

Housing, Heating and Health Study: results

Professor Philippa Howden-Chapman Housing, Heating and Health Group, *He Kainga Oranga* Housing and Health Research Programme University of Otago, Wellington

Collaboration between

Researchers at universities of Otago, Massey Maori Studies & Building Science, Victoria, Auckland School of Population Health, BRANZ Ltd

Recent funders:HRC, Contact, MfE, DHBs (Hutt and Capital & Coast)...

Community groups, PHOs, Schools...

Housing

- NZ houses are cold and damp, with inadequate heating
- Average winter temperature is 16°C (WHO recommends 18°C – 21°C)
- 1600 excess winter deaths from respiratory and circulatory problems compared to 900 deaths attributable annusal to traffic pollution
- 1,000x rule

Problem of asthma

- Asthma and allergies are the most prevalent childhood chronic diseases
- In NZ, a quarter of the population have asthma ~ 200,000 children
- Asthma rates are higher in Maori children (31.7%) than in European (25.9%) or Pacific children (21.25%)

LPG heaters

- Third of NZ households have UFGHs
- Exposure to NO_2 can reduce immunity to lung infections and increase the severity and duration of a flu episode
- NO_2 inflames the lining of the lungs, which can cause problems such as wheezing, coughing, colds, flu and bronchitis.
- NO₂ also increases the health risks from particulates
- As well as gases released during combustion, water vapour is produced at a rate of 1.6 kg per LPG kg consumed, dependent on the proportion of butane and propane in the bottle.

Housing & Heating Study

- Community-based, random control trial
- 2005, 409 households enrolled
 - Child, 6-12, with doctor-diagnosed asthma
 - Inefficient heaters
- 2005, houses insulated and baseline measures taken
- Intervention, household's choice of more effective heating installed
- 2006, follow-up measures taken
- 2007, control group heaters installed

Study Aim

• This study aimed to see whether nonpolluting, more effective, home heating reduced children's asthma symptoms over winter.

Intervention

Previous:

- X electric heaters (2kW)
- X unflued gas heaters (4kW)

Replaced with:

- $\sqrt{320}$ heat pumps (4-7kW)
- $\sqrt{55}$ wood pellet burners (10kW
- $\sqrt{11}$ flued gas heaters

Outcome measures

- Peak Flow Diaries for the child with asthma (PEV and FEV)
- Symptom diaries for whole family
- Indoor environment measured (temperature, relative humidity,N0₂)
- Intensive monitoring in 69 homes (temperature, RH, HCHO, CO, CO₂, NO₂, fungi (air and dust) heater use)
- School + GP + fuel/energy records
- Hospital records

Baseline Ethnicity of Children in the Study

Baseline form of heating Unflued Gas 51% Other 0.5% Fireplace 5% Flued Gas 7% Electric 37%

How often was heating used?

Has your power been cut off in the last year?

Do you feel your house has been cold this winter?

Non-Index child's health is:

Results (1)

Household retention rate was 85% (349/409).

In intervention compared to the control group

Average living room temperatures were 1.1°C warmer than the control houses* (t=5.63;CI:16.82-17.32, p=0.000)

Mean difference of 0. 53°C in the index's child's bedroom temperature* (t=2.87;CI: 14.60-15.08, p=0.002).

Exposure to hours per day weighted for degrees less than 10° C, 50% less in both the living room (t=2.75;CI:0.88-1.37, p=0.000) and the child's bedroom* (t=4.94;CI:1.65-2.40, p=0.000).

* statistically significant

Results (2)

In intervention compared to the control group People felt warmer* Condensation reduced* Less mould and mouldy smells reported* Levels of nitrogen dioxide halved in the children's bedrooms 4.2* (1.18-17.41) µg/m³ vs 9.08 (0.87-64.27) µg/m³.

* statistically significant

% of children in good health

Results (3)

In intervention group

- Less poor health (aO.R. 0.45; CI 0.27-0.73, p=0.00) *
- Children with asthma had less coughing during the night and on waking (aO.R. 0.51; CI 0.31-0.84, p=0.01)*
- Less wheezing (a0.R. 0.51; CI 0.32-0.81, p=0.00) *
- Children had fewer episodes of cold and flu.*
- Children had 2.3 days less off school (aR.R.0.88; CI 0.8-0.98; p=0.02) *
- Children had fewer visits to the GP (aR.R.0.66, CI 0.52-0.83, p=0.00) *

statistically significant

Effect of intervention on children with asthma

http://www.economist.com/surveys/displaystory.cfm?story_id=9217972

Summary of results

- More effective heaters increased the indoor temperature
- Improved the symptoms of children with asthma
- Led to fewer days off school and fewer visits to GPs.

Conclusions

- Reframe health problems to focus on solutions
- Learn from policy changes
- Reduce inequalities in causes of ill-health
- Inter-sectoral approaches are very time consuming, but potentially great benefits
- Process is as important as outcome
- More effective to prevent people getting ill
- Academics can be catalysts for public health action

See www:wnmeds.ac.nz/healthyhousing.html