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ABSTRACT 
We present a numerical model based on the finite volume method to simulate sea ice 
growth and desalination as a flow process through a porous medium with phase change. 
To achieve this we estimate a permeability-porosity relationship for the initial stages of 
sea ice growth from experimental data for brine drainage. The model generates ice 
sheets with salinity profiles close to calculations based on ice growth velocity. 

INTRODUCTION 
It is often desirable to know the permeability of sea ice to understand microscopic 
processes inside ice sheets that affect the salt budget during sea ice formation (Worster, 
1992; Feltham et al, 2002), or the meltwater budget during sea ice disintegration 
(Eicken et al., 2002). Direct measurements of the permeability as a function of surface 
temperature (Ono and Kasai, 1985), porosity (Freitag, 1999; Eicken et al., 2002) or 
microstructure (Freitag, 1999) are difficult to obtain and are thus scarce. They show a 
considerable amount of scatter that is attributed, in part, to sample size effects (Freitag, 
1999). They reveal the sensitivity of flow resistance to the crystal structure and history 
of a sea ice sheet. For large scale modelling purposes it can be desirable to find a simple 
parameterisation of the permeability of sea ice that accounts implicitly for small scale 
fluctuations (Eicken et al, 2002). We present an attempt to find a permeability function 
that is suitable for modelling sea ice growth. Numerical simulations are performed that 
illustrate the capability of a simple permeability-porosity function to generate realistic 
sea ice sheet salinity profiles during ice growth. 

MODEL DESCRIPTION 
We treat sea ice growth as the flow of a Newtonian fluid in a two-dimensional domain 
that is partly pure liquid, and partly porous ice. The solid matrix of the porous medium 
is stationary in position, but time variable as governed by the phase change. The 
governing equations reduce to the Navier-Stokes equations with Boussinesq 
approximation in the liquid region, while flow in the porous medium is dominated by 
friction that is expressed through a term after Darcy (Brinkman, 1947). Permeability is 
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treated as a function of local porosity. The porous medium undergoes phase change, and 
local thermodynamic equilibrium is assumed. The numerical implementation is based 
on the finite volume method with a staggered rectangular grid (Patankar, 1980). 

The governing equations of the finite volume method are volume-averaged formulations 
of the Navier-Stokes equations for a pure liquid. We chose the integration volume to be 
large enough so that small changes in position cause only small changes in average 
properties. We use a governing set of equations that is valid if all physical properties of 
the pure liquid and of the pure solid are constant in time and independent of position. In 
the momentum equations we apply the Boussinesq approximation, i.e. the density of the 
liquid is constant except in the buoyancy term, where it is treated as a function of local 
temperature and salinity.  

The volume averaged momentum and mass conservation equations for a no-slip 
boundary condition between microscopic solid and liquid are 
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where u and v are the fluid velocity components in the x and y directions, respectively, ρ
l and ρ

s are the constant densities of liquid and solid, ρ  is the variable density of the 
liquid, �  is the dynamic viscosity, p the pressure, g and Π  split into x- and y-components 
of the acceleration due to gravity and the permeability of the solid, respectively, and f is 
the volume fraction of the liquid phase. 

We find from experience that the solution of the mass and momentum equation (see 
below) on a staggered grid is stable if we solve for fu and fv. We therefore transform the 
advection term on the left hand side of (1) and (2). The derivative of the phase fraction 
that emerges is dropped as it appears only in the porous medium and fluid flow in the 
porous medium is dominated by the Darcy friction term. The resulting momentum 
equations are 
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and 
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From volume integration of the transport equation we obtain the conservation equations 
for heat and mass of solute. They are for heat 
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and for solute 

 
t

f
C

y

C

x

C
f

y

C
fv

x

C
fu

t

C
f

∂
∂−









∂
∂+

∂
∂Γ=

∂
∂+

∂
∂+

∂
∂

2

2

2

2

. (7) 

In (6) and (7) T is the temperature of solid and liquid, C is the solute concentration in 
the liquid, L is the latent heat of fusion, and Γ  is the solute diffusion coefficient in the 
liquid. Solute diffusion through the solid is neglected. The average quantities for the 
porous medium 
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are defined from the specific heat capacities cl and cs, and heat conductivities kl and ks 
of the liquid and solid, respectively. In the derivation of (6) we assume that the average 
temperatures of solid and liquid are equal and the same as the temperature at the 
microscopic solid-liquid interface. Further, latent heat is released or absorbed at the 
microscopic interface during phase transition. In the derivation of (7) we assume that 
the concentration of solute at the microscopic solid-liquid interface is equal to the 
average concentration of solute in the liquid, and that the concentration in the solid is 
zero. Solute is rejected into the liquid phase at the microscopic interface during the 
phase transition. We prescribe local thermodynamic equilibrium to determine the 
volume fraction f. The volume fraction is adjusted until the equilibrium condition, 

 ( ) ( ))( fCTfT F= , (10) 

hold, where TF(C) is the freezing temperature as a function of solute concentration. We 
use a step-wise linear freezing point equation for sea ice, fitted to data given by Cox and 
Weeks (1982). Since on the scale of the finite volume simulation sea ice has a distinct 
transition form the purely liquid phase to the porous medium we incorporate a form of 
freezing front tracking. We restrict ice formation to those computational cells that either 
already contain ice or have a liquid volume fraction less than the specified threshold  
ff  = 0.8 (Langhorne and Robinson, 1986) at a minimum of one of their faces. The liquid 
volume fraction at the cell face is estimated by linear extrapolation from neighbouring 
cells. 

Equations (3) to (10) form a coupled set of differential equations that are solved 
iteratively for each time step with the SIMPLEC algorithm (Versteeg and Malalasekera, 
1995). Discretisation of transient and advection term is limited to first order schemes in 



this work, as second order schemes could not guarantee stability under all phase 
transition conditions studied. Since fluid velocities are quite small, first-order schemes 
give reasonably accurate results. We allow fluid inflow and outflow at the bottom of the 
domain. At this open boundary we chose the pressure boundary condition to enforce 
mass conservation, impose zero velocity gradient normal to the boundary, and zero 
velocity parallel to it (Sani and Gresho, 1994). Temperature and solute concentration at 
the open boundary take on prescribed values TOB and COB for inward flow. The integrity 
of the algorithm is validated by correctly determining the critical Rayleigh number for 
Rayleigh-Bernard convection, and by calculating the flow pattern over a backward 
facing step in the laminar region of Reynolds number Re=800, where the open 
boundary is placed such as to intersect the second eddy (Sani and Gresho, 1994). 

PERMEABILITY FUNCTION 
We seek a parameterisation of the permeability as a function of the liquid volume 
fraction f in order to solve the momentum equation. Since the governing equations are 
based on the assumption of an interconnected liquid phase, any isolated pockets have to 
be accounted for implicitly by the permeability function. Owing to the presence of 
drainage systems on all length scales, and the change of pore structure with age and 
history of the sea ice sheet (Freitag, 1999) we cannot expect to find a permeability 
function of only one parameter that predicts the permeability in all circumstances. Here, 
we are particularly concerned with permeability in young sea ice under growth 
conditions, and find a permeability function for that situation.  

Our primary concern in this paper is the modelling of sea ice desalination. Cox and 
Weeks (1975) have performed a laboratory study on the initial sea ice desalination 
process. They find that, after an initial brine segregation process, the salinity of the ice 
sheet continuously decreases mainly as a result of gravity drainage. They present data 
for f<0.7 that we fit with a power law function and obtain 
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where the rate of sea ice desalination, tSice ∆∆ / , is proportional to the vertical 

temperature gradient, zT ∆∆ / . The rate of desalination is zero for f ≤ 0.054. Details of 
the fit are given in Petrich (2004). Assuming the change in salinity of sea ice is 
proportional to the solute concentration of sea ice, i.e. iceice CS ∆=∆ β , and assuming 

that the temperature gradient is proportional to the concentration gradient of liquid brine, 
i.e. zCzT b ∆∆=∆∆ // α , where α is the slope of the liquidus line, we rewrite (11) 
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Comparing this expression to the transient and advection terms of the solute mass 
balance equation (7) we obtain an expression for the vertical liquid mass flux during 
freezing, (f u), as a function of instantaneous liquid volume fraction f,  
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We describe fluid flow during brine drainage by Darcy’s law,  

 )( fu
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with an isotropic permeability Π c that is characteristic for the brine drainage process. 
Assuming that ∇p is approximately independent of the conditions of growth we obtain 
an isotropic permeability function for sea ice during initial desalination of the form 

 ( ) 2.1054.0−∝Π fc . (15) 

We fit the constant of proportionality in (15) so that the computer model yields realistic 
salinity profiles. In order to define what is realistic, reference salinity profiles are 
calculated from an expression for the stable distribution coefficient keff  as a function of 
freezing front velocity v, where 
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is a power law fit to the stable salinity data of Nakawo and Sinha (1981) from Arctic sea 
ice. The reference velocity of 1.35 × 10-7 ms-1 is the average freezing front velocity of 
that data. The justification for fitting a power law originates from the sea ice 
desalination model of Cox and Weeks (1988). Their model suggests (Petrich, 2004) a 
power law relationship with exponent 0.42 for the range of ice growth velocities  
3 × 10-8 ms-1 < v < 3 × 10-6 ms-1. 

In an anisotropic medium the characteristic permeability Π c in (15) can be understood as 
the path average of three orthogonal components, two horizontal components Π x1,2 and 
one vertical component Π y. In one instance Freitag (1999) finds a difference of almost 
one order of magnitude between the horizontal components Π x1 and  Π x2 in columnar sea 
ice. However, we will continue to examine the suitability of an isotropic permeability to 
model sea ice growth. 

EXAMPLE CALCULATIONS 
We use the permeability function 

 ( ) 2.1210 054.0m101 −×=Π − fc  (17) 

for f > 0.054, and 213 m101 −×=Π c  for f ≤ 0.054.  

Sea ice growth is simulated in domains of various aspect ratios, 320 to 1280 mm wide 
and 640 to 1920 mm high on square grids of cell size 20 x 20 mm2, 40 x 40 mm2, and 
80 x 80 mm2. Periodic boundaries (Versteeg and Malalasekera, 1995) are imposed in 
the horizontal (x-direction), an open boundary at the bottom and the top is isothermal (y-
direction). The salinity of the water is 36 psu, and the water temperature is initially 
1 mK above its equilibrium freezing point. Water advected through the open boundary 
is at the same temperature and salinity as the water in the domain at the beginning of the 



simulation. Simulations are stopped when the freezing front reaches 240 mm above the 
open boundary. The details of the ice sheet growth simulation depend on the domain 
configuration. With horizontally periodic boundary conditions horizontal layers of fluid 
motion develop superimposed on the vertical brine drainage pattern, particularly in 
domains with few (e.g. 8) horizontal cells. Wider domains provide more opportunity for 
the brine to disturb this flow. These layers are artefacts of the two-dimensional domain. 
They are faster moving on fine grids than on coarse grids, probably because coarse grids 
increase localised mixing and dissipation of momentum. We find that high horizontal 
flow velocities reduce brine drainage in the systems investigated. To keep salinity 
profiles comparable, we limit horizontal flow velocities to 3 mms-1 by introducing an 
additional friction source term in the momentum equation. The choice of this limit 
originates in the observation that horizontal velocities of 3 mms-1 are seldom exceeded 
in simulations with 80 mm grid size. Feltham et al (2002) have developed an analytical 
model of ice growth in the presence of a shear flow and demonstrate that brine 
expulsion depends on shear stress in the fluid. Salinity profiles do not depend on the 
overall height of the domain. However, as expected, the smoothness of the horizontally 
averaged salinity profiles generally increases with increasing number of horizontal cells. 

Figure 1(a) illustrates the range of scatter obtained in calculations with various domain 
configurations mentioned above. Apart from the scatter the salinity profiles for ice 
grown from a constant temperature surface match the profiles predicted from (16) based 
on the interface velocity. The salinity closest to the ice-water interface is not shown for 
clarity. Figure 1(b) compares the salinity profile of an ice sheet grown at a surface 
temperature of –10ºC with one grown in an otherwise identical domain configuration at 
–20ºC. Both profiles show the classical C-shape. While the profile of the simulated ice 
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Figure 1 Example of calculated salinity profiles for surface temperatures –10ºC 
(crosses) and –20ºC (dots). Dotted lines are profiles calculated from (16). 
(a) Superposition of 3 profiles at –10ºC and 5 profiles at –20ºC. The salinity close to 
the interface is not shown for clarity. (b) Single examples of ice sheet profiles 
including the ice-water interface obtained from a domain 1280 x 1280 mm2, grid side 
16 x 16. Note the different scales on the y-axes. 



sheet at –10ºC coincides with the predicted profile from (16), the simulated profile at  
–20ºC is systematically higher than predicted by 1 to 2 psu. The latter profile shows 
deviations from a smooth curve at 0.35 and 0.5 m. An illustration of the nature of these 
deviations is given in Figure 2. It is apparent that the horizontal salinity distribution is 
very heterogeneous, and as such is qualitatively similar to naturally grown sea ice. 
Deviations in the calculated average salinity profile can usually be attributed to channel-
like features, which have a salinity distinctly above the median of the ice sheet at that 
height. 

SUMMARY 
We have demonstrated that it is possible to model sea ice growth and desalination as 
flow through a porous medium with phase change. The dynamics of the entire system is 
described by a single set of governing equations. We have estimated a permeability-
porosity relationship from the observed correlation between rate of brine drainage, 
temperature gradient and liquid volume fraction f. Calculations with this permeability 
function resemble extrapolated data from the Arctic surprisingly well, although zero 
order approximations are made in the derivation, and the derivation does not account 
explicitly for an initial solute segregation (Cox and Weeks, 1988). The inhomogeneity 
of natural sea ice is resembled, including features such as brine channels. The form of 
the permeability function (17) corresponds to the power law expression predicted by 
percolation theory (Golden et al, 1998), where exponents of 1.2 to 1.3 are found for 
percolation in two-dimensional systems (Berkowitz and Balberg, 1992). Unfortunately, 
the present model calculations are unable to distinguish whether or not it is mere chance 
that the exponent of equation (17) coincides with that for percolation in a two-
dimensional system. The success of the model in cases of simple, quasi one-
dimensional sea ice growth allows its applicability to be tested in more complex 
situations.  

1.28 m 
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ice 
sheet 

water 

Figure 2 Example calculation of ice growth at –20 ºC surface temperature after 
4 x 106 s. Grid size 16 x 16. The freezing front is in the range 0.96 to 1.04 m below 
the surface. The salinity of one of the white volumes 200 mm below the surface of 
the ice sheet is as high as 54 psu. 
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