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permeability as a function of surface temperature [14], porosity [6, 8] or microstructure
[8] are difficult to obtain and are thus scarce. They show a considerable amount of
scatter that is attributed, in part, to sample size effects [8]. They reveal the sensitivity of
flow resistance to the crystal structure and history of a sea ice sheet. For large scale
modelling purposes it can be desirable to find a simple parameterisation of the
permeability of sea ice that accounts implicitly for small scale fluctuations [6]. We
present an attempt to find a permeability function that is suitable for modelling sea ice
growth. Numerical simulations are performed that illustrate the capability of a simple
permeability-porosity function to generate realistic sea ice sheet salinity profiles during
ice growth.

MODEL DESCRIPTION

We treat sea ice growth as the flow of a Newtonian fluid in a two-dimensional domain
that is partly pure liquid, and partly porous ice. The solid matrix of the porous medium
is stationary in position, but time variable as governed by the phase change. The
governing equations reduce to the Navier-Stokes equations with Boussinesq
approximation in the liquid region, while flow in the porous medium is dominated by
friction that is expressed through a term after Darcy [S]. Permeability is treated as a
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function of Jocal porosity. The porous medium undergoes phase change, and local
thermodynamic equilibrium is assumed. The numerical implementation is based on the
finite volume method with a staggered rectangular grid [12].

The governing equations of the finite volume method are volume-averaged formulations
of the Navier-Stokes equations for a pure hqmd We chose the integration volume to be
large c*mot,lg;h so that small changes in position cause only small changes in average
properties. We use a governing set of equations that is valid if all physical properties of
the pure liquid and of the pure solid are constant in time and inde pa,ndwi oI position. In
the momentum equations we apply the Boussinesq approx imation, 1.e. the density of the
liquid is constant except in the buoyancy term, where it 15 tre M as a function of local
temperature and salinity.

The volume averaged momentum and mass conservation equations for a no-ship
boundary condition between microscopic solid and liquid are
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where i and v are thc ﬂ sd velocity components in the x and y directions, respectively,
pr and p, are the constant densities of liquid and solid, p is the variable density of the
liquid, g 1s the dynzumg: viscosity, p the pressure, g and Il split into x- and y-components
of the acceleration due to gravity and the permeability of the solid, respectively, and /s
the volume fraction of the liquid phase.

We find from experience that the solution of the mass and momentum cquation (see
below) on a staggered grid 1s stable if we solve foi "/}z and fv. We theretore transform the
advection term on the left hand side of (1) and (2). The derivative of the phase fraction
that emerges 1s dropped as it appears only in the porous medium and fluid flow in the
porous medium is dominated by the Darcy [riction term. The resulting momentum
equations are
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From volume integration of the transport equation we obtain the conservation equations
for heat and mass of solute. They are for heat

céz+c, aT"*‘CIV?‘Z‘::“]E‘ T 6T Lpsaf
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(6)
and for solute
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In (6) and (7) T is the temperature of solid and liquid, C is the solute concentration in
the liquid, L is the latent heat of fusion, and I is the solute diffusion coefficient in the
liquid. Solute diffusion through the solid is neglected. The average quantities for the
porous medium

¢ =Je + (1= fe, ®)

and

Elerliia-pk ©)
P / Ps

are defined from the specific heat capacities ¢; and ¢;, and heat conductivities k; and k,
of the liquid and solid, respectively. In the derivation of (6) we assume that the average
temperatures of solid and liquid are equal and the same as the temperature at the
microscopic solid-liquid interface. Further, latent heat is released or absorbed at the
microscopic interface during phase transition. In the derivation of (7) we assume that
the concentration of solute at the microscopic solid-liquid interface is equal to the
average concentration of solute in the liquid, and that the concentration in the solid is
zero. Solute is rejected into the liquid phase at the microscopic interface during the
phase transition. We prescribe local thermodynamic equilibrium to determine the
volume fraction /. The volume fraction is adjusted until the equilibrium condition,

7(f)=T.(C(N)), (10)

hold, where Tx(C) is the freezing temperature as a function of solute concentration. We
use a step-wise linear freezing point equation for sea ice, fitted to data given by Cox and
Weeks (1982). Since on the scale of the finite volume simulation sea ice has a distinct
transition form the purely liquid phase to the porous medium we incorporate a form of
freezing front tracking. We restrict ice formation to those computational cells that either
already contain ice or have a liquid volume fraction less than the specified threshold
Jr=0.8 [10] at a minimum of one of their faces. The liquid volume fraction at the cell
face is estimated by linear extrapolation from neighbouring cells.

Equations (3) to (10) form a coupled set of differential equations that are solved
iteratively for each time step with the SIMPLEC algorithm [16]. Discretisation of
transient and advection term is limited to first order schemes in this work, as second
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order schemes could not guarantee stability under all phase transition conditions studied.
Since fluid velocities are quite small, first-order schemes give reasonably accurate
results. We allow fluid inflow and outflow at the bottom of the domain. At this open
boundary we chose the pressure boundary condition to enforce mass conservation,
impose zero velocity gradient normal to the boundary, and zero velocity parallel to it
[13]. Temperature and solute concentration at the open boundary take on prescribed
values Tpp and Cop for inward flow. The integrity of the algorithm is validated by
correctly determining the critical Rayleigh number for Rayleigh-Bernard convection,
and by calculating the flow pattern over a backward facing step in the laminar region of
Reynolds number Re=800, where the open boundary is placed such as to intersect the
second eddy [13].

PERMEABILITY FUNCTION

We seek a parameterisation of the permeability as a function of the liquid volume
fraction f in order to solve the momentum equation. Since the governing equations are
based on the assumption of an interconnected liquid phase, any isolated pockets have to
be accounted for implicitly by the permeability function. Owing to the presence of
drainage systems on all length scales, and the change of pore structure with age and
history of the sea ice sheet [8] we cannot expect to find a permeability function of only
one parameter that predicts the permeability in all circumstances. Here, we are
particularly concerned with permeability in young sea ice under growth conditions, and
find a permeability function for that situation.

Our primary concern in this paper is the modelling of sea ice desalination. Cox and
Weeks (1975) have performed a laboratory study on the initial sea ice desalination
process. They find that, after an initial brine segregation process, the salinity of the ice
sheet continuously decreases mainly as a result of gravity drainage. They present data
for /<0.7 that we fit with a power law function and obtain

AS‘- " i 2 r
ke — _42%107° psums” K (/ “‘0-054)“ £ ’ (1D
Al Az

where the rate of sea ice desalination, AS,, /Af, is proporticnal to the vertical
temperature gradient, AT/ Az . The rate of desalination is zero for /< 0.054. Details of
the fit are given in Petrich (2004). Assuming the change in salinity of sea ice 1s
proportional to the solute concentration of sea ice, i.e. AS,, = # AC,,, and assuming

that the temperature gradient is proportional to the concentration gradient of liquid brine,
ie. AT/ Az =a AC, / Az, where ais the slope of the liquidus line, we rewrite (11)

AC, y2 AC
ke = 42107 psums” K g‘(f - 0-054)]m ‘Z“\“gé (12)
At B Az

Comparing this expression to the transient and advection terms of the solute mass
balance equation (7) we obtain an expression for the vertical liquid mass flux during
freezing, (fu), as a function of instantaneous liquid volume fraction £,
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(fir)=-42x10" psums” K" %(f - 0.054)7 (13)
We describe fluid flow during brine drainage by Darcy’s law,
yr .
I, =—(fu 14
=9, (fu) (14)

with an isotropic permeability I1. that is characteristic for the brine drainage process.
Assuming that Vp is approximately independent of the conditions of growth we obtain
an isotropic permeability function for sea ice during initial desalination of the form

IT, o (£ ~0.054)" . (15)

We fit the constant of proportionality in (15) so that the computer model yields realistic
salinity profiles. In order to define what is realistic, reference salinity profiles are
calculated from an expression for the stable distribution coefficient keg as a function of
freezing front velocity v, where

9 0.46
[y 1%

— =k . =0.19 16
S, @ [1.35 x1077 ms™ ] (16)

15 a power law fit to the stable salinity data of Nakawo and Sinha (1981) from Arctic sea
ice. The reference velocity of 1.35 x 107 ms™ is the average freezing front velocity of
that data. The justification for fitting a power law originates from the sea ice
desalination model of Cox and Weeks (1988). Their model suggests [15] a power law
relationship ~ with exponent 0.42 for the range of ice growth  velocities
3x10%ms! <v<3x10Cms”,

[n an anisotropic medium the characteristic permeability I1, in (15) can be understood as
the path average of three orthogonal components, two horizontal components Il,; > and
one vertical component I1,. In one instance Freitag (1999) finds a difference of almost
one order of magnitude between the horizontal components I, and Il,,in columnar sea
ice. However, we will continue to examine the suitability of an isotropic permeability to
model sea ice growth.

EXAMPLE CALCULATIONS
We use the permeability function

I, =1x107" m* (f -0.054)" (17)
for /> 0.054, and IT, =1x10™° m” for f< 0.054.

Sea ice growth is simulated in domains of various aspect ratios, 320 to 1280 mm wide
and 640 to 1920 mm high on square grids of cell size 20 x 20 mm?, 40 x 40 mm?, and
80 x 80 mm®. Periodic boundaries [16] are imposed in the horizontal (x-direction), an
open boundary at the bottom and the top is isothermal y-direction). The salinity of the
water is 36 psu, and the water temperature is initially 1 mK above its equilibrium
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freezing point. Water advected through the open boundary is at the same temperature
and salinity as the water in the domain at the beginning of the simulation. Simulations
are stopped when the freezing front reaches 240 mm above the open boundary. The
details of the ice sheet growth simulation depend on the domain configuration. With
horizontally periodic boundary conditions horizontal layers of fluid motion develop
superimposed on the vertical brine drainage pattern, particularly in domains with few
(e.g. 8) horizontal cells. Wider domains provide more opportunity for the brine to
disturb this flow. These layers are artefacts of the two-dimensional domain. They are
faster moving on fine grids than on coarse grids, probably because coarse grids increase
localised mixing and dissipation of momentum. We find that high horizontal flow
velocities reduce brine drainage in the systems investigated. To keep salinity profiles
comparable, we limit horizontal flow velocities to 3 mms™ by introducing an additional
friction source term in the momentum equation. The choice of this limit originates in the
observation that horizontal velocities of 3 mms™ are seldom exceeded in simulations
with 80 mm grid size. Feltham et al (2002) have developed an analytical model of ice
growth in the presence of a shear flow and demonstrate that brine expulsion depends on
shear stress in the fluid. Salinity profiles do not depend on the overall height of the
domain. However, as expected, the smoothness of the horizontally averaged salinity
profiles generally increases with increasing number of horizontal cells.
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Fig. 1. Example of calculated salinity profiles for surface temperatures —10°C (crosses) and ~20°C

(dots). Dotted lines are profiles calculated from (16). (a) Superposition of 3 profiles at —10°C and
5 profiles at ~20°C. The salinity close to the interface is not shown for clarity. (b) Single examples
of ice sheet profiles including the ice-water interface obtained from a domain 1280 x 1280 mm®,
grid side 16 x 16. Note the different scales on the y-axes

Figure 1(a) illustrates the range of scatter obtained in calculations with various domain
configurations mentioned above. Apart from the scatter the salinity profiles for ice
grown from a constant temperature surface match the profiles predicted from (16) based
on the interface velocity. The salinity closest to the ice-water interface is not shown for
clarity. Figure 1(b) compares the salinity profile of an ice sheet grown at a surface
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temperature of ~10°C with one grown in an otherwise identical domain configuration at
—20°C. Both profiles show the classical C-shape. While the profile of the simulated ice
sheet at ~10°C coincides with the predicted profile from (16), the simulated profile at
~20°C is systematically higher than predicted by 1 to 2 psu. The latter profile shows
deviations from a smooth curve at 0.35 and 0.5 m. An illustration of the nature of these
deviations is given in Figure 2. It is apparent that the horizontal salinity distribution is
very heterogeneous, and as such is qualitatively similar to naturally grown sea ice.
Deviations in the calculated average salinity profile can usually be attributed to channel-
like features, which have a salinity distinctly above the median of the ice sheet at that
height.

— 37 psu

1.28 m

|
|
| |

water

u

4 psu

Fig. 2. Example calculation of ice growth at -20 °C surface temperature after 4 x 10° s. Grid size
16 x 16. The freezing front is in the range 0.96 to 1.04 m below the surface. The salinity of one
of the white volumes 200 mm below the surface of the ice sheet is as high as 54 psu

SUMMARY

We have demonstrated that it is possible to model sea ice growth and desalination as
flow through a porous medium with phase change. The dynamics of the entire system is
described by a single set of governing equations. We have estimated a permeability-
porosity relationship from the observed correlation between rate of brine drainage,
temperature gradient and liquid volume fraction £ Calculations with this permeability
function resemble extrapolated data from the Arctic surprisingly well, although zero
order approximations are made in the derivation, and the derivation does not account
explicitly for an initial solute segregation [4]. The inhomogeneity of natural sea ice is
resembled, including features such as brine channels. The form of the permeability
function (17) corresponds to the power law expression predicted by percolation theory
[9], where exponents of 1.2 to 1.3 are found for percolation in two-dimensional systems
[1]. Unfortunately, the present model calculations are unable to distinguish whether or
not it is mere chance that the exponent of equation (17) coincides with that for
percolation in a two-dimensional system. The success of the model in cases of simple,
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quasi one-dimensional sea ice growth allows its applicability to be tested in more
complex situations.
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