
Figure 1.



Top 10 Best

0.65

0.7

0.75

0.8

0.85

0.9

Av
g.

 V
al

id
at

io
n

C
or

re
la

tio
n 

co
ef

fic
ie

nt
,  

r

Model 1
Model 2

Bottom 5 Wost

0.65

0.7

0.75

0.8

0.85

0.9

Av
g.

 V
al

id
at

io
n

C
or

re
la

tio
n 

co
ef

fic
ie

nt
,  

r

Model 1
Model 2

Time Combinations by  r

Variable order:
ULF Pc5

VLF
Seed Electrons
SMEd
EMIC

ULF Pc52

1
1
2
1
1
1

1
2
2
1
1
1

1
1
2
1
2
1

1
1
2
1
1
2

1
1
1
1
1
1

1
2
2
1
2
1

2
2
2
1
1
1

1
1
2
1
2
2

2
2
1
1
1
1

2
2
2
1
2
1

2
2
2
2
2
1

2
2
2
2
2
2

2
2
2
2
1
2

2
2
1
2
2
1

2
2
2
2
2
1

a) b)



Figure 2.



Significance Frequencies
Model 1

Model 2

Model 3

U
LF

 P
c5

U
LF

 P
c 5

2

VL
F

Se
ed

 e
le

ct
ro

ns

SM
Ed

Pr
e-

st
or

m
 fl

ux

EM
IC

0

0.5

1

0

0.5

1

0

0.5

1

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Average Validation Correlation
Coefficient r, TPR, TNR, ACC

Avg. TPR Avg. TNR Avg. ACC
Model 1
Model 2
Model 3

Avg. r
0.80 N/A N/AN/A
0.91 0.94 0.86 0.92

0.90 0.82 0.87N/A

a) b)



Figure 3.



Significance Frequencies
Model 1

Average Validation Correlation
Coefficient r, TPR, TNR, ACC

5

0

0.

1

5

0

0.

1

5

0

0.

1

Model 2

Model 3

U
LF

 P
c5

VL
F

U
LF

 P
c 5

2

Se
ed

 e
le

ct
ro

ns

SM
Ed

Pr
e-

st
or

m
 fl

ux

EM
I C

V N Bz
 R

at
io

D
st Pr
es

su
re

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Avg. TPR Avg. TNR Avg. ACC
Model 1
Model 2
Model 3

Avg. r
0.80 N/A N/AN/A
0.90 0.94 0.87 0.92

0.88 0.79 0.85N/A

a) b)



Figure 4.



Standardized Coefficients

U
LF

 P
c5

U
LF

 P
c5

2

VL
F

Se
ed

 E
le

ct
ro

ns

SM
Ed

Pr
e-

st
or

m
 F

lu
x

EM
IC

-0.4

-0.2

0

0.2

0.4 With ULF Pc52

Without ULF Pc52



 1 

 2 

Comparison of multiple and logistic regression analyses of relativistic electron flux 3 
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Key Points 19 

1. Following storms, increases in relativistic electron flux at geosynchronous orbit were 20 

well predicted by regression models 21 

2. ULF, VLF, and EMIC waves, and seed electrons were all strong predictors 22 

3. Three model types (logistic and linear regressions) had similar validation success 23 

 24 

Abstract 25 
 Many factors influence relativistic outer radiation belt electron fluxes, such as waves in 26 

the ultra low frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron 27 

(EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and 28 

solar wind inputs.  In this work we compared relativistic electron flux post storm vs. pre-storm 29 

using three methods of analysis: 1) multiple regression to predict flux values following storms, 30 

2) multiple regression to predict the size and direction of the change in electron flux, and 3) 31 

multiple logistic regression to predict only the probability of the flux rising or falling.  We 32 



determined which is the most predictive model, and which factors are most influential.  We 33 

found that a linear regression predicting the difference in pre-storm and post storm flux (Model 34 

2) results in the highest validation correlations.  The logistic regression used in Model 3 had 35 

slightly weaker predictive abilities than the other two models, but had most value in providing a 36 

prediction of the probability of the electron flux increasing after a storm.  Of the variables used 37 

(ULF Pc5 and VLF waves, seed electrons, substorm activity, and EMIC waves), the most 38 

influential in the final model were ULF Pc5 waves and the seed electrons.  IMF Bz, Dst, and solar 39 

wind number density, velocity, and pressure did not improve any of the models, and were 40 

deemed unnecessary for effective predictions. 41 

 42 

1. Introduction 43 
 Relativistic electron flux (>1.8-3.5 MeV) at geosynchronous orbit is influenced by a 44 

variety of factors.  Ultra low frequency (ULF) Pc5 and very low frequency (VLF) waves have been 45 

postulated to accelerate seed electrons (270 keV) to relativistic energies (Jaynes et al., 2015; 46 

Rodger et al., 2015).  Electromagnetic ion cyclotron (EMIC) waves are thought to precipitate 47 

these electrons (Rodger et al., 2008).  The ring current index Dst, substorms, and variations in 48 

solar inputs such as solar wind velocity, number density, pressure, and interplanetary magnetic 49 

field (IMF) Bz have all also been postulated as influences on flux (Simms et al., 2018a, and 50 

references therein).  Geomagnetic disturbances, during which many of these driving factors 51 

increase, can result in flux enhancements during the recovery phase, but only about half of 52 

storms result in a dramatic rise in electron flux.  Levels can remain unchanged or fall following 53 

other storms (Kim et al., 2015; Reeves et al., 2003; Turner et al. 2013; Zhao & Li 2013), and the 54 



intensity of Dst during a storm is not sufficient to predict whether electron flux will increase or 55 

decrease (Reeves, 1998).  Thus, identifying the further storm characteristics that lead to 56 

electron enhancement or depletion has been of interest (e.g., O'Brien et al., 2001; Pinto et al., 57 

2018; Simms et al., 2014; Xiong et al., 2015).  58 

 Simple correlation or superposed epoch analysis has often been used to study these 59 

relationships.  However, these approaches can only determine the association between pairs of 60 

factors (e.g., between flux and storm Dst).  A correlation between a hypothesized predictor and 61 

flux may only mean that that possible predictor is itself highly correlated with the actual 62 

physical driver of flux enhancement or depletion.  It may have no actual physical influence on 63 

its own.  To avoid false conclusions, analysis methods that control for concomitant changes in 64 

all possible predictors are needed.  Partial or canonical correlation techniques (e.g., Borovsky & 65 

Denton, 2014) can be used to avoid this problem, but multiple regression is better able to 66 

compare the relative effects of various interrelated possible predictors and to provide an 67 

empirical and tractable prediction equation in the form of a linear combination. However, 68 

because treatments (e.g., higher or lower wave activity) cannot be randomly assigned in 69 

observational studies such as this, statistically significant effects only prove an association 70 

between predictor and response, not a definite causal relationship.   71 

  72 

 Logistic regression does not predict values but rather the probability of an event.  By 73 

classifying the response as a binary variable, and with the use of an appropriate transformation 74 

(the logistic transformation), regression can be used to produce a model that predicts the 75 

probability of occurrence of an event (Neter et al., 1985).  We use logistic regression to model 76 



the probability of an outer belt electron flux enhancement (over pre-storm levels) following a 77 

geomagnetic storm.  By adding predictor variables to this model we can determine which 78 

processes are the strongest predictors of an increased probability of flux enhancements 79 

occurring. 80 

 Previously, multiple regression analysis was used to predict relativistic electron flux 81 

levels following storms using solar wind and IMF parameters as well as ground-observed ULF 82 

and VLF waves (Simms et al., 2014).  However, the models in this study did not incorporate 83 

either the occurrence of substorms or the presence of EMIC waves.  In addition, the available 84 

VLF wave data from ground based sensors was only weakly associated with VLF waves 85 

occurring at geosynchronous orbit.  Recently, a substorm occurrence measure, satellite-86 

observed VLF wave intensity, and EMIC wave activity were all included in a model predicting 87 

daily averaged flux (Simms et al., 2018a).  Our aim in this present study is to explore which set 88 

of the many possible factors best predicts whether the electron flux levels rise or fall following 89 

geomagnetic storms. 90 

 We compare relativistic electron flux post storm vs. pre-storm using three methods of 91 

analysis: 1) multiple regression to predict flux values following storms, 2) multiple regression to 92 

predict the size and direction of the change in electron flux, and 3) multiple logistic regression 93 

to predict only the probability of the flux rising or falling.  Using daily averages from the first 94 

and second 24 hours of the recovery period (from minimum Dst until Dst reaches -30 nT), we 95 

trained all three model types on a set of predictors thought to have the most direct physical 96 

effect on flux: ULF Pc5, VLF lower band chorus (0.1-0.5 of the electron gyrofrequency), and 97 

EMIC waves, seed electron flux (270 keV), and Dark Ionosphere SME (SMEd) from the 98 



SuperMAG collaboration as a measure of substorms.  It was previously found that these 99 

parameters may be more influential on days following a geomagnetic storm than on the same 100 

day (Simms et al., 2018a).  For this reason, we explore whether predictors are more influential 101 

during the first or second 24 hours of recovery following storms.  We also use averages of these 102 

predictors from storm main phase.  Because relativistic electron flux may show a non-linear 103 

response to ULF Pc5 waves (Simms et al., 2018b), we introduced a quadratic term (ULF Pc5)2 to 104 

the model.  In addition, we trained a model that included the added parameters of solar wind 105 

velocity (V), number density (N) and pressure (P), IMF Bz, and minimum storm Dst.  This was 106 

intended, if possible, to produce a model with more predictive power due to the added 107 

explanatory variables. 108 

 109 

2. Data 110 
For the years 2005-2009, 126 geomagnetic storms were observed, determined from the 111 

Dst values obtained from the Omniweb database.  A geomagnetic storm was defined as having 112 

a Dst minimum of -30 nT or lower. 113 

As previously described in Simms et al., 2018a, we use the 1.8-3.5 MeV energy channel 114 

of relativistic electrons measured by the Energetic Spectrometer for Particles instrument (log10 115 

[electrons/cm2 · s · sr · keV]) and the seed electron flux (270 keV in the same units as above) 116 

measured by the Synchronous Orbit Particle Analyzer (SOPA) instrument from the LANL 117 

satellites in geosynchronous orbit (Reeves et al., 2011).  In one set of regressions, the maximum 118 

log10flux in the 7 days following the minimum Dst of storms was predicted.  In a second set of 119 

regressions, the difference in the log10flux was predicted.  This difference was calculated as post 120 



storm maximum log10flux (in the 7 days following the minimum Dst) – pre-storm log10flux 121 

(maximum flux on the day preceding the storm). 122 

ULF Pc5 wave power was obtained from a ground-based ULF Pc5 index covering local 123 

times 0500–1500 in the Pc5 range (2–7 mHz) obtained from magnetometers stationed at 60°N–124 

70°N corrected geomagnetic latitude (Kozyreva et al., 2007).  In training the models described 125 

below, it was found that the ULF Pc5 did not have a completely linear relationship with the 1.8-126 

3.5 MeV electron flux.  Therefore, we also included (ULF Pc5)2 in our variable set. 127 

We obtained VLF lower band chorus (log10 [μV2 · m2 · Hz]) power spectral density (0.1–128 

0.5 fce; L=4, 4.0-4.99; dayside satellite passes, LT 10:30) from the Instrument Champ Electrique 129 

(ICE) on the DEMETER satellite (Berthelier et al., 2006). 130 

EMIC wave activity data were obtained from the induction coil magnetometer located at 131 

the Halley, Antarctica, British Antarctic Survey (BAS) ground station at L-shell 4.6.  We used the 132 

number of hours per day during which there was increased EMIC activity (>10-3 nT2 Hz) in the 133 

<1-Hz band.  134 

The SMEd, a measure of only the dark ionosphere (nightside) SuperMAG Auroral 135 

Electroject Indices (SME) was obtained from SuperMAG (Gjerloev et al., 2010; Gjerloev, 2012). 136 

From the Omniweb database, we obtained solar wind velocity (V), number density (N), 137 

IMF Bz component, Dst, and pressure (P).  Each of these was averaged over the main and 138 

recovery phases as described above, with the exception of Bz, for which we used the fraction of 139 

southward Bz hours out of total hours in each time period. 140 



For the years 2005–2009, we averaged all variables (except when noted) over storm 141 

main phase and the first and second 24 hours of recovery.  This daily averaging was done to 142 

smooth out diurnal fluctuations that occur due to satellite position.  Of the 126 geomagnetic 143 

storms observed during this time period, only 85 were complete observations (i.e., containing 144 

measured values for all parameters per observation) that could be used in the analyses. 145 

 146 

3. Methods 147 
Statistical analyses were performed using R and MATLAB. 148 

Three model types were tested: 149 

1. Multiple regression predicting the value of the 1.8-3.5 MeV electron maximum flux at 150 

geostationary orbit in the 7 days following the minimum Dst of geomagnetic storms. 151 

2. Multiple regression predicting the log flux difference (pre-storm vs. post storm as 152 

defined in the previous section) 153 

3. Logistic regression predicting the probability of a flux increase (post storm higher than 154 

pre-storm). 155 

We consider Model Type 1 to be a baseline model (a standard regression model 156 

predicting values) and explore the other model types with the hope that they will improve on 157 

this model.  All three models are expected to show the same general relationship between the 158 

explanatory and dependent variables. 159 

The data were randomly split into a 60%:40% ratio of training and test sets (~51:34 160 

storms).  For Model Type 1, a linear multiple regression model was created using observations 161 



from the training set.  Predictions from the test set were calculated using the unstandardized 162 

model coefficients for each explanatory variable.  A validation correlation coefficient r 163 

calculated between these predictions and the real value of the electron flux from the test set 164 

was used to determine the best model.  A larger value of r means the corresponding model 165 

predicts the test set electron flux better. 166 

 The algorithms for Model Type 2 (multiple regression) and 3 (logistic regression) were 167 

similar, however rather than predicting the value of the maximum electron flux, these models 168 

used the flux difference as a response variable (as described above).  Model Type 2 simply 169 

predicted the difference between pre and post storm flux log values.  However, for Model Type 170 

3, due to the use of logistic regression, we require a binary dependent variable.  To produce 171 

this, we set all increases in log flux (post storm higher than pre-storm) to 1 and all non-172 

increases to 0.  However, this binary response variable will not have a linear relationship with 173 

the predictors as the response can only be at the bottom (0) or top (1) of its range.  In order to 174 

fulfill the linearity requirements of regression, the binary variable must be transformed.  This is 175 

accomplished in several steps.  First, a probability prediction function is assumed, where the 176 

probabilities of "success" (p, response=1) and "failure" (1-p, response=0) sum to 1 for any single 177 

trial (the discrete Bernoulli distribution).  This probability function is not, itself, linear.  Although 178 

probability responses can now span the range between 0 and 1, the range is still restricted, 179 

responses asymptote curvilinearly to 0 and 1, and none of the usual transformations of the data 180 

(logs, etc.) will fix this problem.  A further transformation is needed to linearize the response 181 

and transform the range from negative to positive infinity.  This can be accomplished by using 182 

the odds instead of the probability.  (While probability is the ratio of successes to all trials, the 183 



odds are the ratio of successes to failure.)  Taking the log of the odds (called the logits) is then a 184 

simple transformation to produce a linear function (Neter et al., 1985).  Mathematically, this 185 

transformation to logits is accomplished via the logistic transformation of the probability 𝜋: 186 

𝑙𝑜𝑔𝑖𝑡 = log𝑒 (
𝜋

1−𝜋
).                                                                          (1) 187 

The coefficients of the prediction equation are calculated from these observed logits using a 188 

nonlinear, iterative process that finds the maximum likelihood estimates for these parameters. 189 

The resulting logistic regression equation then predicts logits (log odds) using the fitted model 190 

coefficients: 191 

logit = b0 + 𝑏1𝑥1 +⋯+ 𝑏𝑖𝑥𝑖                                                                (2) 192 

which can then be converted to predicted probabilities (probability of log flux increase) with 193 

the following back transformation: 194 

𝑃𝑟(𝑒𝑣𝑒𝑛𝑡) =
eb0+𝑏1𝑥1+⋯+𝑏𝑖𝑥𝑖

1+𝑒b0+𝑏1𝑥1+⋯+𝑏𝑖𝑥𝑖
 ,                                                                (3) 195 

where Pr(𝑒𝑣𝑒𝑛𝑡) is the predicted probability that an event will occur (in this case a flux 196 

increase), 𝑥𝑖 refers to the 𝑖𝑡ℎ predictor and 𝑏𝑖 refers to the corresponding coefficient.  The 197 

predicted probabilities will differ depending on the particular values of the predictors (𝑥𝑖). 198 

 The typical logistic regression algorithm performed on this data set had difficulty 199 

converging on model coefficients.  It is possible that the data set was too small.  Instead, we 200 

used a Firth logistic regression, which uses a penalized likelihood method, and often produces a 201 

more successful result (Firth, 1993). 202 



Probability predictions from Model Type 3 (logistic regression) ranged from 0 to 1, 203 

where 0 was a zero probability of the electron flux going up after a storm, and 1 was a 100% 204 

probability of it going up.  These were also converted to binary, with probabilities greater than 205 

0.5 being classified as 1 and probabilities less than 0.5 as 0.  This allowed a cross tabulation 206 

between the predicted and real binary values to be made. 207 

The cross tabulation produces four numbers: true positive (TP), true negative (TN), false 208 

positive (FP), and false negative (FN).  A true positive refers to an observation that is correctly 209 

predicted as an increase in electron flux.  A false positive refers to an observation that is 210 

incorrectly predicted as an increase in electron flux, when in fact the real data reflected a 211 

decrease.  The true negative and false negative follow similarly.  These values are used to 212 

calculate true positive rate (TPR), true negative rate (TNR), and accuracy (ACC), as follows 213 

(Fawcett, 2005): 214 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (4) 215 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                   (5) 216 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                             (6) 217 

 218 

Model Type 2 used a multiple regression (as in Model Type 1) but now predicting the 219 

flux difference.  To compare the results with Model Type 3 (logistic), the flux difference from 220 

the training set and the predicted flux difference values were converted to binary as in the 221 



Model Type 3 algorithm, and a cross tabulation made.  A validation correlation coefficient r was 222 

also calculated for Model Type 2 as with Model Type 1. 223 

For all 3 model types, 1000 models were trained on 1000 unique, randomly sampled 224 

training and test sets, and the measurements obtained were averaged over all 1000 runs.  This 225 

method, sometimes called bootstrap aggregating or “bagging”, can improve the accuracy of a 226 

prediction method by providing stability to the training sets (Breiman, 1996).  Training single 227 

models and comparing the results showed an apparent inhomogeneity in the training sets.  228 

Given this, and the small number of data points (85 usable storms), bagging was used to 229 

provide averaged metrics over many different subsamples. 230 

 Finally, inspired by Table A1 of O’Brien and McPherron (2003), a table of significance 231 

frequencies was also made for each explanatory variable.  In each run, a p-value < 0.05 was 232 

marked as statistically significant.  The p-value is the probability that a particular predictor 233 

would show an apparent influence in the regression model when it, in fact, had no association 234 

with the response variable at all.  In other words, it is the probability of mistakenly believing 235 

there is an association when there is not.  Using this definition, the frequency of significance is 236 

reported for each predictor over the 1000 runs.  Obviously, with this number of runs, the actual 237 

overall p-value is no longer 5% (i.e., it is not the probability of rejecting the null hypothesis of 238 

no association over all the runs), but we use it as a convenient cut off of association vs. no 239 

association within each run for the purposes of compiling statistics. 240 

 241 

3.2 Variable Sets and Effect of Variable Time Periods 242 



With the electron flux as the dependent variable, a backward elimination stepwise regression 243 

procedure was used to select predictor variables, at each step removing the predictor with the 244 

least significant p-value and recalculating the regression.  This resulted in a more parsimonious 245 

but still effective model containing only significant predictors with p-values<0.05 (Neter et al, 246 

1985).  The stepwise regression procedure was given only the direct drivers of the electron flux 247 

to select from.  The resulting variable set included ULF Pc5, ULF Pc52, VLF, seed electron flux 248 

(270 keV channel), SMEd, pre-storm electron flux (1.8-3.5 MeV channel), and EMIC waves.   249 

Once this variable set was selected, we explored the effect of the two different time 250 

periods, the first and the second 24 hours of recovery after a storm, for each of the variables 251 

that were measured following storms.  This included 6 of the 7 variables (pre-storm electron 252 

flux obviously being measured only before storms), resulting in 26 = 64 total combinations of 253 

first and second 24 hours of recovery (2 for the number of time period options, 6 for the 254 

number of variables with those options).  Each of these combinations also included pre-storm 255 

electron flux as a predictor.  All 64 time period combinations were tested using Model Type 1 256 

(other investigations shown in Figure 1 demonstrated that these time combinations were very 257 

similar for Model Type 2).  The best of these were determined by finding the top ten highest 258 

validation correlation coefficients, which were all above 0.75. 259 

 We also determined whether certain variables were more influential on either the first 260 

or second 24 hours of recovery.  We gathered all models where the first 24 hours of recovery 261 

for the first variable was used, all models where the second 24 hour period for the first variable 262 

was used, all models where the first 24 hour period of recovery for the second variable was 263 



used, and so forth, giving us 12 groups of models.  We then counted the number of the top ten 264 

best models previously determined that were in each group (Table 1). 265 

Finally, using the top 5 time period combinations determined from Model Type 1, we 266 

ran all three model types using a larger predictor set.  This set included all the same variables as 267 

before, as well as V, N, Bz ratio, Dst, and pressure.  The different time period combinations 268 

produced very similar results in Model Type 2, therefore the top time period combinations from 269 

Model Type 1 were used for the other models.  This is demonstrated in Figure 1, where the top 270 

10 and bottom 5 time period combinations found with Model Type 1 follow the same trend in 271 

Model Type 2. 272 

 273 

4. Results 274 
 The goal of these analyses was to determine an effective predictive model to forecast 275 

the relativistic electron flux and also to explore some general trends in building such models, 276 

such as the time period combinations for each variable, model type, and variable sets.  Once 277 

the best model was selected, we examined the standardized coefficients of each variable in the 278 

regression to see which variables are the most influential. 279 

 280 

4.1 Determining the Best Model 281 
 4.1.1 Time periods and Model Type 282 

We sorted the validation correlation coefficients from the Model Type 1 runs from 283 

largest to smallest and sampled a smaller number of combinations to run with the other two 284 

model types.  Because we did not find that the overall trends differed greatly, we did not run all 285 



64 for Model Types 2 and 3.  Figure 1 shows r values for the top ten and bottom five 286 

combinations across Model Types 1 and 2. 287 

 All 3 model types were run using the time period combination with the highest 288 

validation correlation coefficient found in Figure 1a.  This combination used most variables 289 

measured in the first 24 hours of recovery, with the exception of the VLF.  We find that Model 290 

Type 2 (linear regression predicting flux difference) produces the best prediction, as seen by the 291 

r, TPR, TNR, and ACC values across model types in Figure 2b.  This is also evident in Figure 1, as 292 

Model Type 2 consistently has a higher r relative to Model Type 1.  In Figure 2a, the pre-storm 293 

flux is seen to be significant (p-value < 0.05) in every run of Model Type 2.  This is unsurprising, 294 

as pre-storm flux is used in calculating the flux difference, but its addition as a covariate 295 

improves the model.  Otherwise, the significance frequencies between Model Type 1 and 2 are 296 

very similar, indicating that similar variables are influencing the two model types equally.  We 297 

are unable to compare Model Type 1 and 2 by the crosstab metrics, however, the validation 298 

correlation coefficient r is larger in Model Type 2 (0.9 vs. 0.8). 299 

 While the significance frequencies for Model 3 are very low for nearly all variables 300 

compared to those for Models 1 and 2 (Figure 2a), this is not necessarily an indication that 301 

Model 3 is an ineffective analysis method.  The important tests of the models’ effectiveness are 302 

the crosstab metrics.  If the model can predict flux changes well (indicated by good crosstab 303 

metrics), poor significance frequencies do not necessarily matter.  The crosstab metrics for 304 

Model 3 are slightly weaker than for Model 2 (Figure 2b), indicating that Model 2 is a somewhat 305 

more effective model. 306 



 We conclude that Model Type 2 is a more effective predictive model for these data and 307 

this variable set.  However, Model Type 1 offers the advantage of predicting the actual values of 308 

the electron flux, whereas Model Type 2 predicts the magnitude of the flux increase or 309 

decrease.  Depending on the application of these models, one or the other type may be more 310 

useful despite the difference in validation correlation coefficients. 311 

In the process of determining the best time period combinations for a predictive model, 312 

we observed trends in the ideal time periods for each variable.  We found that several, though 313 

not all, of the variables were significant mostly in either the first or the second 24 hours of 314 

recovery.  For example, 7 of the top 10 combinations had ULF Pc5 in the first 24 hour time 315 

period, suggesting that is the best time period to use for that variable.  This information is 316 

shown in Table 1. 317 

We found that VLF is significant more in the second day of recovery (8 of the 10 best 318 

models of Table 1).  ULF Pc5, seed electrons, and EMIC waves are all mostly significant in the 319 

first 24 hours of recovery.  The seed electrons were especially clear, as all 10 of the best models 320 

used data measured in the first 24 hours of recovery.  The SMEd and the squared ULF Pc5 were 321 

most influential in the first 24 hours about half the time. 322 

 323 

 324 

 325 

 326 



Table 1:  Number of times the first or second 24 hours of recovery time periods were used for 327 

each variable in the top 10 best time period combinations (using Model Type 1). 328 

Variable First 24 hours 
of recovery 

Second 24 hours 
of recovery 

ULF Pc5 7 3 

ULF Pc52 5 5 

VLF 2 8 

Seed electrons 10 0 

SMEd 6 4 

EMIC 8 2 

 329 

 330 

 4.1.2 Variable sets 331 
 More variables may make for a better model as they provide more information for the 332 

algorithm to work with.  We ran all three model types again, this time including five more 333 

variables: V, N, Bz ratio, Dst, and pressure, all measured in the first 24 hours of recovery.  All 334 

other variables are based on observations during the first 24 hour of recovery, except for the 335 

VLF waves, which uses the second 24 hour period.  The significance frequencies are shown in 336 

Figure 3a, and r values, and cross tabulation measurements are shown in Figure 3b.  Comparing 337 

to Figure 2 in Section 4.1.1, we do not see a significant improvement in the models from adding 338 

more variables.  Both the r values and the cross tabulation measurements are virtually the 339 

same for both variable sets in each model type.  Evidently, these additional variables are 340 

unnecessary for an effective predictive model. 341 

 342 



 4.1.2 Low Success with Logistic Regression 343 
 We see in Figures 2a and 3a that the significance frequencies for Model Type 3 (logistic 344 

regression) are quite low – some variables have values of zero, and all others are ≤ 0.16 in the 345 

smaller variable set (Figure 2), and ≤ 0.21 in the larger variable set (Figure 3) (pre-storm flux is 346 

considered a covariate, and as such its significance frequency value of 1 in both figures is not 347 

noteworthy).  As previously stated, these low significance frequencies do not necessarily 348 

indicate that this model is less effective, however we do see slightly lower crosstab measures in 349 

Model 3 as compared to Model 2. 350 

 Whereas we have defined an increase or decrease in the electron flux to be any change 351 

between pre-storm or post storm flux, Reeves et al. (2003) required a relative change of a 352 

factor of at least 2.  This corresponds to a cutoff of 0.3 with our log flux values.  With this 353 

definition, storms during which the electron flux increased or decreased only very slightly are 354 

classified as having had no change in flux.  Using this 0.3 cutoff rather than our original cutoff of 355 

0 for Model Types 2 and 3, we find a slight improvement in the validation correlation coefficient 356 

r and crosstab measures, as shown in Table 2. 357 

 This new 0.3 cutoff does improve the logistic regression, but the improvement is slight, 358 

and additionally, the new cutoff decreased the predictive effectiveness of Model Type 2 in all 359 

measurements but the TNR. 360 

 361 

Table 2:  Model Types 2 and 3 (linear predicting flux difference, and logistic) results using an 362 

electron flux cutoff of 0 and a cutoff of a relative change of a factor of at least 2.  The variables 363 



used were ULF Pc5, ULF Pc52, VLF, seed electrons, SMEd, pre-storm flux, and EMIC waves, all 364 

measured in the first 24 hours of recovery but the VLF. 365 

Cutoff 

(log values): 

Model Type 2 Model Type 3 

r TPR TNR ACC r TPR TNR ACC 

0 0.91 0.94 0.86 0.92 0.70 0.90 0.82 0.88 

0.3 0.90 0.89 0.88 0.89 0.77 0.93 0.84 0.90 

 366 

4.2 Standardized Coefficients of the Best Model 367 
 Having determined the best model to be Model Type 2 (linear regression predicting flux 368 

difference, all variables measured in the first 24 hours of recovery except for VLF waves which 369 

uses observations in the second 24 hours, and no solar wind parameters), we next calculated 370 

the standardized model coefficients (Figure 4).  These allow a direct comparison of predictor 371 

influences, regardless of differing scales.  When including the ULF Pc5^2, the ULF Pc5 shows the 372 

strongest influence on electron flux.  If the squared term is dropped, ULF Pc5 still has a stronger 373 

influence than VLF, SMEd, and EMIC, and similar influence as the seed electrons. 374 

 375 

5. Discussion 376 
Geomagnetic disturbances have been associated with relativistic electron flux 377 

enhancements during the recovery phase, due in part to the resulting increases in the 378 

parameters that are thought to drive electron flux increases.  However, not all storms result in 379 

appreciable increases in electron flux (Kim et al., 2015; Reeves et al., 2003; Turner et al. 2013; 380 

Zhao & Li 2013).  Furthermore, we cannot predict the behavior of the electron flux using merely 381 

the intensity of the Dst index during a storm (Reeves, 1998).  Further parameters are necessary 382 

to effectively predict relativistic electron flux.  We find that ULF Pc5 waves and seed electrons 383 



are the most influential variables in predicting electron flux at geosynchronous orbit, with lower 384 

but still observable effects of VLF and EMIC waves. (Flux enhancements have also been 385 

observed at altitudes lower than geosynchronous orbit, where they may be driven by different 386 

mechanisms than suggested by our present study (Katsavrias et al., 2019)).  In our study, we 387 

explore prediction from three analysis types: prediction of flux values using regression, 388 

prediction of the change in flux using regression, and predicting the likelihood of a flux increase 389 

using logistic regression.  Logistic regression is a simple classifier model, as it predicts 390 

probabilities of observations belonging to a class (in this case, an increase in flux following a 391 

storm).  Neural networks are more complex examples of classifier models, and several previous 392 

studies have utilized neural networks to predict levels of these electrons (O’Brien & McPherron, 393 

2003; Perry et al., 2010).  Neural networks can model non-linear, often very complex data, and 394 

then predict outcomes from new data using those models.  However, given the “black box” 395 

nature of these methods, it is difficult to infer physical meaning from the results.  If the goal is 396 

to learn which physical processes influence electron levels, it is better to use methods such as 397 

regression or logistic regression, which provide valuable information on the relative strength of 398 

influence of each variable. 399 

 400 

 As in this paper, Simms et al. (2014) looked at only storm times (removing the quiet 401 

periods from the data set).  Their analyses showed that ULF Pc5 and seed electrons were 402 

influential, similar to what we have found here.  However, the VLF data in their work was from 403 

ground stations, and they did not find it had good predictive ability.  VLF data from ground 404 

stations is subject to transionospheric attenuation during periods of solar illumination.  405 



Therefore, ground based VLF measurements are not necessarily representative of what is 406 

happening at the altitude of the satellite (Simms et al., 2015; Smith et al., 2010).  In this paper, 407 

we have a space-based VLF measure from the DEMETER satellite, and this does show good 408 

predictive ability (Simms et al., 2019). 409 

Previous work used the AE index as a measure of substorm activity.  It was not effective 410 

at predicting relativistic electron flux and may not have been a good measure of substorm 411 

activity (Simms et al., 2014).  In this paper, we used the SMEd index.  This is also measured at 412 

ground-based magnetometers, but the data comes only from the dark ionosphere (nightside) 413 

which would be better able to measure substorm activity from the tail of the magnetosphere.  414 

The SMEd also incorporates observations from a wider range of magnetic latitudes and from a 415 

much larger number of magnetometer stations than does the AE (Newell & Gjerloev, 2011).  416 

Despite this change, waves, particularly ULF Pc5 and VLF, were more effective predictors of 417 

relativistic electron flux than substorm activity.   418 

Model Type 2 (linear regression predicting flux difference) was the most effective at 419 

predicting the size of electron flux increases.  The validation correlation coefficient r was larger 420 

for this model type than for Model Type 1 (linear regression predicting flux value).  The crosstab 421 

measures (TPR, TNR, and ACC) were also higher for this model type than for Model Type 3 422 

(logistic regression).  The logistic regression used in Model Type 3 had weaker predictive 423 

abilities than the other two model types.  However, in some circumstances we may want a 424 

prediction of the probability of the electron flux increasing after a storm rather than a 425 

prediction of the actual value.  In this case, Model Type 3 may be the most useful model.  These 426 



considerations should be taken into account, along with the validation correlation coefficients 427 

and crosstab values, when selecting a model type.   428 

The most effective models used waves, seed electrons, and substorm activity.  In this 429 

predictor set, all but the VLF were measured in the first 24 hours of recovery.  The VLF was 430 

measured in the second 24 hours of recovery.  This time period combination produced the 431 

highest validation correlation coefficient and crosstab measures.  While ULF Pc5, seed 432 

electrons, and EMIC waves were more effective predictor variables when measured during the 433 

first 24 hours of recovery, and VLF when measured during the second 24 hours of recovery, the 434 

period of measurement was not important for SMEd. 435 

The inclusion of additional parameters (V, N, Bz ratio, Dst, and pressure) did not 436 

produce significant improvement, and we did not include them in our final model.  The strong 437 

correlations of these variables with flux enhancements seen in previous work, together with 438 

their apparent redundancy in our models, likely indicates that solar wind and IMF influences are 439 

mediated through the driving of waves and seed electrons which then directly influence flux 440 

levels. 441 

Significance frequencies and the standardized coefficients for each variable in the final 442 

model show which variables are more frequently statistically significant and have higher 443 

influence, respectively.  ULF wave power and the seed electrons are the most frequently 444 

significant of the possible predictor variables.  ULF Pc5 waves and seed electrons are also the 445 

strongest influences on flux changes as measured by the standardized regression coefficients.  446 

Pre-storm flux also shows a high significance frequency and influence, but this is only because it 447 

was used to calculate the flux difference (the response variable). 448 



As in Simms et al. (2018a), which looked at daily averages of parameters over the entire 449 

year, we again found that the effect of ULF Pc5 as determined by the standardized coefficients 450 

was stronger than that of the VLF.  However, both the ULF Pc5 and the VLF are important 451 

predictors, presumably because they are accelerating seed electrons, which were also 452 

associated with increased flux.  This supports the argument made in Simms et al. (2018a) that 453 

both act independently to increase electron flux levels, rather than only the ULF Pc5 (suggested 454 

by Ozeke et al., 2017), or only the VLF (suggested by Jaynes et al., 2015).  The ULF Pc5 influence, 455 

however, is nonlinear, showing the strongest effect at mid-range values.  The positive linear 456 

and negative squared ULF Pc5 terms together describe this peak as a quadratic response of flux 457 

(Simms et al., 2018b).  When the ULF Pc52 term is not included, the standardized coefficient 458 

and influence of the ULF Pc5 is more similar to that of the VLF (Figure 4).  The decreased 459 

influence of ULF Pc5 at higher values may be related to the hypothesized electron loss during 460 

shock events due to outward radial diffusion (Brautigam & Albert, 2000; Degeling et al., 2008; 461 

Hudson et al., 2014; Loto'aniu et al., 2010; Shprits et al., 2006; Ukhorskiy et al., 2009; Zong et 462 

al., 2012). 463 

 464 

A high pre-storm flux has little room to grow substantially, thus a large change in flux 465 

will not occur if flux is already high.  However, if flux before a storm is low, there could be a 466 

substantial increase.  This appears as a negative correlation between pre and post storm flux. 467 

There was a negative effect of the EMIC waves due to presumed precipitation (Figure 4).  468 

The substorm measure did not show a significant direct effect on the electron flux, although we 469 

did not test whether it had an indirect effect through the production of VLF waves. 470 



Because this is not a controlled experiment with randomly assigned treatments, we 471 

cannot necessarily interpret the significant p-values as implying causation.  However, these 472 

correlations support the idea that there is a possible causal relationship between variables we 473 

have identified as predictors and the rise or fall of relativistic electron flux. 474 

 475 

6. Conclusions 476 
1. Following storms, increases in relativistic electron flux at geosynchronous orbit were 477 

well predicted by three regression models: 1) multiple regression to predict flux values 478 

following storms, 2) multiple regression to predict the size and direction of the change 479 

in electron flux, and 3) multiple logistic regression to predict only the probability of the 480 

flux rising or falling. 481 

2. The ULF Pc5 waves and seed electrons were the most influential predictors.  482 

Additionally, the VLF and EMIC waves were also influential.  Including the IMF Bz, Dst, 483 

and solar wind number density, velocity, and pressure in the data set did not improve 484 

any of the models. 485 

3. The three model types had similar validation success, but Model 2 (linear predicting flux 486 

difference) was determined to be the most effective. 487 

 488 
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Figure 1:  Validation correlation coefficient r across Model Types 1 and 2 (linear regressions) for 668 

the top 10 and bottom 5 Model Type 1 time period combinations.  Each bar’s label shows a 669 

sequence of 1’s and 2’s for the first or second 24 hours of recovery for variables in the following 670 

order: ULF Pc5, ULF Pc52, VLF, seed electrons, SMEd, EMIC.  Pre-storm electron flux is also 671 

included in these models. 672 

 673 

Figure 2:  Significance frequencies, r, and crosstab values for Model types 1, 2, and 3 for the best 674 

time-period model by r (all variables are measured in the first 24 hours of recovery except the 675 

VLF). 676 

 677 

Figure 3:  Significance frequencies, r, and crosstab values for Model types 1, 2, and 3 for the best 678 

time-period model by r (all variables are measured in the first 24 hours of recovery except VLF). 679 

 680 

Figure 4: Standardized model coefficients for Model Type 2 (linear predicting flux difference) 681 

over the entire data set and best time period (all variables measured in the first 24 hours of 682 

recovery, except VLF).  Dark gray shows standardized coefficients for the model with ULF Pc5^2, 683 

and light gray shows standardized coefficients for the model without ULF Pc5^2.  All variables 684 

were statistically significant (p < 0.05), with the exception of SMEd. 685 
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