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Key Points: 19 

• The response of the outer radiation belt is compared during three intense (Dst_min < -20 
100nT) CME-driven geomagnetic storms 21 

• The first two storms occurred following the arrival of shocks and exhibit characteristic 22 
“dropouts” of MeV electrons during the main phase 23 

• The third CME was not preceded by a shock, resulting in different solar wind and 24 
magnetospheric conditions and an unusual “non-dropout”  25 
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Abstract 26 

This study compares 3 different geomagnetic storms (designated as storms 1, 2, and 3) observed 27 
by NASA’s Van Allen Probes within the spacecraft’s first 50 days in orbit. These storms were 28 
CME-driven with minimum DST around -138, -100, and -106 nT, respectively. Storms 1 and 2 29 
occurred following the arrival of fast-forward shocks, which compressed the magnetopause 30 
inward to about 6.5 RE and 7.5 RE, respectively, as a result of the increase in solar wind dynamic 31 
pressure and density. The inward magnetopause motion helped contribute to a rapid depletion of 32 
MeV electrons across the entire outer belt. For the 3rd storm, however, there was little or no 33 
dropout of MeV electrons in the heart of the outer belt during the storm main phase. This third 34 
storm was generated by a CME without an associated shock, and the magnetopause actually 35 
moved outward at the start of the storm, suppressing loss of electrons through the outer 36 
boundary.  The study reveals that under certain solar wind driving conditions radiation belt 37 
electron dropouts may not occur, even during large geomagnetic storms (Dst_min < -100 nT).  38 
 39 

1 Introduction 40 

Earth’s magnetosphere has a region, known as the radiation belt, divided into the inner belt, 41 
between ~ 1.5 and 2.5 Earth radii (RE), and the outer belt, which lies between ~ 3 and ~ 7 RE in 42 
the equatorial plane. Within these regions, the energetic charged particles (e.g., electrons and 43 
protons) are trapped due to the dipolar-like topology of the geomagnetic field, which converges 44 
at high latitudes giving rise to relatively minimum magnetic field strength around the 45 
geomagnetic equator (Spjeldvik and Rothwell, 1985).  The energy range of these trapped 46 
particles spans between hundreds of keV and tens of MeV (Mauk et al., 2013), and can pose 47 
serious threats to the satellites within the radiation belt regions (Baker, 2001; Baker and Kanekal 48 
1994; Wrenn, G. L. 1995; Wrenn et al., 2002).  49 

 50 
The electrons in the inner belt are relatively stable (Abel and Thorn, 1998; Rodger and Clilverd, 51 
2002) compared to the outer belt, which is highly dynamic with flux intensities changing 52 
drastically by order of magnitudes on timescales from minutes to days (Friedel et al., 2002; 53 
Shprits et al., 2008a). The variations of these electron fluxes are most often observed during 54 
geomagnetic storms, including those driven by Coronal Mass Ejections (CMEs) (Reeves et al., 55 
2003, Li et al., 2013).  56 
 57 
CMEs result from eruptions of plasmas and magnetic fields occurring on the surface of the Sun, 58 
as a consequence of the energy release processes in the corona (Gopalswamy, 2004; Yashiro et 59 
al., 2004; Wang and Zhang, 2007; Byrne et al., 2010; Manoharan and Mujiber Rahman, 2011; 60 
Webb and Howard, 2012; Fu et al., 2021). They can be classified as fast (> 500 km/s) or slow (< 61 
500 km/s) (Gopalswamy et al., 2000; Filippor, 2019) depending on their relative speed to 62 
average solar wind speed (MacQueen and Fisher, 1983; Sheeley et al., 1999; Pant et al., 2021). 63 
When faster than the surrounding solar wind, they drive either fast-forward or fast-reversed 64 
shocks, during which a simultaneous increase in the magnetic field magnitude and plasma 65 
parameters or a decrease in the magnetic field magnitude, solar wind density, and an increase in 66 
the solar wind speed, respectively, is observed (Kilpua et al., 2015). Similarly, they can also 67 
drive forward and reserved slow mode shocks, although rarely observed (Chao and Olbert 1970; 68 
Richter et al., 1985; Whang et al., 1998; Ho et al., 1998; Zuo et al., 2006), during which one 69 
observes an increase in the plasma density, temperature, and bulk speed, and a decrease in the 70 
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magnetic field (Ho et al., 1998; Zuo et al., 2006). These fast or slow mode shocks often lead to 71 
an increase or decrease in the ram pressure at Earth’s magnetopause (Srivastava and 72 
Venkatarishnan, 2002). However, slow-moving CMEs do not drive shocks (Lugaz et al., 2017).  73 
 74 
Numerous studies have investigated the impact of CMEs on the dynamics of the outer radiation 75 
belt. Radiation belt dropouts are one of the most intense dramatic variations in Earth’s 76 
magnetosphere (Baker et al., 1994; Xiang et al., 2018), which occur when electron fluxes drop 77 
by several orders of magnitude over a broad range of energies, spatial locations and within a few 78 
hours during the main phase of geomagnetic storms (Friedel et al. 2002; Shprits et al. 2008a; 79 
Turner et al., 2012a). During these periods, the electrons are either transported through the 80 
magnetopause into interplanetary space, through the process known as magnetopause shadowing 81 
(Lotoaniu et al., 2010; Turner et al., 2012a) or they precipitate into the atmosphere (e.g., Rodger 82 
et al., 2010; Bortnik et al., 2014; Thorne, et al., 2010).  83 

 84 
While magnetopause shadowing occurs when the magnetopause compresses inwards as a result 85 
of an increase in the solar wind dynamic pressure and can be accompanied by enhanced outward 86 
radial diffusion driven by ultra-low frequency (ULF) waves, (e.g. Turner et al., 2012; Tu et al., 87 
2019), wave-particle interactions that induce pitch angle scattering of electrons are the primary 88 
cause of precipitation during geomagnetic storms (Millan and Thorne 2006; Tu et al., 2010; 89 
Thorne, 2010; Ni et al., 2017; Jaynes and Usanova, 2019). However, studies have shown that a 90 
combination of magnetopause shadowing with outward radial diffusion as well as precipitation is 91 
often needed to explain radiation belt dropouts (e.g., Li et al., 1997; Morley et al., 2010; Tu et 92 
al., 2010; Turner et al 2012b; Bruno et al., 2022). For instance, Turner et al. (2012b) use data 93 
from multiple spacecrafts e.g., THEMIS, GEOS, and NOAA-POES to show that the sudden 94 
electron depletion observed at the main phase of the storm on 06 January 2011 resulted from 95 
outward transport rather than loss into the atmosphere. Morley et al. (2010a; 2010b) use 96 
energetic particle measurement from GPS constellation to show that electron loss between 4 < 97 
L*< 6 at energies above > 230 keV results from magnetopause shadowing and /or outward 98 
diffusion as well as precipitation to the atmosphere due to wave-particle interactions. EMIC 99 
waves have been suggested to be a major contributor to MeV electron precipitation loss during 100 
storm-time dynamics (e.g. Shprits et al., 2017, Xiang et al., 2018), while other studies have 101 
shown that pitch angle scattering by multiple wave modes simultaneously (e.g. EMIC and chorus 102 
waves) can help produce observed radiation belt losses, particularly at L<5 (e.g. Gao et al., 2015, 103 
Mourenas et al., 2016, Boynton et al., 2017, Drozdov et al., 2020). 104 

 105 
Using data from CRRES, Akebono, GPS, and LANL-GEO, Shprits et al. (2012b) found that 106 
78% of 25 electron flux dropouts analyzed were associated with a sudden increase in the solar 107 
wind dynamic pressure.  Several other studies have shown associations between dropouts and an 108 
increase in the solar wind dynamic pressure as well (e.g., Ni et al., 2013; Ohtani et al., 2009). 109 
These increases in the dynamic pressure often occur following the passage of the stream 110 
interface regions during which the magnetopause standoff distance moves inward to around 8 RE 111 
(Morley et al., 2010). Boynton et al. (2016) found that dropout magnitude at L=6.6 was primarily 112 
controlled by the square of the solar wind dynamic pressure, while a similar analysis of dropouts 113 
observed by GPS at L=4.2 was better associated the cube of the southward IMF Bz component 114 
(Bs

3) (Boynton et al. 2017).  Xiang et al. (2018) found a similar dependence of dropouts on radial 115 
distance, with those at L*>4.5 likely due primarily to magnetopause shadowing, while 116 
precipitation into the atmosphere likely contributed to those at lower L*. These studies highlight 117 
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the importance of considering radial distance (or L shell/L*) as well as electron energy during 118 
radiation belt dropouts.   119 
 120 
Although several efforts have been made to better understand the variations of electrons in the 121 
radiation belt during geomagnetic storms, and in particular the processes resulting in the rapid 122 
dropout of electrons at the main phase (Friedel et al. 2002; Shprits et al. 2008a; Turner et al., 123 
2012a; Tu et al., 2019; Rodger et al., 2019), there are no studies to date that describe the storm-124 
time radiation belt little or non-dropouts to understand when and where geomagnetic storms do 125 
not result in complete dropouts. Recent studies (e.g., Murphy et al., 2018) have shown that 126 
radiation belts usually have these dropout signatures but upon closer inspection, not all the time, 127 
at all energies, or at all radial distances. The main objective of this paper is to explore a large 128 
geomagnetic storm (Dst min ~ -106 nT) that did not show a dropout of MeV electrons within the 129 
outer zone and to attempt to understand when or why the outer belt behaves in this manner.  130 

2 Observations 131 

2.1 Electron Flux Measurement.  132 

 Figure 1 shows the electron flux measurements observed by Van Allen Probes in 2012, during 133 
the geomagnetic storms within the spacecraft’s first 50 days in orbit. The first four panels (a, b, 134 
c, and d) of the Figure show the electron flux measured by the ECT-REPT and ECT-MagEIS 135 
instruments of the Probes at 335.5 KeV, 458.2 KeV, 2.30 MeV, and 4.50 MeV, respectively, 136 
while the last panel (e) shows the intensity of the storms designated as storm 1, 2 and 3. 137 

Geomagnetic storms further referred to as 1 and 2, which occurred on 30th September – 1st 138 
October 2012, and 8-9 October 2012, respectively, were accompanied by an enhancement of the 139 
solar wind dynamic pressure leading to significant outward radial transport and magnetopause 140 
loss (Turner et al., 2014; Tu et al., 2014).  These two storms have also been simulated using the 141 
Lyon-Fedder-Mobary MHD code coupled to the Rice Convection Model, to show the 142 
contribution of the magnetopause and ULF wave activity to radiation belt losses (Hudson et al., 143 
2014). However, no studies described the “unexpected” little or non-depletion of electron flux at 144 
the main phase of storm 3 (12 -13th October 2012), which is the aim of this investigation. 145 

As shown in Figure 1, spacecraft flux measurements show a loss of 4.5 MeV electrons 146 
throughout the entire radial extent of the outer belt during the main phases of storms 1 and 2. 147 
However, there was little or no dropout of relativistic electrons at the main phase of storm 3. We 148 
recall that dropouts in the radiation belt result from both adiabatic and non-adiabatic processes. 149 
While adiabatic effects alone often cannot explain the magnitude of loss observed during 150 
dropouts (Kim and Chan 1997; Li et al., 1997), to minimize any ambiguity and reveal the real 151 
loss, we next investigated the Phase Space Density (PSD) profiles calculated from the electron 152 
flux data of the REPT and MagEIS instruments of Van Allen Probes. 153 
 154 

2.2 Phase Space Density 155 

PSD describes the kinematic state of the radiation belt electrons using three momentum 156 
coordinates i.e., μ, K, and L* (Schulz and Lanzerotti, 1974), where μ and K represent the first and 157 
second adiabatic invariants, respectively, and L*, commonly referred to as Roederer L, relating 158 
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to the third adiabatic invariant (Roederer, 1970). One of the benefits of using invariants PSD is 159 
that PSD distribution in L* does not change when only adiabatic changes are occurring in the 160 
system (Stapes et al., 2022). Figure 2 (a) shows the PSD at fixed K (0.115 G1/2 RE) and varying 161 
values of μ (1585, and 2290 MeV/G) that were calculated following methods outlined in Xiang 162 
et al. (2017), which used the semiempirical Tsyganenko magnetic field model TS04 163 
(Tsyganenko and Sitnov, 2005). These μ values correspond to about 2.3 – 2.9 MeV energies at 164 
L* = 4.  165 
 166 
For these μ and K values, the plots clearly show relativistic electron loss at the main phases of 167 
the first and second storms at a range of L* spanning the entire outer radiation belt (i.e., between 168 
~ 3 and ~ 6 Re), while storm 3 resulted in little or no electron loss, particularly towards the inner 169 
edge of the outer belt.  170 
 171 

To unambiguously identify dropouts and little or no dropouts at various radial distances, PSD 172 
data were binned in L* (0.1) and in time (4 hours). Dropouts were then identified when the PSD 173 
dropped by a factor of greater than 5 within 8-hour intervals. These criteria have been used 174 
successfully by previous studies (e.g., Duncan, 2000; Xiang et al., 2018) to identify dropout 175 
events and to ensure that the depletion of electrons PSD is prompt and significant. Figure 2 panel 176 
(b) to (f) shows the temporal variation of the PSD at fixed μ and K values, and at various L* (3 to 177 
5). Following Xiang et al. (2018), dropout events are circled in red and appended with a number 178 
that indicates the magnitude of the dropouts at these radial distances (L*).  179 

 180 
At μ values (1585 and 2290 MeV/G) corresponding to multi-MeV electrons in Figure 2 (left and 181 
right), we observed no depletion of electrons between L* (3.5 to 4.5) for storm 3 compared to 182 
storms 1 and 2, which did show dropouts at these L*.  183 

2.3. Solar wind parameters 184 

To better understand the drivers of the dynamics within the magnetosphere during these events, 185 
we recall that various studies (e.g., Paulikas and Blake 1979; Blake et al., 1997; Hudson et al., 186 
2014) have shown clear relationships between activities in the radiation belt and solar wind 187 
parameters (for instance the duration of the Bz -southward components of the magnetic field, 188 
dynamic pressure, density, IMF and speed). Thus, Figure 3 shows the solar wind parameters 189 
obtained from the OmniWeb database (https://omniweb.gsfc.nasa.gov/ow_min.html ) for the 190 
period between September 25th to October 25th, 2012. The solar wind OMNI data were measured 191 
by multiple spacecraft (ACE, WIND, and DSCOVR), time-shifted, and then propagated to the 192 
nose of the Earth's bow shock to represent the conditions at that location (King and Papitashvili, 193 
2005). As such, they approximately show the solar wind conditions inputs into the inner 194 
magnetosphere impacting radiation belt dynamics.  195 
 196 
CME-driven geomagnetic storms occur when the southward interplanetary magnetic field either 197 
in the flux rope or sheath of the CME coincides with the northward field of the magnetosphere 198 
leading to the transfer of energy from the solar wind to the magnetosphere, and the enhancement 199 
of the ring current (Gosling, 1993; Dryer, 1994; Gonzalez et al., 1994; Gopalswamy et al., 2010; 200 
Green and Baker, 2015). This enhancement is observed by the 1-hour (DST) or 1-minute SYM-201 
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H geomagnetic indices (Wanliss and Showalter, 2006), during which the Bz (GSM) component 202 
of the Interplanetary Magnetic Field (IMF) turned and remain negative for the duration of the 203 
main phase of the storm. Bz GSM < 0 allows significant magnetic reconnection on the dayside of 204 
the magnetosphere, leading to a build-up of the ring current, resulting in a weakening of the 205 
geomagnetic field as quantified by the SYM-H index. The sudden northward turning of Bz (Bz > 206 
0) often signals the start of the recovery phase of the storm when internal magnetospheric 207 
processes work to absorb the energy deposited during the Bz southward interval. 208 
 209 
The three geomagnetic storms investigated here were all driven by CMEs. Storms 1 and 2 210 
occurred following the arrival of fast-forward shocks, which increased the magnetic field 211 
magnitude and other plasma parameters (e.g., density and dynamic pressure). However, there 212 
was no shock associated with storm 3, as shown in the shock data repository 213 
(http://ipshocks.fi/database), because the speed of the corresponding CME (~490 km/s) was 214 
slower when compared with the speed of the solar wind (~ 560 km/s).  215 
 216 
The position of the magnetopause can be estimated using the Shue et al. (1997) magnetopause 217 
model, the output of which is shown in Figure 3f (black line). For the onset of storms 1 and 2, 218 
the magnetopause standoff distance moved inward to about 6.5 RE and 7.5 RE, respectively, as a 219 
result of an abrupt increase in solar wind dynamic pressure (~ 9.6 nPa, ~6.4 nPa) and density 220 
(~32 n/cc, ~22 n/cc), while at the onset of storm 3, the location of the magnetopause actually 221 
moved outward to around 14 RE due a decrease in pressure (~ 0.2 nPa) and density (~0.5 n/cc), 222 
and then reached an inward minimum distance (~8 RE) at the recovery phase of the storm, when 223 
the solar wind dynamic pressure and density increased to about 6.4 nPa and 12.5 n/cc, 224 
respectively, as a result of the arrival of a fast reversed shock (See Figure 3).  To approximate the 225 
position of the last closed drift shell LCDS (the highest L shell for stable electron trapping within 226 
the magnetosphere), Albert et al. (2018) have shown that the shifted magnetopause position 227 
MP*= MP-2 is close to LCDS during storm times (see blue line on panel 3f).  Furthermore, Pinto 228 
et al. (2018) showed that strong electron loss by outward radial diffusion is often observed down 229 
to Lmin=MP*(or LCDS)-1.5.  Lmin reaches a value of 3.6 and 4.2 during the main phase of storms 230 
1 and 2, respectively, while it reaches only 5.3 during the main phase of storm 3, which is 231 
consistent with no dropout being observed within ~L*=5 during the third storm.  232 
  233 
Consistent with the patterns and findings presented in this study, an increase in the solar wind 234 
dynamic pressure and IMF have been shown to play important roles in driving storm-time 235 
radiation belt dropouts (Ohtani et al., 2009, Boynton et al. 2016, 2017), and relatively low 236 
dynamic pressure results in fewer electron dropouts in the magnetosphere (Yuan and Zong 237 
2013). In addition to dynamic pressure playing a large role, a statistical study of about 110 CME-238 
driven storms, subdivided into those with and without dropouts, showed that three quartiles of 239 
non-dropout storms correspond to the Dst signature above ~ -80 nT compared to ~ -125 nT for 240 
storms with dropouts. While Morley et al., (2010) have shown that one can still get dropouts of 241 
electrons for small Dst signatures (Dst ~ - min > - 50), this case study reveals that under certain 242 
conditions there may not be dropouts even for large storms.  243 
 244 
2.4. Magnetopause shadowing versus precipitation loss 245 
 246 
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As described in the Introduction, radiation belt loss is primarily the result of two distinct 247 
mechanisms, magnetopause shadowing and precipitation into Earth’s atmosphere.  MeV electron 248 
dropouts, particularly towards the inner edge of the outer radiation belt, are not necessarily 249 
driven by magnetopause shadowing and can also be caused by precipitation induced by wave-250 
particle interactions. The absence of magnetopause loss is thus a necessary but not sufficient 251 
condition for geomagnetic storms to result in non-dropouts, as wave-driven precipitation can also 252 
contribute to these dynamics. Section 2.3 discussed the role of solar wind driving and losses to 253 
the magnetopause, but solar wind conditions may also result in different magnetospheric 254 
conditions (and thus different wave environments and precipitation conditions) during these 255 
three storms.  For example, high amplitude EMIC waves as well as dusk-sector precipitation 256 
have been shown to be enhanced during periods of high Bs (Clausen et al. 2011, Jun et al. 2019).  257 
 258 
In order to explore the contribution of precipitation loss during these three storms, we utilize 259 
measurements from the low altitude Polar-orbiting Operational Environmental Satellites (POES).  260 
Figure 4 shows trapped and precipitating electron fluxes as measured by POES Medium Energy 261 
Proton and Electron Detector (MEPED) in the Space Environment Monitor-2 (SEM-2) 262 
instruments (Evans and Greer, 2004) during the period of interest in 2012.  Top row presents 263 
electron measurements from the 90deg telescope, which points roughly perpendicular to the local 264 
magnetic field, at three different energies, >100 keV, >300 keV, and >~700 keV (as measured by 265 
the >6.9 MeV proton channel, P6, which responds primarily to high energy electrons when not 266 
exposed to energetic protons such as those from solar energetic particle events or the inner 267 
radiation belt; see Yando et al. 2011 for details).  The middle panels show the same 268 
measurements from the zenith-pointing 0deg telescope, primarily responding to locally 269 
precipitating particles. The 90deg telescope primarily measures trapped and drift loss cone 270 
electrons, and thus typically shows dynamics similar to that of the trapped outer radiation belt 271 
(e.g. Claudepierre and O’Brien, 2020). While, with its 30deg field of view, the 0deg telescope 272 
does not encompass the entire loss cone at high latitudes and thus can underestimate precipitation 273 
loss during some periods, it provides a good indication of precipitation during periods of strong 274 
diffusion when the loss cone is close to full (e.g. Rodger et al. 2010, 2013).  The bottom row 275 
shows the ratio of the 0 and 90deg telescopes, jprecip/jtrapped, to provide a rough estimate of the 276 
fraction of trapped electrons near the loss cone that precipitate into the atmosphere.  When this 277 
ratio approaches 1, fluxes are more isotropic, suggesting strong scattering into the loss cone.  278 
One should note however that this parameter also approaches 1 when fluxes in both telescopes 279 
are close to background levels (e.g. much of P6, see panel k).  Lastly, the rightmost column of 280 
Figure 4 shows slices of these three values (90deg telescope, 0deg telescope, and 0/90deg ratio) 281 
taken at L=4, in the heart of the outer radiation belt, for the three energies, >100keV (green), 282 
>300keV (blue), and >~700keV (red).   283 
 284 
As seen in Figure 4, ~MeV electron precipitation into the atmosphere during all three of these 285 
storms is generally low, below the detection threshold of the POES P6 channel, particularly 286 
during the main phase dropout periods under investigation in this study.  Some MeV electron 287 
precipitation can be observed at L=4 during storm 3 (see panels h and l), but little to none was 288 
measured during the main phase of storms 1 and 2.  If we look at the >300 keV electron channel, 289 
we find a similar pattern, where storm 3 actually has an equal amount or more precipitation 290 
occurring across the outer radiation belt during the storm main phase, as compared to the 291 
radiation belt dropout periods of storms 1 and 2.  This suggests that, while precipitation losses 292 
likely contribute somewhat to the net main phase dynamics of these three storms, a reduced level 293 
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of magnetopause losses are likely the driver of the lack of a dropout during storm 3 as compared 294 
to 1 and 2. 295 

3. Summary and Conclusion 296 

In this paper, we compared 3 different geomagnetic storms (designated as storms 1, 2, and 3) 297 
observed by Van Allen Probes within the first 50 days in orbit. While the ECT-REPT and 298 
MagEIS instruments of the probes show full depletion (at L = 3 – 6) of electrons at 4.5 MeV for 299 
storms 1 and 2, there was little or no depletion of MeV electrons at the main phase of storm 3. 300 
  301 
These 3 storms are all CME-driven, with DST_min ~ -138, -100, and -106 nT, respectively. 302 
While storms 1 and 2 were accompanied by fast-forward IP shocks, there was no shock 303 
associated with storm 3. The solar wind dynamic pressure, which is proportional to the proton 304 
density and solar wind speed square, is an important quantity in estimating the strength of the 305 
impact of an IP shock on the magnetosphere and is seen as a good indicator or predictor of 306 
geomagnetic activity (Srivastava and Venkatarishnan 2002).  307 
 308 
During this study period, the shocks produced by the CMEs led to an increase in the density, 309 
dynamic pressure, and IMF Bz for storms 1 and 2, compressing the magnetopause and 310 
contributing to electron loss across the entire outer belt. However, although the intensity of storm 311 
3 was significant (about -106 nT), there was actually a decrease in the pressure and large 312 
outward motion of the magnetopause during the onset of this storm, compared to the previous 313 
two storms. Little or no electron loss was observed at L* ~3.5 to 4.5, partly because there was no 314 
shock associated with the corresponding CME, to increase the ram pressure, compress the 315 
magnetopause and facilitate electron loss through magnetopause shadowing.  316 
 317 
This case study has shown that under the right solar wind conditions, particularly low solar wind 318 
dynamic pressure, even large geomagnetic storms may not result in MeV electron dropouts.  It 319 
underlines the importance of shocks associated with CME compared to CMEs without shocks in 320 
driving rapid radiation belt losses. Future work will expand this study to investigate statistically 321 
how typical, or rare, non-dropouts are in association with large geomagnetic storms, particularly 322 
in response to CMEs without shocks. 323 
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Figure 1. Overview of the electron flux in the outer radiation belt observed by Van Allen Probes 336 
between September 25th to October 25th, 2012.  337 
 338 
Figure 2. The electron PSD at μ = 1585 MeV/G, K = 0.115 G1/2 RE (left), and μ = 2290 MeV/G, 339 
K = 0.115 G1/2 RE (right), respectively for the geomagnetic storm between September 25th to 340 
October 25th, 2012. Panels (b) to (f) show the slices through the electron PSD at various L* 341 
values. The red circles denote dropout events, as defined by Xiang et al. (2018) study, with the 342 
number showing the magnitude of the dropouts.  343 
 344 
Figure 3. Solar wind parameters for the geomagnetic storms were observed between September 345 
25th to October 25th, 2012. (a) and (b) are the Bz and IMF in GSM coordinate, (c) total solar 346 
wind speed, (d) density, (e) solar wind dynamic pressure, (f) modeled subsolar magnetopause 347 
position (black) as well as the shifted magnetopause position, MP-2 (blue), (g) AE index showing 348 
substorm activities and (h) SYM-H index. The black vertical lines show the arrival of the IP 349 
shock as measured by the WIND spacecraft, while the onset and end of the main phases of the 350 
storms are denoted by the vertical red and blue dashed lines, respectively.  351 
 352 
Figure 4. POES particle measurements at low Earth orbit from September 25th to October 25th, 353 
2012. Top row shows particles measured in the 90 deg telescope, corresponding primarily to 354 
trapped and drift loss cone electrons, while the middle panel shows particles measured by the 0 355 
deg telescope in the bounce loss cone.  Bottom row shows the ratio of 0 to 90deg telescopes, or 356 
jprecip/jtrapped. Right-most column shows slices of these values taken at L=4. Timing of storms 1, 2, 357 
and 3 are labeled on the bottom left panel. 358 
 359 
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