What is Sustainability About, Really?

Dr. Susan Krumdieck Advanced Energy and Materials Systems Lab Department of Mechanical Engineering University of Canterbury Christchurch

Energy Management Seminar

University of Otago

5 October, 2007

Outline

- What do we really want Sustainability or more oil?
- What are the real problems?
- What are the real solutions?
- AEMS Lab Research

What do we really want?

Survival

Safety Individual Immediate

Security Organization Long Term

System Continuous

More Oil?

Once upon a time, 200 million years ago...

The shallow seas around continents were teaming with life

Recipe for Oil

- Prodigious plant and animal growth
- Marine nutrient trap
- 2300 4600 meters of sedimentation
- 82° 145° C
- A few 10's of millions of years

Oil Reservoirs

The hydrocarbons are lighter than water and will migrate up to the surface unless they get trapped

A. Anticlinal trap

The oil can't be extracted unless the source rock is porous and permeable.

The Oil Field

Giant Consumption is a Real Problem

Climate Change is a Real Problem

M. Bush, M. Silman, D. Urrego, Science 303 (2004) 827-829

Burning Fossil Fuel is the CO₂ Problem

This is your Engineering Problem Definition

Current NZ Crops and Agricultural Wastes

Waste to Transport Fuel

Doesn't improve sustainability

1.5 PJ Net 1.5% Petrol

Total Crop and Waste Ethanol

Food Crops Converted to Fuel:
Corn, Wheat, Barley, Potatoes

Ethanol Energy - Fossil Energy Input = 1359 PJ 1.2% of NZ Petrol Use 2004

Waste Streams:

Kiwi, Whey

Ethanol Energy - Fossil Energy Input = 0.17 PJ 0.1% of NZ Petrol Use 2004

Still burning giant amount of oil!

New Zealand is Dependent on World Oil Market

Biofuels not the Panacea for us

But we've got to do something.... We've got to start somewhere....

If Biofuels aren't the answer...?

What are we going to do to be able to use less fossil fuel and produce less CO₂?

Demand Side Management

Demand Side Management Projects

Experience in Electricity Supply

- Alternatives
- Analysis and Modelling
- Decisions
- Implementation
 - Demonstration Projects, Pilot Studies
 - Incentives, Marketing
- Monitoring of Programmes

Vehicle Fuel Efficiency

Energy Efficiency Improvement

Diesel Car (same size) 20-50% Petrol Hybrid (same size) 5-30% Down-Size Petrol Vehicles 30-60%

Motor Cycles and Scooters

Just have to buy a new car!

Travel Efficiency

Mode Shift and Destination Shift

May even SAVE money!

Engineering Forward

- EROI Must be Positive
- Productive, Sustainable Land Use
- Oil Production/Consumption Decline
- 50% reduction of CO₂ emissions by 2020

Engineering Research

Advanced Energy and Material Systems Lab

Renewable Energy City

Local Food Production

Reclaimed paved space

Project

S

55% of fresh produce, dairy & poultry grown within the urban form Zero Food Miles

Production and Manufacturing

Micro-Processing

Some New Features

Energy Service Management

Micro-Manufacturing

Renewable Energy Transport

Silke Project

Research for Security

Demand Side Management

- Objectives:
 - Maintain security of transport activities
 - Affordability of transport and infrastructure
- Strategic Goals:
 - Reduce GHG emissions
 - Reduce Oil Imports
- Mutual Benefit Supplier and Consumers

Supply & Demand

Research for Security

Risk Assessment

RECATS

Energy Risk to Essential Activities as a Function of Urban Form

RECATS Set Variables Alternative Fuel Probability Data Mode and Distance Split (%) Energy Constraint Energy Reduction Events Short Medium Long 35 Distance: Forcast Year 2030 Car 10 32 35.5 Reduction Event 25% 30 Bus 4 5 Define fuel avalibility (I) 0 Mode: Walk 5 2 0 Prohability 68.4 % Der 25 3 Bike 2 0.5 Mitigation Options Preset Urban Forms Allow Bin Shifting D å 20 O Option BAU O Option A Allow Mode Shifting % Π Option B Option C m - World Production History Allow Trip Combining % Π Fleet Efficiency Modelled Production Allow Prioritised Trip Deletion Distance: Short Medium Long * Reduction Event (other wise random) Car 16 13 10 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 Year 12 Analysis Output Bus 5 5 5 Initial Consumption (I) 1484 0 Importance Split (%) Reduced Consumption (I) 1112 Calculate Show Progress Optional Necessarv Essential 0.294 UNIVERSITY OF Impact CANTERBURY 50 20 30 Risk 0.201 **Travel Behaviour Before Fuel Constraint** Travel Behaviour After Fuel Constraint 500 - Car 500 Car Bus Bus 450 450 Walk Walk Bike Bike 400 400 350 350 Å □ 300 A 300 a 250 a 250 Lups Trips 200 150 150 100 100 Ess Nec Opt Nec Es Nec Opt Ess Nec Opt Opt Nec Ess Nec Ess Opt Ess Opt Short Distance Medium Distance Long Distance Short Distance Long Distance Medium Distance

Risk Assessment

Research for Security

Energy Risk to Essential Activities as a Function of Urban Form

Transport DSM Research

Help customers understand their travel, how to reduce fuel use and learn secure mode and destination options

Travel Activity Constraint Adaptability Simulation TACA Sim

Rapid Travel Demand Assessment

Name Family Name Age Gender What is your occupation? Student Staff What is your occupational status?	
Full time	
Part time	
Retired	2
Staff with Part time job	
Student with Part time job	
Васк	Nexe

Level 1: Personal Information

TACA Sim

Rapid Travel Demand Assessment

Level 2: Travel Activities

TACA Sim

Rapid Travel Demand Assessment

Level 2: Travel Destinations

TACA Sim

Options? Travel Behaviour Change -

Vame Samily Name Age Gender I I Vhat is your occupation? Staff	
Full time	157
Pare time	
Retired	
Staff with Part time Job	
Student with Part time job	
Васк	Nexe

Identify and Evaluate options for each activity

Learn new trip modes through role playing game

Transport Adaptability

What happens if you change your car or move to another place?

Mutually
Beneficial
RelationshSupplier Relationship

Supplier & Customers

Don't Panic

Conclusion:

Problems:

Unavoidable insecurity in Fossil Fuel supply
Irreversible, unsustainable environmental impacts that threaten survival

Solutions from Innovations in

Risk Assessment Demand Side Management Adaptation

Discussion

Survival

Safety Individual Immediate

Security Organization Long Term

System Continuous

