

Sea ice salinity and salt flux from a growing ice sheet in the presence of an oceanic heat flux Chris Petrich and Pat J. Langhorne University of Otago, Department of Physics, Dunedin, New Zealand

1. Summary

Known:

- Growing sea ice is a source of dense brine
- Physical properties of sea ice depend on salinity
- Salinity and salt flux depend on growth conditions

Aim:

Determine the dependency of the stable sea ice salinity and salt flux on the growth velocity and temperature gradient in the ice in the presence of an oceanic heat flux.

Method:

- Treat sea ice as porous medium, porosity f
- 2-dimensional finite volume fluid dynamics simulations
- impose oceanic heat flux F_w
- impose heat exchange with atmosphere
- determine salt flux Φ_s ; sea ice salinity S
- determine temperature gradient dT/dz; ice growth velocity v
- find empirical relationship

$$\Phi_s = \Phi_s(F_w; dT/dz; v)$$

$$S = S(F_w; dT/dz; v)$$

2. Governing equations

- Single set of governing equations for porous sea ice and ocean (Pet*rich et al.*, 2006)
- Volume averaged equations \rightarrow volume fraction of liquid, f
- Local physical properties: weighted averages of solid $([\cdot]_s)$ and liquid $([\cdot]_l)$
- Isotropic permeability $\Pi(f)$

Mass conservation:

$$\left[1 - \frac{\rho_s}{\rho_l}\right]\frac{\partial f}{\partial t} + \frac{\partial (fu)}{\partial x} + \frac{\partial (fw)}{\partial z} = 0$$

Momentum conservation:

$$\rho_{l} \left[\frac{\partial (fu)}{\partial t} + \frac{\partial (fuu)}{\partial x} + \frac{\partial (fuw)}{\partial z} \right] = \mu \left[\frac{\partial^{2} (fu)}{\partial x^{2}} + \frac{\partial^{2} (fu)}{\partial z^{2}} \right] - f \frac{\partial p}{\partial x} - f \frac{\mu}{\Pi} fu$$
$$\rho_{l} \left[\frac{\partial (fw)}{\partial t} + \frac{\partial (fwu)}{\partial x} + \frac{\partial (fww)}{\partial z} \right] = \mu \left[\frac{\partial^{2} (fw)}{\partial x^{2}} + \frac{\partial^{2} (fw)}{\partial z^{2}} \right] - f \frac{\partial p}{\partial z} + f \rho g - f \frac{\mu}{\Pi} fw$$

Energy conservation:

$$\overline{\rho c} \frac{\partial T}{\partial t} + \rho_l c_l \frac{\partial (f u T)}{\partial x} + \rho_l c_l \frac{\partial (f w T)}{\partial z} = \frac{\partial}{\partial x} \left[\bar{k} \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial z} \left[\bar{k} \frac{\partial T}{\partial z} \right] - \left[T \Delta (\rho c) + L \rho_s \right] \frac{\partial f}{\partial t}$$
$$\overline{\rho c} = f \rho_l c_l + (1 - f) \rho_s c_s$$

with

$$\overline{\rho c} = f \rho_l c_l + (1 - f) \rho_l$$
$$(\rho c) = \rho_l c_l - \rho_s c_s$$
$$\bar{k} = f k_l + (1 - f) k_s$$

Solute conservation:

$$f\frac{\partial C}{\partial t} + \frac{\partial (fuC)}{\partial x} + \frac{\partial (fwC)}{\partial z} = \frac{\partial}{\partial x} \left[fD\frac{\partial C}{\partial x} \right] + \frac{\partial}{\partial z} \left[fD\frac{\partial C}{\partial z} \right] - C\frac{\partial f}{\partial t}$$

Local thermodynamic equilibrium:

terrelationships between permeability, effective porosity and total porosity in sea ice, Cold Regions Science and Technology, 44(2), 131-144, doi: 10.1016/j.coldregions.2005.10.001.

$$\Phi_s^{\text{param}} = C_0 v \left(1 - \frac{C_{\text{ice}}}{C_0} \right) \tag{2}$$