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Key Points: 9 

1. Empirically based autoregressive-moving average transfer function models predict daily-10 

averaged lower band chorus power well 11 

2. Validation correlation between chorus observations and predictions using source electron flux 12 

and substorm activity as inputs was 0.675 13 

3. Source electron flux showed an immediate influence on chorus while substorms were influential 14 

over many days 15 

 16 

Abstract 17 

We model lower band chorus observations from the DEMETER satellite using daily and hourly 18 

autoregressive-moving average transfer function (ARMAX) equations.  ARMAX models can account for 19 

serial autocorrelation between observations that are measured close together in time and can be used 20 

to predict a response variable based on its past behavior without the need for recent data.  Unstable 21 

distributions of radiation belt source electrons (tens of keV) and the substorm activity (SMEd from the 22 

SuperMAG array) that is thought to inject these electrons were both statistically significant explanatory 23 

variables in a daily ARMAX model describing chorus.   Predictions from this model correlated well with 24 

observations in a hold-out test data set (validation correlation of 0.675).   Source electron flux was most 25 

influential when observations came from the same day or the day before the chorus measurement, with 26 

effects decaying rapidly over time.  Substorms were more influential when they occurred on previous 27 

days, presumably due to their injecting source electrons from the plasma sheet.  A daily ARMAX model 28 

with IMF |B|, IMF Bz, and solar wind pressure as inputs instead of those given above was somewhat less 29 

predictive of chorus (r=0.611).  An hourly ARMAX model with only solar wind and IMF inputs was even 30 

less successful, with a validation correlation of 0.502.   31 

 32 

 33 

1. Introduction 34 

 35 



VLF chorus waves (very low frequency: 0.3-10 kHz discrete waves) play an important role in transferring 36 

energy in the magnetosphere.  They are thought to be partially responsible for accelerating electrons to 37 

high energies (Bortnik & Thorne, 2007; Li et al., 2005; Meredith et al., 2002; Simms et al., 2018a; 38 

Summers et al., 2007; Thorne et al., 2013; Xiao et al., 2015) as well as precipitating electrons into the 39 

ionosphere through pitch-angle scattering into the loss cone (Bortnik et al., 2006; Bortnik & Thorne, 40 

2007; Hendry et al., 2012; Hikishima et al., 2010; Horne and Thorne, 2003; Lam et al., 2010; Lorentzen et 41 

al., 2001; Millan and Thorne 2007; Orlova and Shprits, 2010).  Lower band chorus waves (0.1-0.5 of the 42 

fce (electron cyclotron frequency)) may be the most effective at driving electron acceleration (Horne 43 

and Thorne 1998; Meredith et al., 2003; Summers et al., 1998).  For this reason, it is important to reach 44 

an understanding of what magnetospheric processes drive lower band chorus waves and to develop 45 

models to predict their levels. 46 

Unstable distributions of source electrons (tens of  keV) are postulated to drive chorus waves, with 47 

these electrons injected from the plasma sheet during substorm activity (Li et al., 2009; Meredith et al., 48 

2001; 2003; Rodger et al., 2016; Su et al., 2014; Tsurutani & Smith, 1974).  Substorm activity itself often 49 

results from increased activity in the solar wind (Lyons et al., 2005; McPherron et al., 2009).   50 

VLF power spectral density (PSD) observations from the DEMETER satellite provide an opportunity to 51 

model chorus activity due to these drivers.  In our analyses, we explore several approaches.  We use two 52 

sets of parameters to produce predictive models: 1) radiation belt source electron flux (31.7 keV) and 53 

substorms, and 2) IMF and solar wind parameters.  For the measure of substorm activity we use the 54 

SMEd (darkside) auroral electrojet index from SuperMAG (Gjerloev, 2012).  This nightside index has a 55 

clear physical meaning as it is a better indicator of nightside activity (e.g., substorms) than the AE index 56 

(Newell and Gjerloev, 2011) and thus has a closer relationship with plasma sheet conditions.  We 57 

produce models using simple correlations, followed by multiple regression using lagged predictor 58 

variables from one hour previous (Lag1) and one day previous (Lag24).   59 

However, correlation and regression do not, on their own, account for possible serial autocorrelation of 60 

the response variable (chorus power).  In time series data, an observation may be highly correlated with 61 

those near to it in time.  This can not only invalidate tests of statistical significance, but it may also 62 

produce models that show instability in predicting novel observations.  In addition, there may be cyclical 63 

patterns in the time series that could be accounted for, thereby producing a more accurate model. 64 

One approach to the problem of periodicity is to introduce a collection of sine and cosine terms to the 65 

regression model, essentially using Fourier terms to approximate periodic trends in the data (Hyndman 66 

& Athanasopoulos, 2018).   Seasonality and other periodicity can then be removed from the data by 67 

subtraction.  For an example of this approach applied to space weather data, see Borovsky and Denton 68 

(2014).    69 

However, another approach to time series analysis is the ARIMA model.  This uses a collection of 70 

autoregressive (AR), moving average (MA), and differencing (I) terms to model the behavior of the 71 

response variable.  This can be easily extended to add input (or exogenous) variables which describe the 72 

influence of other parameters on the response variable.  These are called ARIMAX models (with the X 73 

coming from the eXogenous variables), dynamic regression models, or transfer function models.  In 74 

these models, past and current values of the explanatory variables (the inputs) influence the response 75 

variable, however, the response variable does not have any effect on the input variables (Makridakis et 76 



al., 1998).  Once transfer models are trained, they do not require further input of the response variable 77 

to produce accurate predictions. 78 

An ARMAX approach to modelling space weather phenomenon has been used previously to study the 79 

nonlinear effects of solar wind drivers of high energy electrons (Balikhin, et al., 2011; Boynton, et al. 80 

2013ab).  We use it here to model the response of lower band chorus to source electron flux and 81 

substorms, and, subsequently, to a set of IMF and solar wind parameters which may be more readily 82 

available as inputs to a predictive model.   83 

 84 

2. Data 85 

Satellite-observed VLF lower band chorus power spectral density data (PSD) (log10(μV2/m2/Hz)) from 86 

2005 through 2009 were obtained from the ICE (Instrument Champ Electrique) on DEMETER in sun-87 

synchronized orbit (Berthelier et al., 2006).  This low-Earth polar orbit satellite (2004-2010) was 88 

switched off at high latitudes so most observations occurred in McIlwain L shells 2-4 over roughly ± 45-89 

75 °. Although VLF waves are thought to be produced near the equator, despite the limited latitudinal 90 

coverage of DEMETER, observations from this satellite have been used to represent chorus in several 91 

studies (Neal et al., 2015; Rodger et al., 2016; Santolik et al., 2006; Simms et al., 2018ab; Zhima et al., 92 

2013).  We binned L shells such that, observations at L=2.0 – 2.99, 3.0-3.99, 4.0-4.99, 5.0-5.99, 6.0-6.99 93 

were classified as L= 2, 3, 4, 5, and 6, respectively. Lower band chorus observations (.1 - .5fce) were 94 

hourly averaged over the dayside passes of the satellite (1030 LT) and the nightside passes (2230 LT).  95 

Initial correlations were performed for all L bins and both dayside and nightside observations.  Time 96 

series models were then developed for dayside observations at L=4. 97 

For "source" electrons (tens of keV), we use daily averaged 31.7 keV log electron fluxes (log(electrons 98 

/(cm2-s-sr-keV)) measured by the Synchronous Orbit Particle Analyzer (SOPA) instrument on the Los 99 

Alamos National Laboratory (LANL) satellites in geosynchronous orbit (Reeves et al., 2011). This channel 100 

was previously identified as being less correlated with the somewhat higher "seed" electrons (hundreds 101 

of keV) that are accelerated to relativistic energies (Simms et al., 2018a).  For the measure of substorm 102 

activity we use the SMEd (darkside) auroral electrojet index from SuperMAG (Gjerloev, 2012).  Nightside 103 

SME has been shown to effectively sample the magnetotail plasma sheet (Newell and Gjerloev, 2011).  104 

In addition, hourly averages of IMF Bz component (nT), IMF magnetic field magnitude |B| (nT), Dst (nT), 105 

and solar wind velocity (V, in km/sec), proton number density (N in #/cc), and pressure (nPa) are from 106 

the OMNIWeb database (collected at L1 orbit and subsequently shifted to expected magnetosphere 107 

arrival times).  Daily averages of the solar wind and IMF over 24-48 hours previous were calculated from 108 

these hourly averages for use in the daily averaged models.   109 

 110 

3. Statistical methods 111 

 112 

Statistical analyses were performed in IBM SPSS Statistics and MATLAB. 113 

 114 

3.1.  Basic regression techniques 115 

 116 



Coefficients of the multiple regression models are calculated using least squares regression (Neter et al., 117 

1985).  These result in linear combinations: 118 

Ŷ =  𝛽0 + 𝛽1 × 𝑋1 + 𝛽2 × 𝑋2 + ⋯  휀                                                                                                          (1)  119 

where Ŷ is the predicted value of the dependent variable (e.g., lower band chorus power), the β are the 120 

coefficients describing the effect of each predictor variable (the X's, e.g., possible drivers of chorus), and 121 

ε represents the error term, or difference between the predicted (Ŷ𝑖) and the observed (𝑌𝑖) values for 122 

each observation.  A valid model would result in random, normally distributed errors with homogeneous 123 

variance.  A non-random distribution of residuals can alter the statistical significance of the predictors, 124 

leading to false conclusions about the influence of parameters.  It may also result in poor predictive 125 

ability of the model.  One form of non-random association of errors is often seen in time series data, 126 

where observations close to each other in time may be correlated (Hyndman and Athanasopoulos, 127 

2018). 128 

 129 

A model can be produced from a subset of the data (the training set) and then validated with the 130 

remaining data (the test set) by calculating the predicted values for the test set from the trained model.  131 

The predicted and observed values from the test set can then be correlated to determine how well the 132 

model predicts novel data.  The validation correlation (r between observed and predicted values in the 133 

test set) is different from the prediction efficiency (also known as the coefficient of determination, R2) 134 

which is often used as a measure of model goodness of fit.  The prediction efficiency is the proportion of 135 

variation in the training set data explained by the model, with the remaining variation described by the 136 

error term.  While reducing the unexplained variation is a goal of most modelling efforts, it is not, by 137 

itself, a reliable indicator of how well the model will predict novel data.  Validation is a more robust test 138 

of this. 139 

  140 

When comparing the effects of predictors on a common scale, standardized regression coefficients can 141 

be calculated by standardizing the variances of all variables in the model to 1.  These coefficients then 142 

represent how many standard deviations the dependent variable will change when a particular predictor 143 

changes by one standard deviation.  We use these standardized coefficients to compare effects.  144 

However, unstandardized coefficients are reported for the predictive models to allow for new 145 

predictions from observed data. 146 

 147 

 148 

3.2. Time series analyses 149 

The analysis of time series data presents a special problem in statistical methods as each observation 150 

may be serially autocorrelated with previous observations.  If this is not accounted for, tests of statistical 151 

significance may be inflated and give a false picture of the true relationship between variables.  152 

Predictions from a model showing serial autocorrelation issues may also not be close to observed 153 

values.  With non-time series data, the goal of a regression model is to describe the relationship 154 

between dependent and predictor variables such that the errors from the model are randomly 155 

distributed.  If the dependent variable is a time series, however, some of its behavior may be best 156 

represented by its own values at previous time periods.  Without the addition of terms to describe the 157 

effect of past behavior on future values, the errors of the model can be strikingly non-random (which is 158 



a sign of a poorly fitted model) and predictions from the model are therefore suspect.  Autocorrelation 159 

in a model can be checked by inspecting the partial autocorrelation function (PACF) of the residual 160 

errors at each lag. 161 

The simplest time series model, and one which can be easily fit using least squares regression, is the 162 

autoregressive model.  In this type of model, the current value of the dependent variable is predicted by 163 

its past behavior.  The shorthand description of this model is AR(p), where p is the number of lags used 164 

to describe the observation.  The most basic model in the class is a first-order autoregressive model, 165 

AR(1), where each observation is dependent on its value in the previous time step plus some random 166 

error, ε , in a linear combination with coefficients determined by least squares regression: 167 

Ŷ𝑡 =  𝛽0 + 𝛽1 × 𝑌𝑡−1 +  휀                                                                                                          (2)  168 

where Ŷ𝑡  is the predicted value of the dependent variable at time 𝑡.  The constant term, 𝛽0, is the 169 

overall mean of the time series.  Higher order autoregressive models can be used to describe more 170 

complicated behavior.  For example, an AR(2) model (with both a lag 1 and lag 2 term) could describe a 171 

return to the mean as a sinusoidal oscillation. 172 

The simple AR models assume a stationary mean over the time series, but if there is a trend in the data 173 

over time this can be accounted for by differencing the observations, i.e., by subtracting a previous 174 

value of the response variable.  Our data did not show such a trend so we do not address that issue in 175 

the models we describe in our current study. 176 

Another way to correct for autocorrelated errors is to regress on a moving average of past values.  This 177 

is mathematically equivalent to adjusting for the error produced by the last forecast: 178 

Ŷ𝑡 =  𝛽0 +  𝛽1  × 휀𝑡−1                                                                                                               (3)  179 

However, due to the fact that the error can only be obtained after the model is fit, the moving average 180 

model is no longer able to be fit by the analytical method of least squares.   181 

As a practical matter, the best fit to the data may result from a mix of these approaches.  A mixed model 182 

is called an ARIMA(p,d,q) model: AR for the autoregressive component, I for the differenced component, 183 

and MA for the moving average component.   The autoregressive order is represented by p, the order of 184 

differencing by d, and the moving average order by q.  Thus, equation 2 represents ARIMA(1,0,0) (one 185 

autoregressive order, no differencing or moving average component), while equation 3 represents 186 

ARIMA(0,0,1) (no autoregressive term or differencing, and one order of moving average component).  As 187 

our data did not show a long term trend, the d in all our models is 0. 188 

In addition, "seasonality" may be added to the model to account for repeating patterns that occur over 189 

the course of a year (seasons) or, as in this study, a daily pattern.  Each of these "seasonal" terms can be 190 

AR, differencing, or MA at the cadence of the seasonality.  The shorthand description of a model with 191 

one order of AR, no differencing, and one order of MA at both the non-seasonal and seasonal level 192 

would be ARIMA (1,0,1)(1,0,1) with the numbers in the second set of parentheses representing the AR, 193 

difference, and MA terms for the seasonal effect.  First-order in the seasonal effect would mean a lag of 194 

one "season", e.g., 12 months for a yearly pattern, or 24 hours for a daily pattern. 195 

It is often of interest to include other predictors in the model, either to improve the forecast or to 196 

determine their influence.  These other predictors can be added as lagged, differenced, or moving 197 



average terms of themselves as well.  This type of model is called a transfer function (ARIMAX), as the 198 

information from the other predictors is transferred to the dependent variable.  It may also be referred 199 

to as a dynamic regression model where current and past values of the explanatory variable(s) are 200 

presumed to influence the response variable, with the effect of the predictor decreasing exponentially 201 

over time (Pankratz 1991):   202 

𝑌𝑡 = 𝑎 +
𝜔(𝐵)

𝛿(𝐵)
𝑋𝑡−𝑏 + 𝑁𝑡                                                                                                                                     (4) 

where 𝜔(𝐵) =  𝜔0 − 𝜔1𝐵 −  𝜔2𝐵2 − ⋯ − 𝜔𝑠𝐵𝑠 203 

𝛿(𝐵) =  1 − 𝛿1𝐵 −  𝛿2𝐵2 − ⋯ − 𝛿𝑟𝐵𝑟            204 

𝑁𝑡 = 𝐴𝑅𝐼𝑀𝐴 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

Here, a, r, s, and b are constants with b being the number of time steps before the predictor variable has 205 

an effect on Y, and s and r the number of time steps over which the numerator and denominator act, 206 

respectively.  B in this equation is the backshift operator which is used to simplify the writing of the 207 

equation.  Essentially, applying this operator moves the variable back in time by the specified number of 208 

steps, such that 𝐵1𝑋 , for example, is equivalent to 𝑋𝑡−1.   209 

Due to the ARIMA nature of this model, current values of Y are influenced by its own past values which 210 

are in turn influenced by past values of X.  Thus, the effect of X on Y at time t is a cumulative function of 211 

all past values of X.  Its influence at each lag can be determined by an arithmetic recursive operation 212 

which accounts for both the effect at a given lag (the ω coefficients) and the decay of that effect (the 213 

exponentially weighted δ coefficients).  These models are typically fit using maximum likelihood 214 

estimation instead of the simple least squares method if there are moving average terms, and they can 215 

be extended to more than one predictor variable (Makridakis et al., 1998).  216 

As with multiple regression models, validation of a time series model can be accomplished by training 217 

the model on a subset of the data (the training set) and producing predictions from a withheld subset 218 

(the test set).  However, as the model depends on past sequential behavior of the dependent variable, it 219 

is best to produce the model from a complete time series rather than subsets of data at various 220 

disconnected times.  Predictions from the model can be produced using the current and past values of 221 

the explanatory variables and only the time series behavior of the response variable.  Thus, once the 222 

model is fit from the training set, further predictions do not require additional input of the response 223 

variable.  Although a simple forecast model can be made by predicting the response variable using 224 

recently observed values, it is often more successful to predict the response based on the previously 225 

observed overall behavior rather than the actual values at specific time steps (Hyndman and 226 

Athanasopoulos, 2018). 227 

 228 

 229 

3.3. Model building 230 

We begin with simple correlations between source electron fluxes (31.7 keV) and lower band chorus 231 

power at L2-5 to test the hypothesis that variations in the flux of these electrons drive chorus power 232 



changes.  We also correlate chorus power with SMEd, which we use as a measure of substorms, as 233 

substorms are believed to drive the source electrons which subsequently trigger chorus.  Then, in a full 234 

regression model, using dayside observations from L4, we test the predictive power of source electron 235 

flux and SMEd (on the same day and the previous day) as well as solar wind and IMF parameters (in the 236 

same hour, the previous hour, and 24 hours previous).  We validated this model by correlating 237 

observations with predictions in the test data subset.  However, this model showed high correlation of 238 

residuals at 1 lag.   239 

In order to reduce the serial autocorrelation, we fit several time series models.  One difficulty of time 240 

series analysis is that the models work best if there are observations for every time step.  Unfortunately, 241 

as is common with space weather data, our data set contains periods of missing data.  For this reason, 242 

we chose a time period where missing data was at a minimum (yearday 2006290-2008174) and where 243 

gaps were generally 1-2 hours.  We then replaced the missing data with averages of the surrounding 244 

hours.  However, the data gaps were extensive at L5.  Thus, although data from this L shell showed a 245 

high correlation between chorus and source electron flux and SMEd, we did not perform time series 246 

analysis on this L shell.  247 

As ARIMAX models can become quite complicated with differencing, autoregressive and moving average 248 

terms, and predictor variables at a variety of lags and delays, we use the Expert Modeler procedure in 249 

SPSS to automatically select a "best" model that is optimized for explaining the variation in the data with 250 

the least number of parameters.  This procedure searches through the space of possible models and 251 

calculates the normalized Bayesian Information Criterion (BIC) for each (Schwarz 1978).  A lower BIC 252 

means a better fit to the data used to produce the model (i.e., the training set).  However, as simply 253 

adding more complexity to the model (more terms) may appear to increase the fit, the BIC also  254 

penalizes more complex models for increased number of terms.  The model with the lowest BIC, 255 

therefore, is the one with both the best fit and the least complexity.  Both AR and MA terms, as well as 256 

transfer function input, can be chosen from any time delay by the automatic procedure.   257 

We fit a daily time series transfer function model (ARMAX) using geostationary source electron flux and 258 

SMEd which are presumed to be the most direct drivers of whistler mode chorus activity.  We fit daily 259 

models because both the flux and SMEd data are essentially at a daily cadence.  This ARMAX model was 260 

able to predict chorus power variations using current observations of flux and SMEd without the need 261 

for new observations of chorus power as an input.  For comparison, we fit a daily model using the 262 

previous day's chorus as input instead of a predicted AR term, together with the flux and SMEd 263 

observations.  264 

We also fit a daily ARMAX model using solar wind and IMF parameters.  Although the Expert Modeler 265 

procedure had multiple parameters to choose from (solar wind velocity, number density, and pressure, 266 

as well as IMF |B| and Bz) some were found to be redundant and hence were not included in the model.  267 

Finally, we also fit an hourly transfer function model with IMF and solar wind parameters as the inputs.  268 

We tested for "seasonality" in this hourly model with a 24 hour period of seasonality.   269 

For each model, we correlated predictions with the test data set of 2009. 270 

Because none of our data required differencing to correct for a trend, we drop the i designation in the 271 

following models, referring to them as AR, ARX, and ARMAX.   272 



 273 

 274 

4. Results 275 

 276 

4.1. Source electron flux and substorms as predictors of chorus  277 

A time series plot (Sept 2006, L4 dayside) shows that radiation belt source electron flux and SMEd both 278 

tend to track with chorus observations (Figure 1).  However, the correspondence is not exact, and there 279 

are times when electron flux seems to be the better predictor and other times when SMEd is more 280 

predictive.  The simple (linear) correlations of daily averaged chorus power with source electron flux 281 

(solid lines of Figure 2ab) are higher than with SMEd (solid lines of Figure 2cd) on the current day and 24 282 

hours previous, for each L-shell over  L2-5 for both dayside and nightside passes of the satellite.  The 283 

highest correlation of chorus with source flux (r=0.785 at L4) is higher than that with SMEd (r=0.481), 284 

suggesting that the influence of source electrons is higher than that of substorms, even though the 285 

substorms are widely presumed to provide the source electrons.  For both electron flux and SMEd, the 286 

L2 linear correlations are low, while the L3-5 correlations are all higher.  Dayside pass chorus power on 287 

the same day (i.e., at lag 0) is somewhat more strongly correlated with these two predictors than the 288 

nightside observations.  Lag 24 predictors (i.e., data from one day previous) have a lower association 289 

with chorus.  However, these simple correlations are uncorrected for serial autocorrelation.   290 

Simple correlation analysis assumes a linear relationship between variables.  To explore if a linear 291 

association was the best descriptor of these relationships we also fit a fourth-order polynomial 292 

regression model (including linear, quadratic, cubic, and the fourth-order terms) to these single variable 293 

models (dashed lines of Figure 2).  Fitting a polynomial curve had little effect on the correlation between 294 

chorus power and source electron flux.  For example, while the linear correlation of chorus with source 295 

electron flux at L4 (dayside) was 0.785, the polynomial fit correlation was 0.789.  This relationship 296 

appears to be linear.   297 

Conversely, at L2, and to some extent at L3, a nonlinear fit gave a higher correlation for the chorus 298 

power and SMEd relationship.  However, at L4, on the dayside, the polynomial fit between SMEd and 299 

chorus was not much better than the linear fit.  At L4 the linear correlation of chorus with SMEd was 300 

0.481, while the polynomial fit was 0.529.  These were similar enough that we continued fitting linear 301 

models for this subset. 302 

For the more highly correlated L4 dayside observations, we produced a regression model using daily 303 

averages of chorus power as the response variable and electron flux and SMEd as the predictor variables 304 

(Model 1 of Table 1).  Unstandardized coefficients are given in the prediction equation (see Data section 305 

for units).  This would allow prediction of new observations from source electron flux and SMEd in their 306 

original scaling: 307 

𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠̂ =  −9.06 + 1.07 × 𝑆𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑢𝑥 + 0.618 × 𝐿𝑎𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑢𝑥 + 0.0022 × 𝑆𝑀𝐸𝑑 − 0.0018

× 𝐿𝑎𝑔𝑆𝑀𝐸𝑑                                                                                                    (5) 

All terms are statistically significant (p-value < 0.05), indicating that the there is only a 5% probability 308 

this strong of an influence from each term would be seen by chance alone.  For this model, R2 =0.644, 309 



indicating that the model explains 64.4% of the variation in the training set data.  Although the R2 is 310 

sometimes called the prediction efficiency, a validation correlation between observed values in a test 311 

set with the predictions from the regression model is a more useful indicator of how well the model 312 

forecasts new observations.  We predict chorus using this model for the 2009 data (that was withheld as 313 

the test set).  The validation correlation between observed and predicted values is r= 0.638 (Figure 3a).  314 

However, there is also evidence of strong serial autocorrelation.  The PACF shows a strong and 315 

significant peak at one day, with a partial autocorrelation of 0.310 (Figure 3b).  This means we are 316 

violating one of the assumptions of linear regression and may have produced a model that inflates the 317 

significance levels of the predictors.  318 

To some extent, we can correct the serial autocorrelation in this model by adding the previous day's 319 

chorus power observations to the above regression model as an autoregressive term: 320 

𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠̂ =  −5.50 + .909 × 𝑆𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑢𝑥 + 0.110 × 𝐿𝑎𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑢𝑥 + 0.003 × 𝑆𝑀𝐸𝑑 − 0.003

× 𝐿𝑎𝑔𝑆𝑀𝐸𝑑 +  0.410 × 𝐿𝑎𝑔𝐿4𝐶ℎ𝑜𝑟𝑢𝑠                                                         (6) 

 321 

The prediction efficiency, R2, is slightly higher, at 0.698 (69.8% of variation explained), and there is a 322 

tighter relationship between observed chorus and that predicted by the model (Figure 3c; r=0.766; 323 

Model 2 of Table 1). The maximum autocorrelation in the PACF is now 0.103, which is an improvement 324 

over the previous model (Figure 3d).    325 

 326 

 327 

4.2. Regression model with all possible predictors 328 

A daily model including daily averages of all possible parameters (observed chorus, electron flux, SMEd, 329 

and both IMF and solar wind variables averaged overthe same day and the day before) resulted in a 330 

higher R2 (0.775) and validation correlation (0.823), and a lower maximum PACF (0.082) (Model 3 of 331 

Table 1).  332 

However, predicting hourly chorus power proved to be more difficult.  We used source electron flux and 333 

SMEd at the same hour (Lag0) and also from the hour 24 hours before (Lag24); solar wind and IMF 334 

parameters at Lag0, lagged by 1 hour (Lag1) and Lag24; and observed chorus power from 1 hour before 335 

(Model 4 of Table 1).  Further lags were not used as they complicated an already cumbersome model.  336 

(See the hourly ARMAX model below for a more refined estimation of effects over further lags.) The 337 

unstandardized coefficients for the resulting prediction model  for dayside L4 chorus are given in Table 338 

2. 339 

All predictors are influential during at least one point in time.  However, the validation correlation was 340 

low (0.452).  Although more information has been added to the model, the erratic hourly behavior was 341 

not as well predicted as the smoother daily averages.   342 

Although we report unstandardized coefficients in the above models, we also report the standardized 343 

coefficients of Model 4 to show the relative influence of predictors (Figure 4a).  Source electron flux has 344 

a stronger influence when measured on the same day (Lag0) than when measured on the previous day 345 



(Lag24). It is more influential than SMEd, and SMEd shows a negative effect when measured 24 hours 346 

before.  Of the other parameters, V has a stronger positive influence on the same day (Lag0), indicating 347 

that it may drive processes associated with chorus enhancement that are stronger than the source 348 

electron flux effect.  Bz shows its strongest effect at Lag1 (one hour before).  In other words, a strong 349 

(negative) Bz in the hour before is associated with increased chorus.  However, including all terms in the 350 

model may result in counterintuitive influences.  The negative substorm, V, and N effects may indicate 351 

that substorms and IMF/solar wind parameters are describing the same phenomena and that their 352 

relative influences are confounded with each other.  Similarly, the confounding of a parameter's 353 

influence with itself at different lags may lead to untrustworthy conclusions. 354 

An R2 of 0.562 for this hourly model is lower than that of the daily model (above).  The PACF shows there 355 

is still high autocorrelation between the residual errors of the hourly model even when the previous 356 

hour's chorus is added as a predictor (0.453, Figure 4b; Model 4 of Table 1).  The validation correlation 357 

of this model (r = 0.452, Figure 4c) is lower than that for the daily models.  The noisiness of the hourly 358 

data is difficult to predict and adding the hourly lag of chorus did not fix the autocorrelation problem. 359 

 360 

4.3. Daily ARMAX transfer function models 361 

ARMA models provide a flexible model building technique to deal with serial autocorrelation in time 362 

series data.  As described above, various combinations of autoregressive (AR) and moving average (MA) 363 

terms can be used to precisely model the behavior of the response variable.  Once these factors are 364 

removed, predictor variables can be tested for their influence on the dependent variable without 365 

inflation of significance tests.  Transfer function models are designated with an X (i.e., ARX or ARMAX 366 

models).  In addition to reducing serial autocorrelation, ARMAX models, once trained on known 367 

observations, may be able to predict into the future without additional input of the lagged response 368 

variable. 369 

We first use source electron flux and SMEd observations as predictors.  Chorus power at L4 did not show 370 

a trend over time so we did not difference the time series.  We allowed the SPSS Expert Modeler 371 

procedure to choose AR and MA terms of the chorus power behavior and to pick numerator and 372 

denominator terms for the predictor variables.  This resulted in an AR(1), MA(4) model with no 373 

differencing, or ARMAX(1,0,4).  The autoregressive term is estimated from the model output from the 374 

day before (t-1) while the moving average term is measured from the error term of the model 4 days 375 

before (t-4).  In the numerator coefficients of the transfer function inputs, both predictors act on chorus 376 

power on the same day (t), with SMEd also acting at a one day lag (t-1).  The automated procedure did 377 

not add any lags previous to this as they did not improve the fit of the model.  The effects of both 378 

predictors decay over time (denominator coefficients) (Model 5 of Table 3): 379 

 380 

𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡
̂ =  −8.825 +

. 831 × 𝑆𝑜𝑢𝑟𝑐𝑒𝑡

1 − .502 × 𝑆𝑜𝑢𝑟𝑐𝑒𝑡−1
+  

. 004 × 𝑆𝑀𝐸𝑑𝑡 +  .004 × 𝑆𝑀𝐸𝑑𝑡−1

1 − .889 × 𝑆𝑀𝐸𝑑𝑡−1 
    +  .264

× 𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡−1 − .120 × 휀𝑡−4                                                      (7)  

                                                                                                 381 



The numerator of the transfer function terms (source electron flux and SMEd) describe when the effect 382 

from that parameter begins, while the denominator describes how the effect decays.  For example, a 383 

one unit increase in log(source electron flux) on the same day results in a 0.831 unit increase in 384 

log(chorus power), or that an increase of 10 electrons /(cm2-s-sr-keV) in source electron flux results in 385 

an approximate increase of 6.8 μV2/m2/Hz in chorus power.  The rate at which influence decays is also 386 

incorporated into this term via the denominator where the effect of source flux drops off by a factor of 387 

0.502 at each lag.  However, the effect of source electron flux and SMEd from previous days on chorus 388 

power is even more long-lasting via their prior influence on previous values of chorus power.   389 

The ARMAX model with these two explanatory variables results in a validation correlation of r=0.675 390 

(Figure 5a).  This ARMAX model was successful at reducing the serial autocorrelation.  The maximum 391 

value in the PACF was 0.081 (Figure 5b; Model 5 of Table 3)   These predictions are based on the past 392 

behavior of daily chorus power measurements and do not include actual measurements of lagged 393 

chorus power to calculate predicted power values in the test set.  Nevertheless, the model predicts 394 

observed power reasonably well (Figure 6c, green line, Model 5).   There is little difference in the 395 

timeplot between values predicted by the ARMAX model and that of the regression model using source 396 

flux, SMEd, and previous day's average chorus power as predictors (blue line of Figure 5d; Model 2).  397 

Note, however, that the ARMAX model is able to predict chorus power even when observed chorus is 398 

unavailable as an input to the model.  399 

To show the influence of the lagged effects of the inputs (source electron flux and SMEd) over time, we 400 

use the standardized regression coefficients to compare the influence of source flux and SMEd on the 401 

same scale over a two-week period (Figure 7).  While source electron flux and SMEd show a similar 402 

effect on the same day, there is a stronger effect of SMEd from the day before.  In addition, the lower 403 

decay rate of the SMEd effect means that this parameter shows an influence over several weeks while 404 

the effect of source electron flux drops off within days. 405 

Current solar wind and IMF inputs are often more readily available from the OMNIWeb data site than 406 

either source electron flux or the SMEd index.  If more immediate predictions are required, a model 407 

using these more available inputs is needed.   To produce a daily predictive model using the more 408 

obtainable solar wind and IMF inputs, we again used the SPSS Expert Modeler procedure to choose 409 

parameters.  Using daily averaged solar wind and IMF parameters, the best ARMAX model included solar 410 

wind pressure and IMF |B| and Bz.  Neither solar wind number density nor velocity added information 411 

so they were left out of the model. The maximum PACF was an acceptable 0.024 (Table 3, Model 6).   412 

This solar wind/IMF ARMAX model resulted in the somewhat lower validation correlation (0.611 vs. 413 

0.675 of the source electron flux/SMEd model).   In the timeplot of predictions, the solar wind/IMF 414 

ARMAX model tracks observations fairly well, although it does miss some of the higher peaks (Figure 6, 415 

pink line).  The source electron flux/SMEd model predicts chorus more accurately. 416 

In this model, again, t-1 refers to a one day lag.  Only |B|, Bz, and pressure (P) (units as given in Data 417 

section) were incorporated into the model as statistically significant inputs, along with an AR(1) and 418 

MA(1) term (based on chorus estimation from the model at a previous time step).  Again, the automated 419 

procedure did not add lags previous to the one day lag in the numerator terms as previous lags did not 420 

improve the fit of the model.  Unstandardized coefficients are given: 421 



𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡
̂ =  −5.975 +

.093×|𝐵|𝑡−.133×|𝐵|𝑡−1

1−.682×|𝐵|𝑡−2
+  

−.250×𝐵𝑧𝑡

1−.385×𝐵𝑧𝑡−1
+

.288×𝑃𝑡

1−.725×𝑃𝑡−1
+  .965 × 𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡−1 +422 

.744 × 휀𝑡−1                                                                                                                                             (8)  423 

 424 

Using standardized regression coefficients, we compare the influence of the lagged effects over 14 days 425 

(Figure 8a).  A more negative Bz (blue) is associated with higher chorus power.  Increased |B| (orange) 426 

and pressure (green) also act to increase chorus power.  All effects fall off rapidly over the course of a 427 

week.  428 

 429 

 430 

4.4. Hourly ARMAX transfer function models   431 

We created an hourly transfer function model of dayside chorus power at L4 with solar wind and IMF 432 

parameters as inputs.  The hourly time series of chorus power is a more complicated function and was 433 

better fit by an ARMA (1,0,1)(1,0,1) model with AR and MA terms incorporating both a 1 hour and 24 434 

hours lag of model-estimated chorus power and 1 hour and 24 hour moving average.  Again, there was 435 

no need for differencing as there was no overall trend in the data.  The highest magnitude term in the 436 

PACF of the ARMA hourly model without inputs was a statistically nonsignificant −0.046 at 3 hours 437 

(Model 7 of Table 3), thus this model removed the autocorrelation. 438 

We entered all solar wind and IMF parameters and allowed the Expert Modeler function of SPSS to 439 

determine a best model.  Solar wind number density was dropped from the final model as its presence 440 

did not increase the explanatory power.  All terms remaining in the model are statistically significant.  441 

Note that the |B|, Bz, and pressure (P) terms act at a delay of 2 hours (i.e., they have the most influence 442 

on chorus power 2 hours after their measurement).  Unstandardized coefficients are given in the 443 

equation, allowing calculation of predicted values from the observed transfer function predictor inputs: 444 

𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡
̂ =  −3.894 +

.026×|𝐵|𝑡−2

1−.764×|𝐵|𝑡−3
+  

− .099×𝐵𝑧𝑡−2

1−.654×𝐵𝑧𝑡−3 
+

.002×𝑉𝑡

1−.567×𝑉𝑡−1
+  

.038×𝑃𝑡−2

1−.521×𝑃𝑡−3 
+  .635 ×445 

𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡−1  +  .056 × 휀𝑡−1   +  .994 × 𝐿4 𝐶ℎ𝑜𝑟𝑢𝑠𝑡−24 +  .980 × 휀𝑡−24         (9)  446 

 447 

While the model tracks the broad trends in the data, it is unable to predict the extremes highs and lows 448 

in chorus power seen by the DEMETER satellite.  However, its validation correlation of 0.502 is an 449 

improvement over the 0.452 validation correlation from the hourly regression model with only lagged, 450 

observed chorus as an autoregressive input (Model 4).  451 

Using standardized regression coefficients, we compare the influence of the lagged effects over 12 452 

hours (Figure 8b).  The effect of solar wind velocity (in yellow) begins in the first hour, while that of Bz 453 

(blue), |B| (orange), and pressure (green) all act beginning at a lag of 2 hours.  All effects fall off rapidly.  454 

A more negative Bz is associated with higher chorus levels.   455 

 456 

 457 



5. Discussion 458 

5.1. Comparison of models 459 

Serial autocorrelation in the response variable (chorus power) can be accounted for by the addition of 460 

ARMAX terms to the regression models.  This correction for autocorrelation 1) gives us confidence that 461 

the effects of input parameters are being modeled correctly; 2) allows us to study the lagged effects of 462 

the predictors more accurately and efficiently; and 3) produces a predictive model that is not dependent 463 

on the availability of previous (lagged) values of chorus observations.   464 

Our first models (Section 4a) use regression to predict chorus power levels using daily averages of 465 

source electron flux and SMEd measured with no lag and from the day before with no ARMA terms.  466 

Model 1 shows a significant influence of both inputs (flux and SMEd) at both selected lags.  The 467 

prediction of chorus power in the test data set shows a reasonable validation correlation of 0.638.  468 

However, there is obvious serial autocorrelation.  This may mean that the significant effects we see of 469 

flux and SMEd are not to be trusted.  We can both reduce the serial autocorrelation and improve the 470 

validation correlation (to 0.766) by adding chorus power from the day before as an input to the model 471 

(Model 2).   Although this is a reasonable predictive model, it depends on having chorus measurements 472 

available from the previous day.  It is also not clear whether we have picked the best lags of the inputs 473 

to model chorus power, nor whether the correlation between lags of the same predictor may be causing 474 

difficulties in our model due to multicollinearity (a high correlation between predictors).  Correlation 475 

between the same parameter at different lags may result in a model that is neither efficient nor true 476 

(Neter et al., 1985). 477 

When we include all possible parameters in an hourly regression (including the lag of chorus power to 478 

correct for autocorrelation) this approach is even more awkward (Section 4b, Model 3).  Testing only no 479 

lag, a one hour lag, and a 24 hour lag for each of the parameters gives a confusing model where some of 480 

the parameters show a significant influence at only some lags and some predictors show opposing 481 

effects with themselves at various lags.  This is difficult to interpret and visualize, and the 482 

multicollinearity between the same parameter at different lags may still be a problem.  Testing the 483 

influence of each parameter at greater lag times would be even more difficult.  A further issue is that 484 

adding chorus observations from the previous hour did not correct the serial autocorrelation.   485 

The ARMAX transfer function models (Section 4c and 4d) correct these problems.  Serial autocorrelation 486 

of the residual errors is reduced to nonsignificant levels by the introduction of autoregressive and 487 

moving average terms that describe the time series behavior of chorus power measured at DEMETER.  488 

Once the model is trained, further inputs of chorus observations are not needed.  In the source electron 489 

flux/SMEd transfer function model, both predictors are significant influences on chorus power on the 490 

same day, with more effect on the day before, and decreasing effect over days previous to that.  In the 491 

daily solar wind/IMF parameter model, |B|, Bz, and pressure are the only parameters selected by the 492 

minimizing of the BIC.  These variables are associated with increased chorus power beginning on the 493 

same day, with their effects decreasing over time.  Both these models result in a similar validation 494 

correlation although the source electron flux/SMEd ARMAX model is somewhat more effective.  495 

Although using known chorus observations from the previous time step fixes the autocorrelation 496 

problem in the daily model, using only the past ARMA behavior of chorus power (rather than regressing 497 

on the time lagged chorus values) resulted in predictions that were nearly as good as a model 498 



dependent on lagged chorus observations.  The results of this suggest that decent predictive models of 499 

other space weather parameters can be built that do not depend on obtaining continuous 500 

measurements of the variable to predict its own future behavior. 501 

The hourly solar wind/IMF ARMAX model is not as successful at predicting chorus as the daily models.  502 

Predicting the erratic hourly chorus power measurements from DEMETER is difficult.  Some smoothing 503 

of the data is necessary to obtain a better predictive model (Hyndman and Athanasopoulos, 2018), as 504 

was accomplished by using the daily averages, above.   However, it is an improvement over the hourly 505 

regression model with all terms at several lags.  The autocorrelation was successfully reduced in the 506 

ARMAX model, but not in the regression model, meaning we have confidence that the chosen 507 

parameters (solar wind velocity and pressure, IMF |B| and Bz) actually influence chorus power.  The 508 

ARMAX hourly model also resulted in a higher validation correlation than the regression model including 509 

all parameters. 510 

 511 

5.2. Drivers of chorus 512 

Chorus wave production may fall into three steps.  First, unstable distributions of source electrons are 513 

thought to drive chorus waves directly (Li et al., 2009; Meredith et al., 2001; 2003; Rodger et al., 2016; 514 

Su et al., 2014; Tsurutani & Smith, 1974).  Second, these electrons are thought to be injected from the 515 

plasma sheet during substorm activity.  (We measure substorm activity with the SMEd (darkside) auroral 516 

electrojet index which samples the magnetotail plasma sheet (Newell and Gjerloev, 2011).)  Third, solar 517 

wind and IMF parameters drive substorm activity (Lyons et al., 2005; McPherron et al., 2009).    518 

Single factor correlations (Figure 2) between chorus power and source electron flux or between chorus 519 

power and substorm activity (SMEd) suggest a linear relationship between both these factors and 520 

chorus power observed above L2.  These factors do not have as much linear association with chorus 521 

power at L2, presumably because they do not penetrate to lower L shells.  However, for SMEd, but not 522 

source electron flux, a curvilinear fourth-order polynomial fit gives a markedly higher correlation at L2.  523 

This suggests that substorm influences may penetrate more effectively to the lower L-shells during 524 

periods of high substorm activity.   525 

The association is stronger between chorus power and source electron flux than with SMEd in these 526 

single factor correlations.  This would be expected if source electrons were the direct driver of chorus 527 

waves and substorms were only an indirect driver through the generation of these source electrons.  528 

However, single factor simple correlations are not reliable in this situation for several reasons: 1) if the 529 

two predictors are themselves correlated, the relative influences may not be well represented by 530 

individual analyses; 2) serial autocorrelation of the response variable (chorus power) will result in 531 

inflation of the significance tests and the possibility of wrongly concluding that an explanatory variable is 532 

influential when it is, in fact, not; and 3) a serially autocorrelated response may be influenced by 533 

exogenous variables over many time steps which cannot be studied efficiently with correlation analysis.  534 

For these reasons, we test the relative influences of source electron flux and SMEd simultaneously using 535 

an ARMAX process.   536 

In the ARMAX transfer function model, the influence of source electron flux and SMEd are equal on the 537 

first day, but the SMEd influence is higher on previous days, maintaining an influence up to two weeks 538 



prior (Model 5; Figure 7).  The source electron flux influence on chorus power observations is more 539 

immediate and a more fleeting phenomenon, likely because unstable distributions of source electrons 540 

act quickly as the direct driver of chorus.  The SMEd influence is mostly indirect via the injection of these 541 

source electrons.  The SMEd influence appears greater but this may only be because substorm activity 542 

continues to pump source electrons from the plasma sheet over a longer period of time while the action 543 

of the measured source electrons is quickly finished.  It is also possible that substorms drive an 544 

additional, unaccounted for, process that drives the production of chorus waves, or that substorms are 545 

more reliably measured by the SMEd index than L4 source electrons are represented by the daily 546 

average flux observations made at the geosynchronous orbit of the LANL satellite (L ≈ 6.6). 547 

For both factors, the higher association with chorus power on the same day over the previous day in the 548 

simple correlations disappears in the transfer function model.  The transfer function model, accounting 549 

for both serial autocorrelation of chorus power and the lagged effects of the inputs over time, gives us a 550 

clearer picture than simple correlation analysis. 551 

 552 

Serial autocorrelation in a response variable is often seen in time series data.  It may be an indication of 553 

physical persistence of the parameter or it may be the result of autocorrelation in either predictor or 554 

unmeasured variables that is not otherwise accounted for by the model.   The autocorrelation in this 555 

system, therefore, could be an indication that chorus wave power does not dissipate quickly but remains 556 

detectable up to 24 hours later.  Additionally, the chorus autocorrelation may be due to unmeasured 557 

processes that are themselves autocorrelated. 558 

 559 

While this empirical model was developed to provide information on whether source electron flux or 560 

substorms are important in driving chorus, it could also be used as a predictive model.  However, as 561 

source electron flux data is not always available as an input, we also built predictive ARMAX models 562 

using only the more readily available IMF and solar wind parameters: |B|, Bz, V, N, and P.  The 563 

automatic selection technique used, which evaluates the BIC of all possible models and chooses the 564 

most parsimonious with the most explanatory power, gave us two models: a daily transfer function 565 

model with |B|, Bz, and pressure as inputs (Model 6), and an hourly model with |B|, Bz, pressure, and 566 

velocity as inputs (Model 7).  The validation correlation of the daily solar wind/IMF model was lower 567 

than that of the daily source electron flux/SMEd model.  Predictions from the daily solar wind/IMF 568 

model did not predict the highest chorus levels as well.  The hourly ARMAX model (Model 7) was even 569 

less well correlated with observations.  This may be because much of the variation seen in the hourly 570 

observations is due to fluctuations in the region the satellite is passing through rather than actual 571 

changes in chorus levels over time.  As DEMETER is in a polar orbit, passing quickly through L shells in 572 

both the northern and southern hemispheres, it may be measuring large fluctuations in chorus power 573 

between hemispheres in any given hour.  The hourly model was unable to forecast this variability with 574 

as much accuracy as the daily model. 575 

Although inputs from IMF and solar wind sources may ultimately drive chorus activity via substorms and 576 

source electron flux generation, these inputs provide a weaker predictive model, even when chorus 577 

power levels are modelled as an ARMA process and even when all parameters are daily averaged. 578 

 579 

 580 



6. Conclusions 581 

 582 

1. Daily lower band chorus power is correlated with both radiation belt source electron flux 583 

(measured at L≈6) and substorm activity (SMEd index).  Although the simple correlations are 584 

reasonably high at L3-L5 (up to 0.785 for source electron flux and 0.481 for SMEd), they are 585 

much lower at L2.  Neither source electron flux nor substorm influences are associated with 586 

chorus power below L3. 587 

 588 

2. A daily multiple regression model using both source electron flux and SMEd to predict 589 

chorus resulted in a validation correlation between observed and predicted values of 0.638.  590 

However, a regression or correlation will not accurately represent relationships if serial 591 

autocorrelation in the response variable (chorus power) is high.  The autocorrelation of this 592 

regression model was unacceptably high at 0.310.  A full hourly regression model with all 593 

variables entered had a validation correlation of 0.452, but the autocorrelation was too high 594 

at 0.444.   595 

 596 

3. As one method to account for the problem of autocorrelation, we add an AR(1) term 597 

(average chorus power from the day before) to the regression.  This lowers the 598 

autocorrelation to 0.103 and increases the validation correlation to 0.766.  However, this 599 

model depends on having chorus observations from the day before to predict its value on 600 

the current day.  Chorus measurements may not always be available. 601 

 602 

4. We fit two daily autoregressive-moving average transfer function (ARMAX) models.  These 603 

models used past behavior of chorus power (in the test dataset) and further inputs (source 604 

electron flux and SMEd, or solar wind and IMF parameters) to predict chorus power.  Serial 605 

autocorrelation is greatly reduced, and validation correlations of 0.675 (for the source 606 

electron flux/SMEd ARMAX model) and 0.611 (for the solar wind/IMF model) show that 607 

there is good predictive ability. 608 

 609 

5. The daily ARMAX models would be useful for predicting chorus power when chorus 610 

measurements are not available as predictions are based on the behavior of chorus power 611 

in the training set rather than on its value the day before. 612 

 613 

6. While the source electron flux/SMEd ARMAX model tracked chorus power changes well in a 614 

timeplot, the solar wind/IMF ARMAX predictions were somewhat less accurate.  If source 615 

electon flux and SMEd are not available as inputs, the solar wind and IMF model could be 616 

used instead, but with a loss of accuracy.   617 

 618 

7. Hourly models, either regression or ARMAX, were not able to predict chorus as effectively. 619 

 620 

8. ARMAX models are better able to analyze the time lagged effects of predictors than 621 

regression.  From the ARMAX model, we were able to determine that the action of source 622 

electron flux on chorus power levels is highest in the first few days.  Substorm activity 623 



(measured by SMEd) has more long-lasting effects, presumably due to its continued 624 

pumping of source electrons from the plasma sheet. 625 

 626 

9. Not all solar wind and IMF parameters are useful in predicting chorus power.  The lowest BIC 627 

was obtained for ARMAX models containing IMF |B| and Bz, and solar wind pressure (in the 628 

daily model) and |B|, Bz, pressure, and solar wind velocity (in the hourly model).  Number 629 

density (N) was never chosen by the automated selection technique. 630 

 631 

 632 

 633 
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Table 1. Comparison of regression models using source electron flux and SMEd (Lag0 hours and Lag24 hours) and/or solar wind and IMF 781 

parameters (Lag0, Lag1, and Lag24) as input parameters.  Models 1 and 4 are uncorrected for serial autocorrelation.   Models 2, 3, and 5 attempt 782 

to correct for autocorrelation by adding observed chorus at the previous time step as an input parameter.   783 

R2, the prediction efficiency, is the fraction of variation in the training set data explained by the model.  The validation correlation is the 784 

correlation between observed chorus and that predicted by the model.  The maximum PACF is the highest autocorrelation in the residual errors 785 

from the model.   786 

Model Model type Time Step Lag chorus Source 
electron 
flux and 

SMEd 

Solar wind 
and IMF 

parameters 

R2 
Variation 
explained 
by model 

Validation 
correlation 

Maximum 
PACF 

Figure Equation 

1 Regression Daily    0.644 0.638 0.314 
(day 1) 

3ab 
 

5 

2 Regression Daily    0.710 0.766 0.104 
(day 4) 

3cd, 6 6 

3 Regression Daily    0.775 0.823 0.082 
(day 4) 

-- -- 

4 Regression Hourly    0.562 0.452 0.453 
(hour 1) 

4 Table 2 

 787 

  788 



Table 2. Unstandardized coefficients of the hourly regression model (Model 4 of Table 1) predicting chorus power from predictors at the current 789 

time (Lag0), from 1 h previous (Lag1), and from 24 h previous (Lag24).  Significant predictors (p-value < 0.05) are denoted with an asterisk. 790 

 Lag0 Lag1 Lag24 

Constant -3.156*   

|B| -0.005 0.021* 0.050 

Bz 0.030* -0.080* -0.005 

Source Flux 0.258* -- 0.185* 

SMEd 0.0002 -- -0.0004* 

N 0.017* -0.012* -0.003 

V 0.002* -0.0005 -0.0004* 

P 0.030* 0.004 0.010 

Chorus power -- 0.580* -- 

  791 



 792 

 793 

Table 3. Comparison of ARMAX models. These models correct for serial autocorrelation by adding AR and MA terms that model the time series 794 

behavior of chorus rather than inputting actual chorus observations.   Daily models include an AR(1) term and an MA term (either 1 or 4).  The 795 

hourly model contains an AR(1) and MA(1) term as well as a "seasonal" (24 hour) AR(1) and MA(1) term.  Source electron flux and SMEd and/or 796 

solar wind and IMF parameters are included as transfer function inputs.  797 

R2, the prediction efficiency, is the fraction of variation in the training set data explained by the model.  Validation correlation is the correlation 798 

between observed chorus and that predicted by the model.  The maximum PACF is the highest autocorrelation in the residual errors from the 799 

model.   800 

 801 

 802 

Model Model type 
(p,d,q) 

Time Step Source 
electron 
flux and 

SMEd 

Solar wind 
and IMF 

parameters 

R2 
Variation 
explained 
by model 

Validation 
correlation 

Maximum 
PACF 

Figure Equation 

5 ARMAX(1,0,4) Daily   0.732 0.675 0.081 
(day 4) 

5, 7 7 

6 ARMAX(1,0,1) Daily   0.734 
 

0.611 0.024 
(day 1) 

6, 8a 8 

7 ARMAX 
(1,0,1)(1,0,1) 

Hourly   0.628 0.502 -0.046 
(hour 3) 

8b 9 

 803 



 804 

Figure 1. Timeplots of DEMETER L4 lower band chorus power (gray), source electron flux (blue), and 805 
SMEd (red) over Sept. 2006 at L4 (L=4-4.99).  Observations are standardized to produce z-scores by 806 
subtracting the overall mean and dividing by the standard deviation of each variable. 807 
 808 
Figure 2. Correlation of lower band chorus DEMETER satellite observations (0.1-0.5 fce) with source 809 
electron flux or SMEd at L 2-5. a. source electron flux correlated with dayside DEMETER observations, b. 810 
source electron flux correlated with nightside DEMETER observations, c. SMEd with dayside DEMETER 811 
observations, and d. SMEd with nightside DEMETER observations. Chorus observations on a given day 812 
are correlated with source electron flux or SMEd daily average on the same day (red) and from 24 hours 813 
before (black). Simple linear correlations are shown in black or red, correlations with a fourth-order 814 
polynomial model in gray or pink. 815 
 816 
Figure 3. Daily averaged lower band chorus power (log10(μV2/m2/Hz)) predicted by source electron flux 817 

and SMEd (top row; Model 1 of Table 1), or by source electron flux, SMEd, and chorus on the day before 818 

(bottom row; Model 2 of Table 1).  a. Scatterplot of observed L4 lower band chorus power vs. that 819 

predicted by regression model using source electron flux and SMEd as predictors. Validation correlation 820 

is 0.638. b. Partial autocorrelation function (PACF) of the residual errors of the model. Autocorrelation at 821 

a one day lag of 0.310 is unacceptably high and indicates uncorrected serial autocorrelation. c. 822 

Scatterplot of observed chorus power and that predicted by regression model using source electron flux, 823 

SMEd, and chorus power on the previous day as predictors. Validation correlation is higher with 824 

previous chorus added as a predictor (r=0.766). d. The maximum partial autocorrelation of the residuals 825 

is 0.103 indicating that some of the serial autocorrelation has been removed by the addition of previous 826 

day’s chorus. 827 

Figure 4. Full regression model predicting hourly dayside L4 chorus power (log10(μV2/m2/Hz)) using 828 

source electron flux, SMEd, IMF |B| and Bz, and solar wind density (N), velocity (V), and pressure (P) as 829 

well as chorus from the previous hour to control for serial autocorrelation (Model 4 of Table 1). a. 830 

Standardized coefficients from the multiple regression analysis. Predictors are measured at the same 831 

time as chorus (lag 0), an hour before the chorus measurement (lag 1), and 24 hours before (lag 24). 832 

Only lag 0 and lag 24 of source electron flux and SMEd are used as they are daily measurements.  833 

Statistically significant effects (p-value < 0.05) are shown in gray; nonsignificant effects are in white. 834 

Chorus at lag 1 is included as a predictor but not shown in this figure. Its standardized regression 835 

coefficient was much higher than the other predictors at 0.577.  b. Partial autocorrelations of the 836 

residual errors of the regression model show that there is still significant autocorrelation of chorus at 837 

lag1 (0.453) despite the addition of lag 1 chorus as a predictor. c. Scatterplot of observed chorus and 838 

that predicted by the regression model (validation correlation = 0.452). 839 

Figure 5. Predicting daily L4 chorus power (log10(μV2/m2/Hz)) using ARMAX transfer function model 840 
with source electron flux and SMEd as inputs (Model 5 of Table 3). a. Validation correlation of observed 841 
chorus and that predicted by the ARMAX transfer function model (r = 0.675). b. Partial autocorrelations 842 
of the residual errors of this ARMAX model. The serial autocorrelation is reduced to an acceptable level. 843 
 844 
Figure 6. Timeplot of chorus power (log10(μV2/m2/Hz)) predicted by ARMAX model using source flux and 845 
SMEd as inputs (green; Model 5 of Table 3), an ARMAX full model using solar wind and IMF parameters 846 



|B|, Bz, and pressure (pink; Model 6 of Table 3), and the regression model using source electron flux, 847 
SMEd, and previous day’s chorus (blue line; Model 4 of Table 1) over Feb-May of 2009. 848 
 849 
Figure 7. Standardized cumulative effects on L4 lower band chorus power over 0-14 days previous of 850 
source electron flux (black bars) and SMEd (gray bars) (Model 5 of Table 3). 851 
 852 
Figure 8. Standardized cumulative effects on L4 lower band chorus power.  a. over 0-14 days using the 853 
daily ARMAX(1,0,1) model (Model 6) with IMF |B| (orange), IMF Bz (blue), and solar wind pressure 854 
(green) as predictors, and b. over 0-12 hours using the hourly ARMAX(1,0,1)(1,0,1) model (Model 7) 855 
using solar wind velocity (white), IMF |B| (orange), IMF Bz (blue), and pressure (green) as predictors.  856 
 857 
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