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Ozonesonde data from four sites are analyzed in relation to 191 solar protons events (SPEs) from 1989-2016. 14 

Analysis shows ozone depletion (~10-35 km altitude) commencing following the SPEs. Seasonally-corrected 15 

ozone data demonstrate that depletions occur only in winter/early-spring above sites where the northern 16 

hemisphere polar vortex (PV) can be present. A rapid reduction in stratospheric ozone is observed with the 17 

maximum decrease occurring ~10-20 days after SPEs. Ozone levels remain depleted in excess of 30 days. No 18 

depletion is observed above sites completely outside the PV. No depletion is observed in relation to 191 random 19 

epochs at any site at any time of year. Results point to the role of indirect ozone destruction, most likely via the 20 

rapid descent of long-lived NOx species in the PV during the polar winter. 21 
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THREE MAIN POINTS FOR GRL (140 CHARS MAX INC SPACES). 30 

 31 

 Solar proton events cause ozone destruction at locations in the polar vortex. No change in ozone at sites 32 

outside the polar vortex. 33 

 34 

 Ozone depletion following SPEs is ~5-10%. The ozone partial pressure decreases rapidly and remains 35 

depleted for >30 days. 36 

 37 

 Very rapid descent of NOx species in the polar vortex is the likely cause of stratospheric ozone 38 

destruction following SPEs. 39 

 40 

 41 

 42 

ALSO REQUIRED FOR GRL (255 CHARS MAX INC SPACES). 43 

 44 

What major topic or scientific question is addressed and why is rapid publication required? 45 

We address the role of solar proton events (SPEs) in destruction of stratospheric ozone. Rapid publication is 46 

essential: these results on the link to the polar vortex are entirely new and will likely influence the community 47 

studying stratospheric ozone. 48 

 49 

What new scientific knowledge is presented and why is it a major advance? 50 

Rapid decrease of ozone in the polar vortex following SPEs. No depletion at sites outside the vortex in 51 

winter/early-spring or at any site during late-summer/autumn. Minimum ozone 10-20 days after SPEs. Ozone 52 

depleted ~30 days. Depletion ~5-10%. 53 

 54 

What are the broad implications of the results, which scientific communities will be impacted by the 55 

paper and why? 56 

Our results have major implications for separating "internal" (e.g. anthropogenic) causes of ozone destruction 57 

from "external" (e.g. caused by energetic particle precipitation) causes. 58 

 59 

60 
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1. Introduction 61 

Numerous factors influence the spatial and temporal variability of stratospheric ozone. The annual cycle in the 62 

Arctic stratosphere is primarily due to ozone transport from lower latitudes towards the poles (e.g. Butchart, 63 

[2014], and references therein). Transport is strongest in winter and early spring, and ozone variability is 64 

maximized during this period [Kivi et al., 2007; Christiansen et al., 2017]. Ozone decreases substantially in late 65 

spring and summer at high latitudes. This is due to ozone production and transport being too slow to offset the 66 

destruction of ozone via catalytic reactions involving odd-nitrogen (NOx) species.  In contrast, the occurrence of 67 

sudden stratospheric warmings (SSWs) can also dramatically increase the level of ozone in the stratosphere, 68 

particularly during late-winter/early-spring (see Kivi et al. [2007] for a detailed discussion of the annual ozone 69 

cycle, inter-annual variability, and day-to-day changes in ozone in the northern hemisphere Arctic region). 70 

 71 

NOx species are long-lived in the absence of sunlight and persist for many days at mesospheric altitudes. During 72 

winter the polar vortex (PV) greatly increases the rate of descent of NOx species from higher altitudes down into 73 

the stratosphere where catalytic destruction of ozone occurs (e.g. Solomon et al. [1982]; Jackman et al. [1995]; 74 

Jackman et al. [2009]). Descent can be greatest at the edge of the PV where the temperature is also relatively 75 

high [Tegtmeier et al., 2008]. We concentrate on the northern hemisphere in this study since descent rates can be 76 

greater here than in the southern hemisphere. The amount of time that a location is within (or at the edge of) the 77 

PV, and the amount of NOx present at higher altitudes, are factors to consider when evaluating the destruction of 78 

ozone via catalytic reactions. 79 

 80 

Solar proton events (SPEs) are identified by the measurement of fluxes of energetic protons detected in the 81 

Earth's magnetosphere. SPEs occur due to energetic processes on the Sun and energization processes (e.g. 82 

shocks) in interplanetary space (e.g. Reames [1999]; Kurt et al. [2004], Tylka et al. [2006], Oh et al., [2010]). 83 

Sufficiently energetic protons penetrate the Earth's magnetosphere around the poles and precipitate into the 84 

atmosphere. The proton energy determines the depth into the atmosphere reached before collision with neutral 85 

atmospheric constituents [McPeters and Jackman, 1985; Jackman and McPeters, 1985]. The most energetic 86 

protons penetrate through the atmosphere and reach ground level. The proton energy also determines its rigidity 87 

(momentum-per-unit-charge). Protons require a minimum rigidity to penetrate to a particular geomagnetic 88 

latitude [Rodger et al., 2006; Neal et al., 2013].  89 

 90 
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Different forms of energetic particle precipitation (EPP), including SPEs, have been linked to creation of odd 91 

nitrogen (NOx) and odd hydrogen (HOx) species in the mesosphere and stratosphere (e.g. Crutzen et al. [1975]; 92 

Solomon et al. [1981]; Shumilov et al. [2003]; Clilverd et al. [2005]). Changes in ozone following the largest 93 

SPEs demonstrate that ozone in the mesosphere and stratosphere decreases over a period of hours to weeks (e.g. 94 

Weeks et al. [1972]; Heath et al. [1977]; Thomas et al. [1983]; Lopéz-Puertas et al. [2005]; Seppälä et al. [2004; 95 

2006; 2008]). Theoretical investigations have provided estimates of long-term and short-term implications for 96 

atmospheric ozone balance (e.g. Jackman and McPeters [1985]; Jackman et al. [19 96]; Sinnhuber et al. [2006]; 97 

Rodger et al. [2008]; Jackman et al. [2009]). In general, two major processes are believed to occur. Process A: 98 

the short-term "direct" destruction of ozone due to production of HOx species by incident solar protons (e.g. 99 

Solomon et al. [1981]). The lifetime of HOx is ~hours in the stratosphere and mesosphere and hence the effects 100 

of HOx-induced ozone destruction last at most for a few days (e.g. Jackman and McPeters [1985]). For this 101 

current study, involving balloon-based measurements up to ~35 km altitude, energies of ~100-1000 MeV would 102 

be required (cf. Fig. 4 of Turunen et al. [2009]). Process B: the delayed "indirect" destruction of stratospheric 103 

ozone, following initial generation of NOx species over a range of altitudes. Given the right conditions these 104 

long-lived species descend to lower altitudes where they cause ozone depletion (Jackman et al. [1980]). Randall 105 

et al. [2001] demonstrated that NOx persists for >2 months after generation by SPEs. However, the descent of 106 

NOx can be slow (e.g. around 8 km/month at ~50 km altitude [Manney et al., 1994; Rinsland et al., 2005]). 107 

Hence, a more-gradual response in the ozonesonde observations is expected for the indirect route, rather than a 108 

decrease immediately following solar-proton arrival at Earth, via the direct route. For the indirect route, the 109 

continual circulation and mixing of the atmosphere complicates our ability to reveal definitive cause/effect 110 

relationships. Other pathways for ozone destruction have been noted in the literature [Jackman et al., 2009; 111 

Damiani et al., 2008; 2009; 2012]. It seems certain that a combination of physical processes, each potentially 112 

causing ozone destruction, occurs in the atmosphere following SPEs. 113 

 114 

Understanding and quantifying the effects of EPP upon the atmosphere is a major unsolved problem in 115 

magnetospheric and atmospheric physics [Denton et al., 2016]. Recently Damiani et al. [2016] used Aura 116 

satellite data to reveal a ~10-15% decrease in stratospheric ozone in the southern polar regions during 117 

geomagnetically active periods, as measured by the AE (Auroral Electrojet) and Ap (Average Planetary) indices 118 

[Davis and Sugiura, 1966]. Descent of mesospheric NOx down to stratospheric heights, via the PV, was 119 

proposed as causing the ozone depletion. A more recent statistical study of the effects of SPEs above northern 120 
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Finland showed that significant ozone depletion occurred, but only when the PV was present during 121 

winter/early-spring; ozone was unchanged during summer/early-autumn [Denton et al., 2017]. Here, we study 122 

SPE-effects using in-situ observations of stratospheric ozone over a much greater geographic region. We use 123 

extensive datasets of balloon-based observations of ozone from four sites. Initially the ozone climatology at 124 

each site is determined. The effects of SPEs are then explored by means of superposed epoch analysis of 125 

multiple SPEs. Finally, the effects of the PV on stratospheric ozone destruction at each of the sites is considered, 126 

and the implications discussed. 127 

 128 

2. Data 129 

Ozone profiles used in this study originate from four "ozonesonde" launch sites in the northern hemisphere: Ny-130 

Ålesund (NY-Å), Sodankylä (SOD), Lerwick (LER), and Boulder (BOU) Figure 1 shows the location of the 131 

ozonesonde launch sites and the average period each site resides within the PV during the months of January, 132 

February, March, and April (JFMA) [Kivi et al., 2007; Karpetchko et al., 2005]. Data coverage for each site is 133 

also shown. Magnetic latitudes are calculated from the International Geomagnetic Reference Frame (IGRF) 134 

[Thébault et al., 2015] in corrected geomagnetic coordinates (CGM). 135 

 136 

Ozonesondes are primarily ECC (Electrochemical Concentration Cell) detectors [Deshler et al., 2008; 2017, 137 

Kivi et al., 2007, Smit and ASOPOS Panel, 2014]. Stations were selected to provide a spread of observations 138 

within the PV (NY-Å and SOD), near the edge of the PV (LER), and never within the PV (BOU). Blue arrows 139 

in Figure 1 denote the approximate location where the PV is present ~40% of the time during February (after 140 

Karpetchko et al. [2005]). 141 
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 142 
FIGURE 1: Ozonesonde launch sites. The location where the PV is present ~40% of the time (on average) in 143 
February is shown by light-blue arrows (after Karpetchko et al. [2005]). The percentage of time that the PV is 144 
above each site between Jan and Apr is also indicated [Kivi et al., 2007]. 145 
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3. Methodology and Results 146 

3.1 Climatology 147 

To determine changes in stratospheric ozone due to external causes it is necessary to understand the climatology 148 

near each station. Variations occur due to: (i) "internal" effects such as the quasi-biennial oscillation (QBO) 149 

cycle, volcanic eruptions that perturb aerosol concentrations, etc., (ii) "external" effects such as the 11-year solar 150 

cycle, and (iii) longer-term internal trends e.g. due to anthropogenic causes [Kivi et al., 2007; Manney et al., 151 

2011]. Climatology is determined by calculating the mean ozone partial pressure (in mPa) as a function of 152 

geopotential altitude (in km) and month of the year, for all available data to 2016. Results are shown in Figure 2. 153 

(Note: the mean ozone at the southern hemisphere site of Syowa can be found in the Supplementary Information 154 

to this paper). The climatology is similar at each site. The highest ozone levels occur in late winter/spring and 155 

the lowest ozone levels occur in late summer/autumn. Ozone partial pressure also varies with geographic 156 

latitude. The highest values are observed at NY-Å and the lowest values are observed at BOU. The altitude of 157 

peak ozone is higher closer to the equator and lower towards the pole. In addition, the highest ozone partial 158 

pressure occurs earlier in the year at lower latitudes (e.g. February above BOU) and later at higher latitudes (e.g. 159 

May above NY-Å). Analysis of changes in ozone partial pressure that consider time periods beyond a few days 160 

will need to account for this climatology. 161 

 162 
FIGURE 2: The mean ozone partial pressure as a function of geopotential altitude for the four sites.  163 
 164 

165 
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3.2 Solar-Proton Events (SPEs) and Stratospheric Ozone Depletion 166 

We examine external driving of the atmosphere following 191 SPEs (1989-2016) selected from the US National 167 

Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC) list 168 

(ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt). Epoch times for the superposed epoch analysis, taken from this 169 

list, are times when three consecutive data points measured by the GOES spacecraft at geosynchronous orbit 170 

exceed 10 pfu (particle flux units) at energies >10 MeV. 171 

 172 

The analysis uses methodology similar to Denton et al. [2017] in their study of ozone over Sodankylä (1989-173 

2015). Results from that study were somewhat ambiguous since only one location was considered. Here, data 174 

from four different sites are analyzed. In brief, all available data for the months January to April (inclusive) are 175 

binned as a function of epoch time (1 day epoch time bins) and geopotential altitude (1 km altitude bins). 176 

Restricting data to these months ensures that the PV may be present at sites in the northern hemisphere. Each 177 

site has a different likelihood of being within the PV during these months (see Table 1). Binning is carried out 178 

for 90 days of epoch time, from 30 days prior to zero epoch to 60 days after zero epoch and results are shown in 179 

Figure 3. 180 

 181 

Visual inspection of the plots reveals evidence for a decrease in stratospheric ozone for ~20 days following zero 182 

epoch at NY-Å and SOD. The onset of ozone depletion appears to be delayed from zero epoch by a few days 183 

but loss is rapid thereafter. NY-Å and SOD are frequently within the PV during winter/early-spring. LER is 184 

within the PV infrequently; a decrease in ozone following zero epoch is less clear at this site. For BOU (outside 185 

the PV) there is little evidence of any change in the ozone partial pressure. 186 
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 187 
FIGURE 3: Superpositions of ozone partial pressure over four sites during 191 SPEs. Zero epoch marks the 188 
start of the SPE and a subsequent decrease in ozone is apparent at NY-Å, SOD, and LER. 189 
 190 

Although the plots in Figure 3 are suggestive, the analysis takes no account of climatological variations in 191 

stratospheric ozone. To better quantify the changes following SPEs we first correct for seasonal effects.  This is 192 

done by computing the (logged) ratio of the measured ozone to the appropriate monthly mean ozone value at 193 

each site (i.e. from Figure 2) for each measured data point. Any change from zero from this value will thus be 194 

(largely) independent of seasonal changes. Previously Denton et al. [2017] used similar methodology for the 195 

SOD data up to 2015 and compared against 2500 randomly selected epochs, generated using the methodology of 196 

Park and Miller [1988]. They concluded that the PV was necessary for ozone depletion above northern Finland 197 

following SPEs. A decrease in ozone was observed during winter months of January-April (JFMA), when 198 

compared with July-October (JASO), and when compared with random epochs in these months. Here, we 199 

extend this work to the four sites in Table 1. To ensure the same statistical noise for all the analyses, we use 191 200 

random epoch for comparison. Results in Figure 4 show 15-day running means of the ratio of the measured 201 

ozone to the monthly mean ozone (logged) at the altitude of peak ozone (~18 km for NY-Å and SOD, ~21 km 202 

for LER, and ~22 km for BOU). To provide an estimate of the statistical significance of the plots we also plot 203 

the 95% confidence interval about the mean [Wilks, 2006]. A similar technique has been used in comparable 204 
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superposed epoch studies [e.g. Morley and Freeman, 2007; Morley et al., 2010]. Results are shown for 191 205 

random epochs and 191 SPEs, for summer (JASO) and winter (JFMA) months. Also plotted is the median solar 206 

proton flux at energies E>10 MeV (black) measured by GOES satellites at geosynchronous orbit, taken from the 207 

OMNI2 database [King and Papitashvili, 2005]. Upper and lower quartiles are also plotted (green). 208 

 209 

It is clear from Figure 4 that there is little change in ozone when the PV is absent from all sites in JASO, for 210 

both SPEs and random epochs (Fig. 4A and 4B). Fluctuations around the mean ozone value are observed with 211 

no discernable trend. During JFMA, when the PV may be present at some of the sites, the ozone shows slightly 212 

larger fluctuations for the random epochs (Fig. 4E). However, the fluctuations again show no clear trend. In 213 

contrast, for the SPE epochs (Fig. 4F), there are large changes in the ozone partial pressure at NY-Å, SOD, and 214 

LER. A substantial decrease commences around zero epoch and ozone remains depressed for ~30 days. (Note: 215 

the decrease in ozone appears to commence a few days before the zero-epoch at NY-Å and SOD. On 216 

investigation, this is likely due to either: (a) the averaged proton flux at >10 MeV also increasing slightly before 217 

zero epoch (Fig. 4H), and/or (b) the use of a 15-day running mean of ozone partial pressure. A similar effect was 218 

observed in Denton et al. [2017] where the raw data did not start to decline until zero epoch even though the 15-219 

day running mean showed a decrease prior to zero epoch. All three sites where the ozone depletions occur are 220 

within the PV for some proportion of the time, although for LER this is only ~15% of the total. At BOU, 221 

continually outside the PV, where solar protons essentially do not have direct access, there is no clear change in 222 

ozone partial pressure after zero epoch. We have confidence, at the 95% level, that the 'true' mean of the data 223 

lies between the confidence intervals as plotted. The variations of ozone following SPEs are, for NY-Å, SOD, 224 

and LER, substantially greater than the spread in the confidence interval indicating a real effect due to SPEs. 225 

Since ECC ozonesondes also measure temperature, we carried out a corresponding analysis of the temperature 226 

at each site to check for other effects that may affect stratospheric ozone.  No clear trend in the superposed 227 

temperature was measured at any site in this period (see Supplementary Information for the superposed 228 

temperature during JFMA at the Ny-Ålesund site). 229 
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 230 
FIGURE 4: Showing 15 day running means (thick lines) of the ratio of ozone partial pressure to monthly mean 231 
ozone partial pressure, at the peak altitude of the ozone layer during 191 random epochs (left) and 191 SPEs 232 
(right). The 95% confidence interval about the mean is also plotted. Plots are shown for JASO and JFMA. Also 233 
shown are corresponding solar proton fluxes for E>10 MeV. In these panels the black line is the median of the 234 
superposition while the green lines are upper and lower quartiles. 235 

236 
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4. Discussion 237 

The motivation for this study stems from the need to separate "external" influences on stratospheric ozone (e.g. 238 

EPP effects) from "internal" influences (e.g. anthropogenic changes to the Earth's atmosphere). Climate models 239 

typically concentrate on the latter, although we acknowledge recent efforts to include EPP-effects into coupled 240 

climate models (e.g. Matthes et al. [2017]). 241 

 242 

The analyses and results above quantify the effects of SPEs upon stratospheric ozone with respect to the PV. By 243 

removing seasonal effects, we show that SPEs are causing ozone depletion only in the presence of the PV. 244 

Although accurate quantification of the depletion is difficult, a change of ~1-2 mPa  following SPEs equates to a 245 

maximum change of ~5-10%. The rapidity of the change (with decrease and subsequent increase taking ~few 246 

days) suggest that SPE-effects are largely decoupled from other factors influencing ozone dynamics. 247 

Stratospheric ozone appears to fully recover following each SPE although given the complex dynamics and 248 

transport in the northern hemisphere, the cumulative effects of many SPEs are unclear. Modeling studies could 249 

likely shed light on this better than observations. 250 

 251 

Previous studies have revealed that local changes in stratospheric ozone occur following some of the largest 252 

SPEs (e.g. Weeks et al. [1972]; Heath et al. [1977]; Thomas et al. [1983]; Lopéz-Puertas et al. [2005]; Seppälä 253 

et al. [2006; 2008]; Päivärinta et al. [2013]). The effects of smaller (but more numerous) SPEs may not be 254 

appreciated in case studies which, by their nature, tend to concern the largest events where the greatest effects 255 

are apparent, and when the direct and indirect effects are both likely contribute to the impact. More subtle 256 

decreases in ozone, during events where the proton flux is lower have, up until now received much less 257 

attention in the literature. 258 

 259 

Superposed epoch analysis of SPEs has enabled a statistical investigation of average changes in ozone partial 260 

pressures to be carried out. Results indicate that SPEs are linked to a ~5-10% decrease in ozone at ~20 km 261 

altitude.  Ozone depletion occurs only when a site spends at least some time in the PV during the polar winter. 262 

No decreases in ozone occurs following SPEs when the PV is not present. The greatest decrease occurs ~10-20 263 

days following SPEs with ozone depleted for ~30 days on average. While the observational evidence of a 264 

decrease in ozone is clear, an explanation of the physical cause of the change is challenging. Of the two main 265 

processes mooted as causing ozone destruction (Process A and Process B, described in Section 1), the first is 266 
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expected to cause a rapid decrease in ozone within a few hours/days, and the second is expected to cause a 267 

delayed decrease in ozone some days/weeks later, but rarely reaching ~20 km altitude. Our results indicate that 268 

the initial depletion is commencing close to zero epoch and that the depletion in stratospheric ozone extends for 269 

up to ~30 days on average. This suggests a role for indirect ozone destruction via the descent of NOx species. 270 

Obviously, the hardness of the proton energy spectrum for each SPE used in the statistical averages analyzed 271 

here will play a role in the efficacy of each mechanism, since the depth of penetration of solar protons is 272 

correlated with their incident energy. The rapidity of descent of NOx may be crucial, as may time-spent-in-273 

darkness. Although the flux of very high energy protons may not be sufficient to influence ozone directly, if the 274 

PV is present then NOx can be rapidly transported to lower altitudes. Such downwards transport is very variable 275 

and can be fastest at the edges of the PV [Tegtmeier et al., 2008] which may explain the large relative decrease 276 

seen at Lerwick, even though Lerwick is only in the PV ~15% of the time during JFMA.  However, Lerwick is 277 

generally close to the edge of the PV where descent may be maximized. In a further complication, air parcels 278 

sampled above each site are not static but rather are in continual motion. Air that is sampled days after the SPE 279 

was certainly at a different location when the solar protons actually impacted the atmosphere. There is thus a 280 

need to investigate complicating effects such as transport, mixing, time-spent-in-darkness, etc., in future 281 

observational and theoretical studies. 282 

 283 

In general, discussions of the long-term and short-term changes in stratospheric ozone may concentrate on 284 

internal terrestrial variables [Staehelin et al., 2001], or solar changes [Haigh, 2003], and do not always consider 285 

the effects of EPP such as occur during SPEs. Some work has considered SPEs in theoretical studies of ozone 286 

depletion (e.g. Jackman and McPeters [1985]; Jackman et al. [1996]; Rodger et al. [2008]) although the 287 

inclusion of SPE-effects in global models remains quite limited [cf. Matthes et al., 2017]. We hope the results 288 

outlined above will provide additional impetus to explore and quantify external influences that perturb the 289 

stratospheric ozone budget. 290 

  291 

5. Conclusions 292 

Ozone observations above four locations in the northern hemisphere have been analyzed. We conclude: 293 

 294 

 1. Stratospheric ozone measurements from sites that are within the PV show a decrease in ozone partial 295 

pressure following SPEs. The decrease in ozone partial pressure at the altitude of peak ozone is ~5-10%, 296 
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commences close to zero epoch, and persists for ~30 days.  297 

 298 

2. No decrease in stratospheric ozone is detected following SPEs in late summer or autumn. No decrease is 299 

detected following a set of random epochs. No decrease is detected for sites that are situated completely outside 300 

the PV. 301 

 302 

3. The PV is an essential and necessary factor for causing stratospheric ozone depletion following SPEs. Results 303 

suggest that delayed (indirect) destruction of ozone plays a role in the stratospheric ozone budget following 304 

SPEs.  305 

306 
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