# Statistical Estimation of the Parameters of a PDE 

Colin Fox, Geoff Nicholls<br>(University of Auckland)

- Nomenclature for image recovery
- Statistical model for inverse problems
- Traditional approaches - deconvolution example
- Recovering electrical conductivity via inference


## Image Recovery nomenclature for Inverse Problems



X-ray tomography

Image: spatially varying quantity of interest optical reflectance of a scene optical or radio brightness of sky
sound speed in tissue / ocean / earth electrical conductivity of tissue / mud

Recovery: estimate image from indirect data

Forward Problem
image $\longrightarrow$ data physical model (PDE)
direct computation well posed unique

Inverse Problem data $\longrightarrow$ image implicit
indirect
ill posed
never unique

## Conductivity Imaging Measurement Set



- Electrodes at $x_{1}, x_{2}, \cdots, x_{E}$
- Assert currents at electrodes $j=\left(j\left(x_{1}\right), j\left(x_{2}\right), \cdots, j\left(x_{E}\right)\right)^{T}$
- Measure voltages $v=\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{E}\right)\right)^{T}$.

Unknown $\sigma(x)$ related to measurements via Neumann BVP

$$
\begin{aligned}
\nabla \cdot \sigma(x) \nabla \phi(x) & =0 & & x \in \Omega \\
\sigma(x) \frac{\partial \phi(x)}{\partial n(x)} & =j(x) & & x \in \partial \Omega
\end{aligned}
$$

- Set of measurements is current-voltage pairs

$$
\left\{j^{n}, v^{n}\right\}_{n=1}^{N}
$$

Inverse problem is to find $\sigma$ from these measurements (non linear)

## Statistical model of Inverse Problem



$$
\text { If } n \sim N\left(0, s^{2}\right), v \sim N\left(P K \sigma, s^{2}\right)
$$

Given measurements $v$, the likelihood for $\sigma$ is

$$
L_{v}(\sigma) \equiv \operatorname{Pr}(v \mid \sigma) \propto \exp \left(|v-\phi(\sigma)|^{2} / 2 s^{2}\right)
$$

Posterior distribution for $\sigma$ conditional on $v$

$$
\operatorname{Pr}(\sigma \mid v)=\frac{\operatorname{Pr}(v \mid \sigma) \operatorname{Pr}(\sigma)}{\operatorname{Pr}(v)}
$$

(Bayes rule)
$\operatorname{Pr}(\sigma)$ is the prior distribution

## Solutions $=$ Summary Statistics

All information contained in posterior distribution $\operatorname{Pr}(\sigma \mid v)$

## Traditional Solutions - modes

$$
\begin{aligned}
& \hat{\sigma}_{\mathrm{MLE}}=\arg \max L_{v}(\sigma) \equiv \arg \max \operatorname{Pr}(v \mid \sigma) \\
& \hat{\sigma}_{\mathrm{MAP}}=\arg \max \operatorname{Pr}(\sigma \mid v) \equiv \arg \max \operatorname{Pr}(v \mid \sigma) \operatorname{Pr}(\sigma)
\end{aligned}
$$

e.g. simple Gaussian prior: $\operatorname{Pr}(\sigma) \propto \exp \left(-|\sigma|^{2} / 2 \lambda^{2}\right)$

$$
\hat{\sigma}_{\mathrm{MAP}}=\arg \min |v-\phi(\sigma)|^{2}+\alpha|\sigma|^{2} \quad \alpha=s^{2} / \lambda^{2}
$$

- Tikhonov regularization, Kalman filtering, Backus-Gilbert - $\quad \alpha \rightarrow 0$ Moore-Penrose inverse, $\alpha=0$ least-squares


## Inferential Solutions

"Answers" are expectations over the posterior

$$
\mathrm{E}[f(\sigma)]=\int \operatorname{Pr}(\sigma \mid v) f(\sigma) d \sigma
$$



## Traditional Solutions - Fourier Deconvolution

The illegnditionieg of a protiom does net mean that a meaningfil apposvimate sabition cannet le comprifed ilathar the illconditionexy imples that stanflard mathepfs in numunc al linear alystra camest he used in a straghthowaed woy ts campute suth a sulitiom. inatead. mave sophishic ated mathobs must be aupísed in ander ts anoure the computation of a meaniegfid solition.

This is the assential geal off megularcation mathoes


Noisey blurred image


Exact inverse

The ill-conditioning of a problem does not mean that a meaningful approximate solution cannot be computed. Rather the ill-conditioning implies that standard methods in numerical linear algebra cannot be used in a straightforward way to compute such a solution. Instead, more sophisticated methods must be applied in order to ensure the computation of a meaningful solution.


MAP solution

## Bayesian Formulation for Conductivity Imaging

|  | current <br> in $\Omega$ | potential <br> in $\Omega$ | voltage <br> electrode | current <br> electrode |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| conductivity |  |  |  |  |  |
| value | $R$ | $\Phi$ | $V$ | $J$ | $\Sigma$ |
|  | $\rho$ | $\phi$ | $v$ | $j$ | $\sigma$ |

## Posterior

$$
\begin{aligned}
& \operatorname{Pr}\left\{\Sigma=\sigma, \Phi^{n}=\phi^{n}, R^{n}=\rho^{n} \mid\left\{J^{n}, V^{n}\right\}=\left\{j^{n}, v^{n}\right\}\right\} \\
&=\operatorname{Pr}\left\{\left\{J^{n}, V^{n}\right\}=\left\{j^{n}, v^{n}\right\} \mid \Sigma=\sigma, \Phi^{n}=\phi^{n}, R^{n}=\rho^{n}\right\} \\
& \times \operatorname{Pr}\left\{\Sigma=\sigma, \Phi^{n}=\phi^{n}, R^{n}=\rho^{n}\right\} \\
& R=-\Sigma \nabla \Phi, \phi=\Gamma_{\sigma}\left(\left.\rho\right|_{\partial \Omega)} \text { and } \rho=-\sigma \nabla \phi\right. \\
& \operatorname{Pr}\left\{\Sigma=\sigma, \Phi^{n}=\phi^{n}, R^{n}=\rho^{n}\right\}=\operatorname{Pr}\left\{\Sigma=\sigma, R^{n}=\rho^{n}\right\}
\end{aligned}
$$

Stipulate $\operatorname{Pr}\{\Sigma=\sigma\}$ only - usually a MRF

$$
\begin{aligned}
& L\left(\sigma, \phi^{n}, \rho^{n}\right) \\
& \quad=\operatorname{Pr}\left\{\left\{J^{n}, V^{n}\right\}=\left\{j^{n}, v^{n}\right\} \mid \Sigma=\sigma, \Phi^{n}=\phi^{n}, R^{n}=\rho^{n}\right\} \\
& =\operatorname{Pr}\left\{\left\{V^{n}\right\}=\left\{v^{n}\right\} \mid \Phi^{n}=\phi^{n}\left(\sigma, \rho^{n}\right)\right\} \\
& \quad \times \operatorname{Pr}\left\{\left\{J^{n}\right\}=\left\{j^{n}\right\} \mid R^{n}=\rho^{n}\right\}
\end{aligned}
$$

Errors i.i.d.

$$
\begin{aligned}
L\left(\sigma, \phi^{n}, \rho^{n}\right)= & \Pi_{n=1}^{N} \operatorname{Pr}\left\{V^{n}=v^{n} \mid \Phi^{n}=\Gamma_{\sigma}\left(\left.\rho^{n}\right|_{\partial \Omega}\right)\right\} \\
& \times \operatorname{Pr}\left\{J^{n}=j^{n} \mid R^{n}=\rho^{n}\right\}
\end{aligned}
$$

Noise is normal (say)

$$
\operatorname{Pr}\{J=j \mid R=\rho\} \sim \mathrm{N}\left(\left(\rho\left(\mathrm{x}_{1}\right), \rho\left(\mathrm{x}_{2}\right), \cdots, \rho\left(\mathrm{x}_{\mathrm{k}}\right)\right)^{\mathrm{T}}, \mathrm{~s}_{\rho}^{2}\right)
$$

Samples from the Prior


## Markov chain Monte Carlo

- Monte Carlo integration

If $\left\{X_{t}, t=1,2, \ldots, n\right\}$ are sampled from $\operatorname{Pr}(\sigma \mid v)$

$$
\mathrm{E}[f(\sigma)] \approx \frac{1}{n} \sum_{t=1}^{n} f\left(X_{t}\right)
$$

- Markov chain

Generate $\left\{X_{t}\right\}_{t=0}^{\infty}$ as a Markov chain of random variables $X_{t}$ $\in \Sigma_{\Omega}$, with a $t$-step distribution $\operatorname{Pr}\left(X_{t}=\sigma \mid X_{0}=\sigma^{(0)}\right)$ that tends to $\operatorname{Pr}(\sigma \mid v)$, as $t \rightarrow \infty$.

## Metopolis-Hastings algorithm

(1) given state $\sigma_{t}$ at time $t$ generate candidate state $\sigma^{\prime}$ from a proposal distribution $q\left(. \mid \sigma_{t}\right)$
(2) Accept candidate with probability

$$
\alpha(X \mid Y)=\min \left(1, \frac{\operatorname{Pr}(Y \mid v) q(X \mid Y)}{\operatorname{Pr}(X \mid v) q(Y \mid X)}\right)
$$

(3) If accepted, $X_{t+1}=\sigma^{\prime}$ otherwise $X_{t+1}=\sigma_{t}$
(4) Repeat
$q\left(. \mid \sigma_{t}\right)$ can be any distribution that ensures the chain is:

- irreducible
- aperiodic


## Three-Move Metropolis Hastings

Choose one of 3 moves with probability $\zeta_{p}, p=1,2,3$
Transition probabilities $\left\{\operatorname{Pr}^{(p)}\left(X_{t+1}=\sigma_{t+1} \mid X_{t}=\sigma_{t}\right)\right\}_{p=1}^{3}$ (reversible w.r.t. $\operatorname{Pr}(\sigma \mid v)$ ).

Overall transition probability is

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t+1}\right. & \left.=\sigma_{t+1} \mid X_{t}=\sigma_{t}\right) \\
& =\sum_{p=1}^{3} \zeta_{p} \operatorname{Pr}^{(p)}\left(X_{t+1}=\sigma_{t+1} \mid X_{t}=\sigma_{t}\right)
\end{aligned}
$$

If at least one of the moves is irreducible on $\Sigma_{\Omega}$, then the equilibrium distribution is $\operatorname{Pr}(\sigma \mid v)$.

A pixel $n$ is a near-neighbour of pixel $m$ if their lattice distance is less than $\sqrt{8}$.

An update-edge is a pair of near-neighbouring pixels of unequal conductivity. $\left(\mathcal{N}^{*}(\sigma), \mathcal{N}_{m}^{*}(\sigma)\right)$

Move 1 Flip a pixel. Select a pixel $m$ at random and assign $\sigma_{m}$ a new conductivity $\sigma_{m}^{\prime}$ chosen uniformly at random from the other $\mathcal{C}-1$ conductivity values.

Move 2Flip a pixel near a conductivity boundary. Pick an update-edge at random from $\mathcal{N}^{*}(\sigma)$. Pick one of the two pixels in that edge at random, pixel $m$ say. Proceed as in Move 1.
Move 3Swap conductivities at a pair of pixels. Pick an updateedge at random from $\mathcal{N}^{*}(\sigma)$. Set $\sigma_{m}^{\prime}=\sigma_{n}$ and $\sigma_{n}^{\prime}=\sigma_{m}$.

## Experiment 1

(discrete variables - three conductivity levels)


## Experiment 2

(continuous variables - three conductivity types)


Experiment 3
(shielding)


## Summary

- If you can simulate the forward map then you can sample and calculate expectations over the posterior, i.e., 'solve' the inverse problem
- Statistical inference provides a unifying framework for inverse problems

