional approaches – deconvolution example

• Recovering electrical conductivity via inference
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Image Recovery nomenclature for Inverse Problems

x-rays
in

x-rays
out

X-ray tomography

Image: spatially varying quantity of interest
optical reflectance of a scene
optical or radio brightness of sky
sound speed in tissue / ocean / earth
electrical conductivity of tissue / mud

Recovery: estimate image from indirect data

Forward Problem Inverse Problem
image −→ data data −→ image

physical model (PDE) implicit
direct computation indirect

well posed ill posed
unique never unique
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Conductivity Imaging Measurement Set

• Electrodes at x1, x2, · · · , xE
• Assert currents at electrodes j = (j (x1) , j (x2) , · · · , j (xE))T
• Measure voltages v = (φ (x1) ,φ (x2) , · · · ,φ (xE))T .

Unknown σ (x) related to measurements via Neumann BVP

∇ · σ (x)∇φ (x) = 0 x ∈ Ω

σ (x)
∂φ (x)

∂n (x)
= j (x) x ∈ ∂Ω

• Set of measurements is current-voltage pairs

{jn, vn}Nn=1

Inverse problem is to find σ from these measurements
(non linear)
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Statistical model of Inverse Problem
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prior knowledge 
- constraints
- regularization
- preferences

estimate

+ noise

If n ∼ N(0, s2), v ∼ N(PKσ, s2)

Given measurements v, the likelihood for σ is

Lv(σ) ≡ Pr (v|σ) ∝ exp(|v − φ(σ)|2/2s2)
Posterior distribution for σ conditional on v

Pr (σ|v) = Pr (v|σ) Pr (σ)
Pr (v)

(Bayes rule)

Pr (σ)is the prior distribution
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Solutions = Summary Statistics

All information contained in posterior distribution Pr (σ|v)
Traditional Solutions - modes

σ̂MLE = argmaxLv(σ) ≡ argmaxPr (v|σ)
σ̂MAP = argmaxPr (σ|v) ≡ argmaxPr (v|σ) Pr (σ)

e.g. simple Gaussian prior: Pr (σ) ∝ exp
³
− |σ|2 /2λ2

´
σ̂MAP = argmin |v − φ(σ)|2 + α |σ|2 α = s2/λ2

• Tikhonov regularization, Kalman filtering, Backus-Gilbert

• α→ 0Moore-Penrose inverse, α = 0 least-squares

Inferential Solutions

“Answers” are expectations over the posterior

E [f (σ)] =
Z
Pr (σ|v) f (σ) dσ

σ

Pr( | )vσ
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Traditional Solutions – Fourier Deconvolution

Noisey blurred image

Exact inverse

MAP solution
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Bayesian Formulation for Conductivity Imaging

current potential voltage current conductivity
in Ω in Ω electrode electrode

r.v. R Φ V J Σ
value ρ φ v j σ

Posterior

Pr {Σ = σ,Φn = φn, Rn = ρn| {Jn, V n} = {jn, vn}}
= Pr { {Jn, V n} = {jn, vn} |Σ = σ,Φn = φn, Rn = ρn}
×Pr {Σ = σ,Φn = φn,Rn = ρn}

R = −Σ∇Φ, φ = Γσ (ρ|∂Ω) and ρ = −σ∇φ
Pr {Σ = σ,Φn = φn, Rn = ρn} = Pr {Σ = σ, Rn = ρn}

Stipulate Pr {Σ = σ} only – usually a MRF

L (σ,φn, ρn)

= Pr { {Jn, V n} = {jn, vn} |Σ = σ,Φn = φn, Rn = ρn}
= Pr { {V n} = {vn} |Φn = φn (σ, ρn)}
×Pr { {Jn} = {jn} |Rn = ρn}

Errors i.i.d.

L (σ,φn, ρn) = ΠNn=1Pr {V n = vn|Φn = Γσ (ρ
n|∂Ω)}

×Pr {Jn = jn|Rn = ρn} .
Noise is normal (say)

Pr {J = j|R = ρ} ∼ N
³
(ρ (x1) , ρ (x2) , · · · , ρ (xk))T , s2ρ

´
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Samples from the Prior
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Markov chain Monte Carlo

• Monte Carlo integration
If {Xt, t = 1, 2, . . . , n} are sampled from Pr (σ|v)

E [f (σ)] ≈ 1

n

nX
t=1

f (Xt)

• Markov chain
Generate {Xt}∞t=0 as a Markov chain of random variables Xt
∈ ΣΩ, with a t-step distribution Pr(Xt = σ|X0 = σ(0)) that
tends to Pr(σ|v), as t→∞.

Metopolis-Hastings algorithm

(1) given state σtat time t generate candidate state σ0 from a
proposal distribution q (.|σt)

(2) Accept candidate with probability

α (X|Y ) = min
µ
1,
Pr(Y |v)q (X|Y )
Pr(X|v)q (Y |X)

¶
(3) If accepted,Xt+1 = σ0 otherwiseXt+1 = σt

(4) Repeat

q (.|σt) can be any distribution that ensures the chain is:
– irreducible
– aperiodic
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Three-Move Metropolis Hastings

Choose one of 3 moves with probability ζp, p = 1, 2, 3

Transition probabilities {Pr(p)(Xt+1 = σt+1|Xt = σt)}3p=1
(reversible w.r.t. Pr(σ|v)).

Overall transition probability is

Pr(Xt+1 = σt+1|Xt = σt)

=
3X
p=1

ζp Pr
(p)(Xt+1 = σt+1|Xt = σt).

If at least one of the moves is irreducible on ΣΩ, then the
equilibrium distribution is Pr(σ|v).

A pixel n is a near-neighbour of pixel m if their lattice
distance is less than

√
8.

An update-edge is a pair of near-neighbouring pixels of
unequal conductivity. (N ∗(σ) ,N ∗m(σ) )

Move 1Flip a pixel. Select a pixel m at random and assign σm
a new conductivity σ0m chosen uniformly at random from the
other C − 1 conductivity values.
Move 2Flip a pixel near a conductivity boundary. Pick an
update-edge at random fromN ∗(σ). Pick one of the two pixels
in that edge at random, pixelm say. Proceed as in Move 1.
Move 3Swap conductivities at a pair of pixels. Pick an update-
edge at random fromN ∗(σ). Set σ0m = σn and σ0n = σm.
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Experiment 1
(discrete variables – three conductivity levels)

A

B1 B2

C D
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Experiment 2
(continuous variables – three conductivity types)

A

B C

D E
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Experiment 3
(shielding)

A E

B F

C G

D H



PIMS-MITACS 2001 14

Summary

• If you can simulate the forward map then you can sample
and calculate expectations over the posterior, i.e., ‘solve’ the
inverse problem

• Statistical inference provides a unifying framework for inverse
problems


