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Abstract18

An assessment of the risk of extreme geomagnetic storms is critically important for mod-19

ern society. However, current methods mainly focus on using stationary statistical mod-20

els to analyze extreme geomagnetic events. These models ignore the non-stationary na-21

ture of the data, caused by effects of the solar cycle and the seasons, and thus could pro-22

vide unreliable estimates of return levels. We propose use of hidden Markov models and23

generalized additive models, both involving time-varying parameters, in order to cap-24

ture these features of the data. We use these models to analyze extreme values of the25

magnitude of the derivative in the horizontal component R1(t) of geomagnetic observa-26

tions from the Eyrewell geomagnetic observatory in New Zealand. We use residual di-27

agnostics to check for lack-of-fit of the models, demonstrate that they can successfully28

model the effects of both the solar cycle and the seasons, and use the best-fitting mod-29

els to provide more reliable estimates of return levels. From our analysis, the 50-year and30

100-year conditional return levels of the extreme magnitude of the derivative in the hor-31

izontal component R1(t) at the Eyrewell magnetic observatory are likely to be within32

the ranges 500 – 2600 nT/min and 700 – 4500 nT/min respectively at solar maximum.33

Plain Language Summary34

Use of data from magnetic observatories to estimate the possible extreme magni-35

tude of geomagnetic storms in the next 50–500 years is critically important, in order to36

allow the mitigation of hazards caused by these storms. Current methods of analysis mainly37

use stationary extreme value models, which cannot capture time-varying features in the38

data. We use geomagnetic data observed at the Eyrewell magnetic observatory in New39

Zealand to show that such a stationary model can exhibit strong lack-of-fit and may there-40

fore provide unreliable forecasts of the possible extreme magnitude of geomagnetic storms41

in the future. We propose use of statistical models that incorporate time-varying param-42

eters, demonstrate that these models can thereby capture important features of the data,43

particularly the solar cycle, and use them to provide forecasts of the possible future ex-44

treme magnitude of geomagnetic storms at Eyrewell.45

1 Introduction46

Modern society is increasingly dependent on technology, including electrical power47

grids. These grids can be disrupted and potentially damaged during extremely large ge-48
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omagnetic storms (e.g., Molinski, 2002; Mac Manus et al., 2022). Being able to forecast49

the ground impact of the next extreme geomagnetic storm is therefore crucial. Several50

studies have focussed on using stationary extreme value models to estimate the most likely51

extreme ground magnetic field variability/rate of change/perturbation expected over a52

specified time period (e.g., Thomson et al., 2011; Wintoft et al., 2016; Love, 2020; Rogers53

et al., 2020, 2021). Use of such models involves fitting an extreme value distribution to54

either “block maxima” or “exceedances over a threshold”. The former refers to the max-55

imum value observed within a specified time period (“block”), such as annual maxima56

(e.g., Nikitina et al., 2016; Wintoft et al., 2016; Love, 2020; Fogg et al., 2023). The lat-57

ter refers to the use of all observed values that exceed a specified threshold (e.g., Tsub-58

ouchi & Omura, 2007; Thomson et al., 2011; Love, 2020; Rogers et al., 2020, 2021). Es-59

timates of the parameters of the extreme value distribution are then used to estimate60

the return level for a specified period, e.g. the geomagnetic storm severity expected to61

be exceeded once within the next 100 years.62

We focus on modelling block-maxima for the following reasons. Firstly, block-maxima63

uses equal time-spacing between consecutive observations, which facilitates the use of64

some of the tools we apply to evaluate the fit of the model (see Section 3.3). Secondly65

when the original data exhibits serial dependence, the exceedances over a threshold may66

also be dependent. Modelling exceedances then requires the identification of “clusters”67

of exceedances, with only the maximum within each cluster being used in the modelling.68

If the model parameters also need to change over time, i.e. we require a “non-stationary”69

model, the choice of threshold may also need to change over time.70

In fitting models to geomagnetic storm data using the block-maxima approach, a71

block size is typically chosen to be large enough for the extreme value distribution to pro-72

vide a good approximation to the true sampling distribution of the maxima (Coles, 2001).73

The block-size needed to achieve this will increase if there is serial dependence in the ob-74

servations within a block (Huang et al., 2021). In addition, the block-size should be large75

enough to make it reasonable to assume that the resulting maxima are independent. Con-76

versely, too large a block-size may make the final sample size (number of maxima) too77

small to provide precise estimates of the parameters of the extreme value distribution.78

For example, if we use annual maxima of geomagnetic data, the sample size will often79

be less than 50, as records of continuous geomagnetic measurements are typically shorter80

than 50 years. The resulting lack of precision in the estimates of the parameters of the81
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extreme value distribution may then lead to estimates of return levels with very wide82

95% confidence intervals. For example, the magnetic observatory at Eyrewell in New Zealand83

has fewer than 30 years of digital records, and the use of annual maxima, although be-84

ing required in order to meet the modelling assumptions, leads to 95% confidence inter-85

vals for the return levels being too wide for practical use (see Section 4.1).86

As well as needing to assume independence between block maxima, or between ex-87

ceedances, stationary extreme value models assume that the observations are identically88

distributed through time, i.e. that their distribution is stationary. The exception to this89

is Elvidge (2020), who used the Hilbert-Huang transform to identify the solar cycles in90

annual maxima of aa indices over a 150-year period, from 1868. Elvidge (2020) split the91

time period into “solar maximum” and “solar minimum” segments, corresponding to pe-92

riods of higher and lower solar activity, and fitted the GEV distribution to the annual93

aa-index maxima, separately for the two types of period. These maxima were therefore94

assumed to be independent within each type of period. The only allowance for non-stationarity95

arose from the parameters of the GEV being different for the two types of period.96

Given the existence of time-varying features in geomagnetic data, such as the ef-97

fects of the solar cycle and the seasons, we would expect use of non-stationary extreme98

value models, which allow the parameters to vary over time, to lead to more reliable es-99

timates of return levels. In particular, with the availability of digital geomagnetic mea-100

surements at a sampling rate of one observation per minute, it is important to use mod-101

els that can provide a good fit to maxima based on the smaller block-sizes, in order to102

increase the sample-size. Use of non-stationary models should help in this respect, as they103

should provide a better fit to such maxima.104

In this study, we use hidden Markov models (HMMs) and generalised additive mod-105

els (GAMs) to analyze geomagnetic field data (one observation per minute) made at the106

Eyrewell observatory in Canterbury, New Zealand over the period 1994 to 2019, i.e., 26107

years. An HMM has parameters changing as a step function and a GAM has parame-108

ters varying smoothly. We compare these models and show that they can capture the109

main features of block-maxima data better than models with constant parameters, par-110

ticularly when smaller block sizes are used. We provide forecasts of the return levels for111

different periods, using the best-fitting HMM and GAM models.112
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2 Data113

The Eyrewell magnetic observatory is located in Canterbury, New Zealand. It is114

a mid-latitude (-43.474 °N, 172.393 °E) observatory that is part of the INTERMAGNET115

global network of observatories. The geomagnetic data we use in this study consists of116

observations of the horizontal X (north) and Y (east) components of the Earth’s mag-117

netic field recorded every minute from 1994 to 2019 (GNS-Science, 1994). The data have118

a strong diurnal trend, with both the X and Y components rapidly rising and falling dur-119

ing dawn and dusk (respectively), while being relatively stable during the day. During120

periods of geomagnetic disturbance, the variance of the observations increases, as larger121

storms produce larger variation in these horizontal components.122

There are gaps in the record, some of which are several days long, caused by equip-123

ment maintenance or malfunction. For the purpose of our analyses, we used a method124

for filling in gaps in the Eyrewell data set that is outlined in the Supplement.125

The time derivative of the magnetic field, that is, the first difference (Xt−Xt−1126

or Yt−Yt−1) in the two horizontal directions Xt and Yt, is related to the electric field127

driving Geomagnetic Induced Current (GIC, Viljanen et al., 2001; Mac Manus et al., 2017;128

Rodger et al., 2017; Smith et al., 2024). We model the extreme values of the magnitude129

of this difference, i.e., the rate of change of the horizontal component of the surface mag-130

netic field, which is given by R1(t) =
√

(Xt −Xt−1)2 + (Yt − Yt−1)2 (Freeman et al.,131

2019; Smith et al., 2019, 2022).132

3 Methods133

A common distribution used to model block maxima is the generalized extreme value

(GEV) distribution, with probability density function

f(x) = exp

{

−

[

1 + ξ

(

x− µ

σ

)]

−1/ξ
}

1

σ

[

1 + ξ

(

x− µ

σ

)]

−1/ξ−1

, (1)

where µ, σ, and ξ are the location, scale and shape parameters respectively. This prob-134

ability density function is undefined if we set ξ = 0, but in the limit as ξ → 0 it be-135

comes the probability density function for the Gumbel distribution, which is given by136

f(x) = exp {− exp [−(x− µ)/σ]} exp [−(x− µ)/σ] /σ. In addition, when ξ < 0, the137

probability density function is only defined for x ≤ µ−σ/ξ, while for ξ > 0, it is only138

defined for x ≥ µ− σ/ξ.139
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A return level zp is the value of the maxima which has a probability p of being ex-

ceeded, and is therefore expected to be exceeded once every 1/p periods, where the pe-

riod is the time-scale associated with the block maxima. For the GEV distribution this

return level can be written as

zp = µ−
σ

ξ

{

1 − [− log(1 − p)]−ξ
}

, (2)

and when ξ = 0 we have zp = µ − σ log {− log(1 − p)}. See Coles (2001) for a useful140

and detailed introduction to extreme value analysis. It is important to note that the choice141

of block-size will affect the estimate and 95% confidence interval for a return level. We142

use the statistical software R for all calculations and model-fitting (R Core Team, 2024).143

3.1 Hidden Markov model with GEV distribution144

Hidden Markov models (HMMs) are widely used to model time series that exhibit

non-stationarity and dependence (e.g., Wang & Bebbington, 2013; Wang et al., 2017, 2018;

Stanislavsky et al., 2020). In an HMM, the distribution of an observation at any time

point depends upon the state of an underlying (hidden) Markov chain at that point. In

our setting, we again assume that this distribution is the GEV distribution, but we al-

low the parameters (location, scale and shape) to vary with time, by being dependent

upon the state of the Markov chain. Mathematically, we assume that the observed pro-

cess is {Xt, t = 1, 2, 3, . . .}, and the hidden process {Ct, t = 1, 2, 3, . . .} is a first-order

Markov chain, where Ct takes values from {1, . . . ,m}, which may represent periods of

solar activity of different intensities. The probability of the Markov chain being in state

j at time t, given the previous states is Pr(Ct = j |Ct−1 = i, . . . , C1) = Pr(Ct =

j |Ct−1 = i) = γij . The matrix Γ = (γij)m×m is called the transition probability ma-

trix. For a stationary HMM, we have π = πΓ, where π = (π1, π2, . . . , πm) is called the

stationary distribution of the Markov chain with πi = Pr(Ct = i). Given Ct, the dis-

tribution of the observed process Xt depends only on the current state Ct of the Markov

chain and not on any previous observations or states, i.e., f(xt |Ct = j, Ct−1, . . . , C1, Xt−1, . . . , X1) =

f(xt |Ct = j), where f(·) is the probability density function of Xt. In our setting, we

assume that when the Markov chain is in state ct at time t, Xt has a GEV distribution,

with probability density function

f(xt |Ct = ct) = exp

{

−

[

1 + ξct

(

xt − µct

σct

)]

−1/ξct
}

1

σct

[

1 + ξct

(

xt − µct

σct

)]

−1/ξct−1

(3)
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where µct , σct and ξct are the state-dependent parameters. When ct takes on the value145

i at time t, the observation Xt at time t is from a GEV distribution with parameters µi,146

σi and ξi.147

Intuitively, an HMM classifies the observations over time into m distinct classes (e.g.,148

periods of maximum, moderate, and minimum solar activity). The unobserved Markov149

chain Ct models the transitions between the different intensities of solar activity, with150

its states representing these intensities.151

Let θ = {γij , µi, σi, ξi : i = 1, · · · ,m; j = 1, · · · ,m}. Given the observed block

maxima x1, x2, · · · , xn, the likelihood function of the HMM is

f(x1, x2, · · · , xn | θ)

=

m
∑

c1,··· ,cn=1

πc1f(x1 |C1 = c1;µc1 , σc1 , ξc1)

n
∏

t=2

γct−1,ctf(xt |Ct = ct;µct , σct , ξct) (4)

which includes a sum of mn terms, each term consisting of a product of 2n factors. See

Zucchini and MacDonald (2009) for more details about how to calculate this sum. We

use the R function nlm to numerically minimize the negative log likelihood function and

obtain the parameter estimates θ̂ = {γ̂ij , µ̂i, σ̂i, ξ̂i : i = 1, · · · ,m; j = 1, · · · ,m}(Zucchini

& MacDonald, 2009; Allen & Wang, 2024). The overall estimate of the return-level for

each period 1/p is the solution to

m
∑

i=1

πiF (z |C = i) = 1 − p (5)

that is, the 1−pth quantile of the mixture of the m GEV cumulative distribution func-

tions F (z |C = i), where πi is the estimated stationary distribution of the Markov chain,

and

F (z |C = i) = exp

{

−

[

1 + ξ̂i

(

z − µ̂i

σ̂i

)]

−1/ξ̂i
}

. (6)

After obtaining the parameter estimates θ̂, we can find the most likely sequence of states

of the Markov chain that has given rise to the observed time series, given the fitted model;

that is, we can find{ĉ1, ĉ2, . . . , ĉn} that maximizes the conditional probability Pr(C1 =

c1, C2 = c2, . . . , Cn = cn |X1 = x1, X2 = x2, . . . , Xn = xn, θ̂), which can provide the

most likely classification of the time series data. This is done by using the Viterbi al-

gorithm (Viterbi, 1967; Zucchini & MacDonald, 2009) and the resulting sequence of states

is called the Viterbi path. The return-level for each period 1/p, conditional on the Markov
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chain being in state i, is

ẑpi = µ̂i −
σ̂i

ξ̂i

{

1 − [− log(1 − p)]−ξ̂i
}

. (7)

We can use this to obtain the return levels conditional on the most likely sequence of states152

of the Markov chain.153

Choosing the appropriate number of hidden states m in an HMM is non-trivial and

is an area of active research. A recent study suggests that sample size is a factor affect-

ing which information criterion is more suitable for estimating the number of hidden states

(Buckby et al., 2023), with the Bayesian Information Criterion (BIC) being useful for

larger samples sizes and Akaike’s Information Criterion (AIC) being appropriate for smaller

sample sizes (Buckby et al., 2023), where

BIC = −2 × log-likelihood + log(n)k, (8)

and

AIC = −2 × log-likelihood + 2k, (9)

log-likelihood refers to the log likelihood function evaluated at the maximum likelihood154

estimates of the parameters, k is the number of parameters in the model, and n is the155

sample size. For the hourly and daily maxima we use BIC to determine the number of156

hidden states, while for the weekly and monthly maxima we use AIC.157

3.2 Generalised additive model with GEV distribution158

Generalised additive models (GAMs) are commonly used to smoothly model the

relationship between a response variable and one or more predictors. We use GAMs to

model the change over time in each parameter of the GEV distribution. Smoothness is

achieved using smoothing splines (Wood, 2017), with the degree of smoothness being de-

termined by the data. Mathematically, we assume that the tth maximum (Xt) has a GEV

distribution, with probability density function given by the time-varying analogue of Equa-

tion 1, namely

f(xt) = exp

{

−

[

1 + ξt

(

xt − µt

σt

)]

−1/ξt
}

1

σt

[

1 + ξt

(

xt − µt

σt

)]

−1/ξt−1

(10)

where µt, σt, and ξt are the location, scale and shape parameters for time t (t = 1, 2, . . . , n).

For the hourly maxima, time-variation in the location parameter is modelled by the equa-
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tion

µt = ah{h(t)} + ad{d(t)} + aw{w(t)} + am{m(t)} + ay{y(t)}, (11)

where h(t), d(t), w(t), m(t), and y(t) are the hour (0−23), day (1−7), week (1−52),

month (1−12) and year (1−26) associated with time-point t, and ah{·}, ad{·}, aw{·},

am{·}, and ay{·} are smoothing splines (Wood, 2017, Section 5.1). Likewise, the scale

and shape parameters are modelled by the equations

log σt = bh{h(t)} + bd{d(t)} + bw{w(t)} + bm{m(t)} + by{y(t)} (12)

and

ξt = ch{h(t)} + cd{d(t)} + cw{w(t)} + cm{m(t)} + cy{y(t)}, (13)

where bh{·}, bd{·}, bw{·}, bm{·}, by{·}, ch{·}, cd{·}, cw{·}, cm{·}, and cy{·} are smooth-159

ing splines. We specify the model for the scale parameter in terms of log(σt), as this pa-160

rameter must be positive. As there are slightly more than 52 weeks per year, we arbi-161

trarily assign the extra day(s) to week 52.162

For daily maxima we use analogous equations to those for hourly maxima, with sep-163

arate splines for day, week, month, and year. For weekly maxima we use separate splines164

for week and year, but not month, as some weeks occur in more than one month. Finally,165

for monthly maxima we use separate splines for month and year. For all maxima, we use166

cyclic penalised cubic splines for hour, day, week and month, in order to allow the splines167

to match at the end-points of their cycle (Wood, 2017, Section 5.3.2). For year, we use168

thin-plate regression splines, which have good general properties (Wood, 2017, Section169

5.5.1).170

We use the mgcv package (Wood, 2015) to fit the models, including the option that171

allow coefficients in the model to be set to zero if the data suggest that this improves172

the fit. This obviates the need to compare models (using AIC, for example) with differ-173

ent degrees of smoothing.174

3.3 Checking the fit of a model175

We can determine a suitable block-size by checking for goodness-of-fit of the model176

for the corresponding maxima. We require that the distribution of the maxima be close177

to what we would expect from the model, and that the maxima do not exhibit any strong178
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dependence. We use residual diagnostics to check these two aspects of model-fit. For the179

stationary models and the non-stationary GAM models, we use quantile residuals (Dunn180

& Smyth, 1996), estimated using the pevd function in the R package extRemes (Gilleland181

& Katz, 2016). For the HMM models we also use quantile residuals, which are known182

as “ordinary pseudo residuals” in the HMM literature (Zucchini & MacDonald, 2009;183

Buckby et al., 2020). The distribution of quantile residuals will be approximately the184

same as a standard normal distribution if the data are generated from the fitted model.185

We check this using a quantile-quantile plot (QQ-plot) tailored to the case where the un-186

derlying distribution is assumed to be a standard normal (Dodge, 2008). This plot shows187

the relationship between the sorted residuals and their expected values if the residuals188

come from a standard normal distribution. It includes a 95% envelope, within which 95%189

of the points should lie if the data were generated by the fitted model. In addition, we190

check for any dependence in the block-maxima using a plot of the residual-autocorrelation191

function (ACF-plot) (Brockwell & Davis, 2016, Section 1.4.1). This shows the autocor-192

relation in the residuals at each of several lags and also includes a 95% envelope, within193

which 95% of the autocorrelations should lie if the data were generated by the fitted model.194

For both types of model, goodness-of-fit is initially checked by seeing whether at195

least 95% of the points in the QQ-plot, and 95% of the autocorrelations in the ACF-plot,196

lie within the corresponding 95% envelope. If this condition is satisfied we then check197

whether the strength of any of the autocorrelations outside the 95% envelope might raise198

concerns with the model, e.g. a single strong positive autocorrelation at lag 1.199

3.4 Estimates and confidence intervals for return levels200

Given the fitted GEV distribution associated with any state (HMM models) or time-201

point (GAM models), we can estimate a return-level associated with that distribution.202

As this estimate is a non-linear function of the model parameters (Equation 2), we use203

single-fit bootstrapping (Fletcher & Jowett, 2022) to calculate a 95% confidence inter-204

val for the return-level. This bootstrap-based method uses the large-sample result that205

the sampling distribution of the estimates of the parameters (location, log-scale, and shape)206

is multivariate normal (Coles, 2001). It results in a “bootstrap-distribution” of plausi-207

ble values for the return-level, with the 2.5th and 97.5th percentiles of this distribution208

providing a 95% confidence interval. For the GAM models, an overall bootstrap distri-209

bution is obtained by aggregating the bootstrap distributions associated with each time-210
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point. For the HMM models, an overall bootstrap distribution is obtained by solving Equa-211

tion 5, replacing the parameters by each set of bootstrap estimates of the parameters.212

Use of an overall estimate and 95% confidence interval involves the assumption that the213

data for the period 1994–2019 is representative of geomagnetic behaviour in the future,214

a point which we return to later.215

4 Results216

4.1 Effect of block size217

We first consider fit of the stationary GEV model to block maxima for a range of218

block sizes (daily, weekly, monthly and annual). Estimates of the return levels for dif-219

ferent periods and block sizes are shown in Figure 1. There was no evidence of lack-of-220

fit in the QQ-plots, as seen in Figure 2. However, there was strong evidence of autocor-221

relation in the residuals when using a block size other than annual. In addition, as there222

are only 26 annual maxima, the 95% confidence intervals for the return levels based on223

the GEV distribution for these maxima were wide enough to contain negative values, even224

though R1(t) cannot be negative (Figure 1). Persistent positive autocorrelation can be225

caused by a trend in the time series (Brockwell & Davis, 2016, Section 1.4.1). These re-226

sults suggest that it would be preferable to use non-stationary models, as these are likely227

to capture the trend and show less evidence of autocorrelation in the residuals for the228

smaller block-sizes, which should in turn lead to better confidence intervals for the re-229

turn levels. Note that for the daily, weekly, and monthly block sizes the estimates and230

confidence intervals in Figure 1 are not to be taken at face value, as the assumptions on231

which they are based (independent and identically distributed block maxima) were vi-232

olated.233

4.2 HMM results234

We fitted HMMs with different numbers of states to the hourly, daily, weekly and235

monthly maxima of the data from Eyrewell. For both the hourly and daily maxima, use236

of BIC led to a six-state model. For the weekly and monthly maxima, use of AIC led to237

a four-state and a three-state model respectively. There was evidence of lack-of-fit for238

the models fitted to both hourly and daily maxima (see Supplement Figure S1), whereas239

for the weekly and monthly maxima the residual diagnostic plots in Figure 3 (a,b) (for240
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Figure 1. Estimates of return levels for R1 (nT/min) using the GEV models fitted to block

maxima with different block sizes.

weekly maxima) and Supplement Figure S1 (for monthly maxima) suggest that the mod-241

els provide a good fit to the data.242

The estimated parameters for each state along with their 95% confidence intervals243

are also provided in Table 1. Note that the states are ordered by the value of the loca-244

tion parameter. State 1 most likely corresponds to background noise while state 4 cor-245

responds to the period with strong solar activity. States 2 and 3 have medium location,246

shape and scale parameters and most likely correspond to periods when solar activity247

is stronger than the background noise level or weaker than the solar maximum. For the248

model fitted to weekly maxima, the estimates of each of the parameters over time clearly249

exhibit non-stationarity (Figure 4 (a–c)). The step functions at each time point in this250

figure indicate the parameter estimates from the most likely state (obtained using the251

Viterbi algorithm (Zucchini & MacDonald, 2009)) at that time point. The correspond-252

ing estimates of the return levels are shown in Table 2, while those based on monthly253

maxima are in Supplement Table S1. For both of these maxima, the confidence inter-254

vals become wider for the larger block size, as expected, due to the reduction in sam-255

ple size. Figure 5 shows the estimated return levels over time, conditional on the esti-256

mates of the parameters at that time (c.f. Figure 4 (a–c)). The return levels in Figure 5257

are seen to be related to solar activity, with very high levels occurring during strong so-258

lar activity around 2002 and 2015; and the weaker solar maxima in 2015 compared to259
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Figure 2. Residual diagnostics for the GEV models fitted to block maxima with different

block sizes: (a,c,e,g) QQ-plots of residuals, with black dots showing the quantiles of the residuals

(observed) from the model versus the expected quantiles from a standard normal distribution,

the diagonal black line indicating a perfect match, and red dashed lines indicating the 95% enve-

lope; (b,d,f,h) ACF plots, showing the autocorrelations, with red dashed lines indicating the 95%

envelope.

2002 (e.g., in terms of sunspot number) is also reflected by the mostly lower return lev-260

els around 2015 than 2002. This could be particularly important for operational risk fore-261

cast, as it may be preferable to use conditional return levels when solar activity is high.262
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Figure 3. Residual diagnostics for the HMM model fitted to weekly maxima and for the

GAM model fitted to monthly maxima. (a,c) QQ-plot of the residuals, with black dots show-

ing the quantiles of the residuals (observed) from the model versus the expected quantiles from

a standard normal distribution, the diagonal black line indicating a perfect match, and red

dashed lines indicating the 95% envelope; (b,d) ACF plots, showing the autocorrelations, with

red dashed lines indicating the 95% envelope.

Although the risk of an extreme event is usually expressed in terms of return lev-

els, it may also be helpful to express it in terms of the probability of the quantity of in-

terest exceeding a specified value. Figure 6 shows the estimated probability of exceed-

ing 500 nT/min in each year, conditional upon the estimate of the most likely state se-

quence obtained from the HMM model using the Viterbi algorithm for the weekly max-

ima. This probability was obtained using

Pr(Mi > z) = 1 −

52
∏

j=1

Pr(Mij ≤ z) (14)

where Mi is the maximum in year i, and Mij is the maximum in week j of year i. We263

can see the high probability of exceedance during the solar maxima around 2002 and 2015,264

compared to the low probabilities elsewhere.265
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Table 1. Estimates of the GEV parameters for the best-fitting HMM for weekly maxima,

together with 95% confidence intervals.

State i µ̂i σ̂i ξ̂i

i = 1 5.37 (5.06, 5.68) 2.05 (1.82, 2.31) 0.27 (0.17, 0.37)

i = 2 6.49 (6.10, 6.87) 3.16 (2.80, 3.56) 0.55 (0.45, 0.66)

i = 3 7.24 (6.89, 7.59) 2.82 (2.56, 3.11) 0.20 (0.11, 0.28)

i = 4 10.46 (9.51,11.42) 6.15 (5.30, 7.10) 0.60 (0.48, 0.73)
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Figure 4. (a–c) Estimates of location, scale and shape parameters over time for the HMM

fitted to weekly maxima; (d–i) Effects of both month (d–f) and year (g–i) on the location,

scale, and shape parameters for the GAM model fitted to monthly maxima. For the GAM

model, the effects for location and shape are additive and centred on zero, while those for

scale are multiplicative and centred on one. The dashed lines indicate 95% confidence inter-

vals. The grey lines in (a–c) show the weekly sum of sunspot number and those in (g–h) show

monthly sum of sunspot number, with the axis on the right-hand side of each plot (data from

https://www.sidc.be/SILSO/datafiles).
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Table 2. Estimates of return levels for R1 (nT/min) from the best-fitting HMM for weekly

maxima, and the best-fitting GAM for monthly maxima, together with 95% confidence intervals.

Period HMM (weekly) GAM (monthly)

50-year 552 (347, 972) 401 (127, 1355)

100-year 830 (495, 1576) 599 (173, 2200)

200-year 1249 (705, 2565) 894 (236, 3585)

500-year 2146 (1126, 4898) 1517 (354, 6871)
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Figure 5. Estimated conditional return levels over time for R1 (nT/min) using the HMM

fitted to weekly maxima.
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Figure 6. Estimated probability of exceeding 500 nT/min in each year using the HMM fit-

ted to weekly maxima conditional on the Markov chain being in the most likely state sequence

obtained using the Viterbi algorithm.
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4.3 GAM results266

There was evidence of lack-of-fit for the GAM models fitted to the hourly, daily,267

and weekly maxima (Supplement Figure S2). The GAM fitted to monthly maxima showed268

no problem with lack-of-fit (Figure 3 (c,d)). For the model fitted to monthly maxima,269

the temporal variation in the parameters is shown in Figure 4 (d–i). We can see a clear270

relationship with the solar cycle in the models for location and scale, and a relationship271

with the seasons in those for location and shape. Unlike the best-fit HMM model (Fig-272

ure 4 a-c), the best-fit GAM model prefers an effectively constant shape parameter. This273

is presumably due to the two models using different maxima: the HMM is based on weekly274

maxima, and is therefore able to make use of many more observations than the GAM275

model, which is based on monthly maxima. It is generally harder to estimate the shape276

parameter than the location and shape, and the reduction in sample size when going from277

weekly to monthly maxima is enough for the GAM model to resort to a very simple, al-278

most stationary, model for the shape parameter (Coles, 2001). When the GAM model279

is based on weekly maxima, there is a clear relationship with the solar cycle for the shape280

parameter. However, as that model exhibited lack-of-fit, we do not include those results281

here.282

As both the GAM and HMM models showed no lack-of-fit to the monthly max-283

ima, we can use AIC to compare them. The GAM model had a lower AIC value, with284

the AIC model weights (Fletcher, 2018) being 0.99 and 0.01 for GAM and HMM respec-285

tively. The estimates of the return levels obtained from this GAM model are shown in286

Table 2. They are similar to those obtained using the HMM fitted to weekly maxima,287

with the confidence intervals being wider due to the smaller sample size. Figure 7 shows288

the estimated return levels over time, conditional on the estimates of the parameters at289

that time (c.f. Figure 4 (d–f)). We can again see the strong solar effect on these return290

levels, similar to that observed for the HMM fitted to the weekly maxima, with the ef-291

fects captured by the GAM being smoother than those from the HMM.292

4.4 Discussion293

The HMM and GAM models that we fitted to the geomagnetic data at Eyrewell294

appear to capture the main features of the data, with the effects of the solar cycle and295

the seasons clearly reflected in the temporal variation of the parameters and conditional296
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Figure 7. Estimated conditional return levels over time for R1 (nT/min) using the GAM

model fitted to monthly maxima.

return levels of the GAM model (Figures 4 and 7). For the HMM, the time-variation in297

the parameters and conditional return levels is less smooth than for the GAM model,298

making it more difficult to see the solar cycles, but we can still see some trend over time,299

corresponding to the solar maxima and minima. This difference in the temporal vari-300

ation of the parameters potentially contributes to the different confidence intervals for301

the return levels (Table 2). The ability to allow for time-varying parameters led to the302

HMM and GAM models having less evidence of autocorrelation in the residuals, thereby303

allowing use of a smaller block-size than was possible with the stationary GEV model.304

Our analysis indicates that the 50-year, 100-year, 200-year and 500-year return lev-305

els of the extreme magnitude of the derivative in the horizontal component R1(t) at the306

Eyrewell magnetic observatory are within the following ranges: 120 – 1400 nT/min, 200307

– 2200 nT/min, 250 – 4000 nT/min and 350 – 7000 nT/min, respectively. Note that these308

numbers use the largest range from Table 2.309

The length of the digital record available at Eyrewell (1994–2019) is very short, in310

terms of solar cycles. This is particularly important as the Sun has been relatively in-311

active for the past 20 years, and the maximum activity only occurs every ∼11 years. Our312

100- and 200-year return levels are much lower than the UK worst-case scenario (Hapgood313

et al. (2021): 4000–5000 nT/min for 100-years, 8000–9000 nT/min for 200-years,). Given314
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the period of data that we used, our estimated return levels may represent the lower end315

of what would be expected, due to the dataset being dominated by a relatively quiet so-316

lar cycle. For worst-case operational risk forecast purposes, it could be particularly im-317

portant to use the conditional return levels (the return levels conditional on the most318

likely sequence of states of the Markov chain) when solar activity is high. From our anal-319

ysis, the 50-year, 100-year, 200-year and 500-year conditional return levels of the extreme320

magnitude of the derivative in the horizontal component R1(t) at the Eyrewell magnetic321

observatory are likely to be within the ranges: 500 – 2600 nT/min, 700 – 4500 nT/min,322

1000 – 7000 nT/min, 1600 – 14000 nT/min, respectively at solar maximum. Note that323

these numbers are from the conditional return levels of the best-fitting HMM from Fig-324

ure 5. An HMM describes discrete stepwise shifts in the trend compared to a GAM which325

allows for smooth trends. Therefore to capture a few discrete states corresponding to,326

for example, maximum, moderate and minimum solar activities which is the case for our327

discussion here, an HMM works better than a GAM.328

We have chosen not to compare the estimated return levels from the best-fitting329

HMM and GAM models with those from the stationary models or the other HMM and330

GAM models, as these models all showed clear evidence of lack-of-fit. We also note that331

the confidence intervals of the parameters and return levels have been calculated using332

bootstrap methods. One could also specify the return level as a parameter in the model333

and obtain a profile likelihood confidence interval for it (Coles, 2001, Section). This would334

allow one to constrain the return level to be non-negative, and hence avoid the problem335

in Figure 1. The formula for the return level in Equation 2 shows that this problem does336

not arise if the bootstrapped parameter values satisfy the constraint µ ≥ σ/ξ. Both the337

HMM for weekly maxima and the GAM for monthly maxima lead to bootstrapped val-338

ues for the parameters that do satisfy this constraint, and so provide estimates and con-339

fidence limits for the return levels that are always positive.340

Figure 8 shows the relationship between the weekly total sunspot number and the341

weekly maxima of R1. Though there appears to be a positive relation between the weekly342

maxima of R1 on log scale (Figure 8(b)) and the weekly total sunspot number, a linear343

regression between log(R1) and the weekly total sunspot number explains only 9% of the344

total variance in log(R1). Future research could incorporate other potential predictors345

of R1, such as SymH and AL indices.346
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Figure 8. Weekly maxima of R1 versus weekly total sunspot number. (a) original scale, (b)

R1 on log scale.

5 Conclusion347

We have demonstrated that stationary extreme value models cannot capture the348

non-stationary features of geomagnetic data. We have proposed the use of HMM or GAM349

models to capture such features, including effects of the solar cycle and the seasons. We350

fitted these models to extreme values of the magnitude of the derivative in the horizon-351

tal component R1(t) of geomagnetic observations made at Eyrewell magnetic observa-352

tory in New Zealand. These data were clearly not independent nor identically distributed,353

and the non-stationary models therefore provided more reliable forecasts of the corre-354

sponding return levels. We have shown that such models can capture non-stationary fea-355

tures, with the GAM clearly modelling the solar cycle and the HMM capturing it more356

coarsely. With fewer than 100 years of data from most observatories around the world,357

we recommend using models such as HMMs and GAMs, rather than stationary GEV mod-358

els for block maxima.359
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https://imag-data.bgs.ac.uk/GIN V1/GINForms2, using the “Bulk data” option and366
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download the definitive data from observatory EYR (Eyrewell, New Zealand) since 1 Jan-367

uary 1994, last accessed in March 2021.368

All R code for the analysis and plots is available in Zenodo https://doi.org/10369

.5281/zenodo.15347234 (Wang, 2025).370
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