
 

1 

Improved dynamic geomagnetic rigidity cutoff modeling: testing predictive 1 

accuracy 2 

Mark A. Clilverd 3 

Physical Sciences Division, British Antarctic Survey (NERC), Cambridge, United Kingdom 4 

Craig J. Rodger 5 

Department of Physics, University of Otago, Dunedin, New Zealand 6 

Tracy Moffat-Griffin 7 

Physical Sciences Division, British Antarctic Survey (NERC), Cambridge, United Kingdom 8 

Pekka T. Verronen 9 

Finnish Meteorological Institute, Helsinki, Finland. 10 

Abstract.  In the polar atmosphere, significant chemical and ionization changes occur during 11 

solar proton events (SPE). The access of solar protons to this region is limited by the 12 

dynamically changing geomagnetic field. In this study we have used riometer absorption 13 

observations to investigate the accuracy of a model to predict Kp-dependent geomagnetic rigidity 14 

cutoffs, and hence the changing proton fluxes. The imaging riometer at Halley, Antarctica is 15 

ideally situated for such a study, as the rigidity cutoff sweeps back and forth across the 16 

instrument's field of view, providing a severe test of the rigidity cutoff model. Using 17 

observations from this riometer during five solar proton events, we have confirmed the basic 18 

accuracy of this rigidity model. However, we find that the model can be improved by setting a 19 

lower Kp limit (i.e., Kp=5 instead of 6) at which the rigidity modeling saturates. We also find that 20 

for L>4.5 the apparent L-shell of the beam moves equatorwards. In addition, the Sodankyla Ion 21 

and Neutral Chemistry model is used to determine an empirical relationship between integral 22 
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proton precipitation fluxes and nighttime ionosphere riometer absorption, in order to allow 23 

consideration of winter time SPEs. We find that during the nighttime the proton flux energy 24 

threshold is lowered to include protons with energies of >5 MeV in comparison with >10 MeV 25 

for the daytime empirical relationships. In addition, we provide an indication of the southern and 26 

northern geographic regions inside which SPEs play a role in modifying the neutral chemistry of 27 

the stratosphere and mesosphere. 28 
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1.  Introduction  29 

  Solar proton events (SPEs) are a major space weather phenomena that can produce hazardous 30 

effects in the near-Earth space environment. The occurrence of SPEs varies during the 11-year 31 

solar activity cycle. In active years, especially during the falling and rising phases of the solar 32 

cycle, SPEs may average one per month, but during solar minimum years the occurrence is very 33 

low, e.g., ~1 per year. SPEs cause 'upsets' to Earth-orbiting satellites, increased radiation 34 

exposure levels for humans onboard spacecraft and high-altitude aircraft, ozone depletions and 35 

disruption to HF/VHF communications in mid- and high-latitude regions. A detailed 36 

understanding of all these impacts depends upon knowledge of the dynamic rigidity cutoffs as 37 

SPE particles are partially guided by the geomagnetic field. Higher rigidities are required for a 38 

particle to reach lower geomagnetic latitudes, and thus all particles with rigidities larger than the 39 

minimum can penetrate to that latitude (and all higher latitudes). The geomagnetic cutoff rigidity 40 

is a dynamic quantity depending on the Earth's internal and external magnetic fields [Smart and 41 

Shea, 2003; Kress et al., 2004]. 42 

  Experimental measurements of geomagnetic cutoff rigidities have generally been based on 43 

satellite observations. Few experimental studies have derived cutoffs during the most disturbed 44 

conditions during geomagnetic storms.  Theoretical calculations have primarily focused on 45 

tracing particles through models of the Earth's field producing grids of estimated cutoff rigidities 46 

distributed over the Earth at a given altitude [e.g., Smart and Shea, 2001].   Birch et al. [2005] 47 

used satellite measurements of the edge of the polar cap sampled four times each day, and found 48 

that cutoff latitudes reduce by 5-8º during storms. They compared the results with particle-49 

tracing models, which underestimated the effects of a severe storm. Rodger et al. [2006] used the 50 

model of Kp-dependent geomagnetic rigidity cutoff energies based on the Tysganenko-89 51 

magnetic field model [Smart and Shea, 2001], to investigate for the first time, detailed 52 

comparisons of theoretical cutoff rigidities and ground-based measurements during a large 53 
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geomagnetic disturbance. Energy cutoffs on satellite derived proton fluxes were used to calculate 54 

the predicted cosmic noise absorption levels for the Halley imaging riometer (IRIS) during a 55 

single SPE event in November 2001. The predicted absorption levels showed good agreement 56 

with those experimentally observed for low and mid levels of geomagnetic disturbance levels 57 

(Kp<5). However, in very disturbed conditions (Kp≈7-9) the rigidity energy cutoffs indicated by 58 

the IRIS observations appeared to saturate around those predicted for Kp≈6 by the particle-59 

tracing approach. This suggested that the geomagnetic latitude limit for the penetration of SPE 60 

protons during large geomagnetic storms is rather more poleward than had been indicated 61 

previously.  62 

  Imaging riometer systems (IRIS) like the one at Halley, Antarctica, are well suited for 63 

examining geomagnetic cutoffs, because the receiver arrays provide an image of the ionospheric 64 

absorption levels in a 200 km × 200 km horizontal region above the instrument by measuring the 65 

absorption of cosmic radio noise at a given frequency (usually 20-40 MHz). Using riometers it 66 

has previously been shown that there is an empirical relationship between the square root of the 67 

integral proton flux (>10 MeV) and cosmic noise absorption (CNA) in daytime, at least when 68 

geomagnetic cutoff effects do not limit the fluxes [Kavanagh et al., 2004]. The same study 69 

concluded that variations in the spectral hardness of the SPE proton flux and atmospheric 70 

collision frequencies do not cause significant departures from the linear relationship observed. 71 

    In this paper we examine ground-based measurements during five SPEs, based on the 72 

observations from the imaging riometer at Halley, Antarctica, which is situated such that the 73 

rigidity cutoff sweeps back and forth across the instrument's field of view during each SPE. We 74 

calculate riometer absorption, using input proton fluxes modified by rigidity cutoff calculations, 75 

and contrast the varying, predicted and observed, rigidity cutoffs during each geomagnetic 76 

disturbance. We also use the Sodankyla Ion and Neutral Chemistry (SIC) model to determine an 77 

empirical relationship between integral proton precipitation fluxes and nighttime ionosphere 78 
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riometer absorption to complement the daytime relationship already published, and to study 79 

rigidity effects during winter time SPEs. 80 

2. Experimental Setup 81 

  The riometer utilizes the absorption of cosmic radio noise by the ionosphere [Little and 82 

Leinbach, 1959] to measure the enhancement of D-region electron concentration by energetic 83 

charged particle precipitation [Stauning, 1996]. The riometer technique compares the strength of 84 

the cosmic radio noise signal received on the ground to the normal sidereal variation referred to 85 

as the quiet-day curve to produce the cosmic noise absorption. The instantaneous ionospheric 86 

absorption in decibels is derived from the ratio of the prevailing signal level to this curve 87 

[Krishnaswamy et al., 1985]. In typical operations the absorption peaks near 90 km altitude, 88 

where the product of electron density and neutral collision frequency maximizes. In this paper 89 

we consider experimental observations from selected beams of an imaging riometer located at 90 

Halley (75.6ºS, 26.32°W, L=4.6), as shown in Figure 1. 91 

  At Halley the system is a snow-buried 49-beam imaging riometer, operating at 38.2 MHz and 92 

sampled every 1 sec [Rose et al., 2000]. Several receivers are multiplexed through a phased array 93 

of 64 crossed-dipole antennas to achieve narrow beam scanning of the D region. The beam width 94 

is 13º. In the meridian plane the most equatorward and poleward beams intersect the D region 95 

ionosphere about 1º north (equatorward) and south (poleward) from the vertical central beam, 96 

respectively. Absorption values for obliquely orientated (non-vertical) beams are automatically 97 

corrected to vertical following the technique described by Hargreaves and Jarvis [1986]. 98 

  In this study we analyze data collected at Halley during five SPEs. The SPE periods are July 99 

2000, November 2000, two periods in November 2001, and October 2003. Prior to, and after 100 

these events the Halley imaging riometer performance was severely limited by snow buildup as 101 
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the IRIS was buried [Rose et al., 2000] as a result of ever-increasing snow accumulation on the 102 

antenna array.  103 

 104 

3. Estimates of Rigidity Cutoffs 105 

  It has been recognized for some time that geomagnetic rigidity cutoffs are well-ordered in terms 106 

of the McIlwain L-parameter [Smart and Shea, 1994; Selesnick et al., 1995]. The L-variation of 107 

the geomagnetic rigidity cutoff has been determined for quiet times from ≈10,000 nuclei 108 

observations made by the MAST instrument on the SAMPEX satellite [Ogliore et al., 2001]. 109 

These authors report that the geomagnetic rigidity cutoffs, Rc, for quiet times are given by 110 

     Rc = 15.062 L-2 - 0.363   (in GV)  (1) 111 

representing average conditions for Kp=2.3. As noted above, dynamic vertical cutoff rigidities 112 

dependent upon magnetic activity levels have been determined by particle-tracing [Smart and 113 

Shea, 2003] using the Kp-dependent Tsyganenko magnetospheric field model. These authors 114 

have reported that the change of proton cutoff energy with Kp is relatively uniform over the range 115 

of the original Tsyganenko (1989) model (Kp<5), but the cutoff changes introduced by the 116 

Boberg et al. [1995] extension to higher Kp is non-linear such that there are large changes in 117 

proton cutoff energy for a given L-value at large Kp values. Rodger et al. [2006] made use of the 118 

Kp-dependent variations in the effective vertical cutoff energies at a given IGRF L-value at 119 

450 km altitude determined from this modeling [Smart et al., Fig. 5, 2003], but with a slight 120 

modification to ensure that the geomagnetic rigidity cutoff varies as 15.062 L-2, as observed in 121 

the SAMPEX experimental data. Note that the change in cutoff energy with geomagnetic activity 122 

is strongly non-linear at the highest disturbance levels. In order to interpolate down to lower 123 

altitudes (e.g., 100 km), Rodger et al. [2006] followed the approach outlined by Smart and Shea 124 

[2003] again using the IGRF determined L-value. This exploits the basic relationship between Rc 125 

and L, i.e., 126 
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     Rc = Vk L-2       (2) 127 

where Vk is an altitude independent constant. Thus by knowing the value of Vk for the IGRF L-128 

value at 450 km altitude above a given location, one can determine Rc at 100 km once one knows 129 

the L-value for that location at 100 km altitude. In the Rodger-approach the upper limit for Kp in 130 

the rigidity model is Kp=6. When Kp exceeds this level then it is forced to Kp=6 in the rigidity 131 

calculations, a limit selected through contrast with the November 2001 experimental 132 

observations. 133 

  The rigidity cutoff relationship developed by Smart and Shea [2003], and tested and improved 134 

by Rodger et al. [2006] is further investigated here using a series of SPEs observed by the 135 

imaging riometer at Halley. 136 

 137 

4. Daytime riometer data and calculated absorption 138 

  Figure 2 shows three days of experimentally-observed cosmic noise absorptions recorded by 139 

two of the meridional beams of the Halley IRIS instrument (i.e., pointing N-S) during the 8-11 140 

November 2000 SPE with 15 min averaging. In the upper panel CNA are shown for the IRIS 141 

southernmost beam 1 (L=4.80, solid line, which we term the "poleward beam"), and in the 142 

middle panel the northernmost beam 7, (L=4.32, long dashed line, which we term the 143 

"equatorward beam"). The beams map to the ionosphere so as to be viewing ~1º north and south 144 

in latitude (i.e. 75.6ºS ±1º). These two beams represent the two most extreme locations for 145 

rigidity cutoff effects that the instrument can observe. The bottom panel shows the variation of 146 

Kp during the SPE. In addition, both the upper and middle panels show the variation of the non-147 

cutoff absorption that would be expected if there were no influence of rigidity on the proton 148 

fluxes into the atmosphere (short dashed line) based on the relationship between daytime 149 

absorption and proton fluxes developed by Kavanagh et al. [2004], i.e., using Absorption=0.09 × 150 

(>10 MeV proton flux)0.5. This line therefore represents the variation of the proton fluxes 151 
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throughout the event. The equivalent absorption levels using rigidity affected proton fluxes 152 

determined through the approach outlined in section 3 for each beam location are also shown 153 

(asterisk in the south, diamond in the north), again calculated using the Kavanagh et al. [2004] 154 

relationship. The time resolution of these calculations is limited to 3-hours because of the Kp 155 

dependence of the rigidity cutoff model. 156 

  The SPE of 8-11 November 2000 generated peak GOES proton fluxes of  14,800 >10 MeV 157 

protons cm-2 str-1 s-1 at 16 UT on 9 Nov, and a peak Kp of 6+ at 9-12 UT on 10 Nov. As such, this 158 

event occurred during a moderate geomagnetic storm. During November the atmosphere above 159 

Halley, Antarctica, is fully sunlit and thus the use of the Kavanagh et al. [2004] daytime 160 

absorption relationship is appropriate. In the southern (poleward) beam absorption levels of 161 

~4 dB are observed during the period of highest proton fluxes, while in the northern 162 

(equatorward) beam absorption levels of ~2 dB are observed. These values are generally in good 163 

agreement with the estimated absorption levels when the effects of varying rigidity cutoffs are 164 

included, and significantly below the non-cutoff levels of ~8 dB absorption. When the proton 165 

fluxes are very low the predicted absorption remains close to zero whatever the Kp level, thus it 166 

is only possible to compare the predicted absorption with the observed absorption when the 167 

proton fluxes are elevated. For the SPE of 8-11 November 2000 this is after 00 UT on 9 Nov, 168 

lasting until the end of 10 Nov. Of the fifteen 3-hourly bins, 5 show significant over estimates 169 

(~2 dB) in the predicted absorption in the southern (poleward) beam, while only 2 over estimates 170 

occur in the northern (equatorward) beam. The remaining periods show reasonable agreement 171 

between the predicted and observed absorption levels typically to within ±0.5 dB. Periods where 172 

the absorption is higher than the predicted absorption level are likely to be influenced by 173 

additional factors such as electron precipitation [Shirochkov et al., 2004], which leads to 174 

additional absorption on top of the proton-induced absorption, and are therefore not well 175 

described by the proton-only Kavanagh et al. [2004] relationship. One example of this 176 
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occurrence is 00-06 UT on 9 November 2000, where higher than predicted absorption is seen on 177 

both beams.  178 

  There are two periods where the data and theory disagree during the 8-11 November 2000 179 

event. At 6-12 UT on 10 Nov Kp reaches 6, and the theoretical absorption levels are the same as 180 

the non-cutoff case, i.e., a very high proportion of the proton fluxes should be impacting the 181 

atmosphere above the riometer. But, both the northern and southern beam absorption levels 182 

indicate that there is still significant rigidity cutoff influence at this time. The second anomalous 183 

period occurs at 14 UT on 9 Nov in the southern (poleward) beam. The theoretical absorption 184 

levels increase from ~2 dB to ~4 dB in response to a small increase in Kp from <2 to 3+. This is 185 

not seen in the observed absorption. 186 

  Figures 3, 4, and 5 show plots in the same format as Figure 2, and represent SPEs occurring 187 

during 26-29 November 2000, 5-8 November 2001, and 28-31 October 2003 respectively. The 188 

peak proton >10 MeV fluxes were 942, 31700, and 29500 protons cm-2 str-1 s-1 while the 189 

maximum Kp values were 6+, 9-, and 9 respectively. Thus Figure 3 represents a small SPE, and 190 

Figures 4 and 5 represent two very large SPEs, with the latter cases associated with very large 191 

geomagnetic disturbances. 192 

  Although the proton fluxes are significantly lower during the 26-29 November 2000 SPE when 193 

compared with the 8-11 November 2000 event, the maximum Kp values are the same (6+). Thus 194 

these two events are comparable in many ways. Figure 3 shows that the theoretical absorption 195 

levels in the southern (poleward) and northern (equatorward) beams are over estimated in 196 

comparison with the absorption data, particularly when Kp=~6 in the northern (equatorward) 197 

beam, and Kp=4-6 in the southern (poleward) beam. This is particularly apparent when the 198 

proton fluxes are high, and the absorption levels significantly elevated. Of the twenty three 3-199 

hourly bins where proton fluxes are high, 9 show significant over estimates (~0.5-1 dB) in the 200 
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predicted absorption in the southern (poleward) beam, while only 5 over estimates occur in the 201 

northern (equatorward) beam. 202 

  The two large storms shown in Figure 4 and 5 have a wider range of Kp values, but follow 203 

similar patterns of behavior as Figure 3. The northern (equatorial) beam shows good agreement 204 

between the theoretical absorption and the observed data until Kp>~6. Under these conditions the 205 

theoretically determined rigidity cutoffs predict very little influence of cutoff rigidity (i.e., low 206 

cutoff energies) on the proton fluxes and thus high absorption levels, but the observed absorption 207 

levels are more consistent with Kp=~5 and thus a significant influence due to rigidity cutoffs 208 

limiting the proton fluxes. The southern (poleward) beam shows good agreement between 209 

theoretical absorption levels and observed absorption for very high Kp (Kp>6), but over estimated 210 

absorptions when Kp=4-6. During high Kp (Kp>6) the theory predicts, and the observations show, 211 

that there is little or no cutoff rigidity affect on the absorption levels for this beam location. Of 212 

the twenty three 3-hourly bins where proton fluxes are high in Figure 4, six show significant over 213 

estimates (~2 dB) in the predicted absorption in the southern (poleward) beam, while only 3 over 214 

estimates occur in the northern (equatorward) beam. Of the nineteen 3-hourly bins where proton 215 

fluxes are high in Figure 5, five show significant over estimates (~2 dB) in the predicted 216 

absorption in the southern (poleward) beam, while 8 over estimates occur in the northern 217 

(equatorward) beam. This represents an unusual event because the northern beam is less well 218 

modeled than the southern beam. The primary reason is because of the unusually long-lasting 219 

very high Kp levels leading to less errors in the southern beam in comparison with the northern 220 

beam. 221 

  The Halley riometer data during the SPE of 5-8 November 2001 was previously used to test the 222 

improved rigidity cutoff calculations developed by Rodger et al. [2006]. The cutoff rigidities 223 

were applied to the proton fluxes in the same way as this study, but the SIC model was used to 224 

calculate the riometer absorption instead of using the empirical relationship as we do here. 225 
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Comparing Figure 4 in this study with Figure 7 of Rodger et al. [2006] shows that combining the 226 

empirical relationship with rigidity modified proton fluxes agrees closely with the SIC model 227 

results. In addition, the right panel of Figure 3 of Rodger et al. [2006] showed that the 228 

absorptions calculated by the SIC model in the absence of rigidity cutoff effects reproduces the 229 

empirical relationship reported by Kavanagh et al. [2004].  230 

  So far we have described riometer absorption observed during four SPEs that occurred during 231 

the southern hemisphere summer, and thus under daytime conditions. In the next section we 232 

determine a nighttime relationship between proton fluxes and riometer absorption in order to 233 

investigate rigidity cutoff effects during polar winter nighttime conditions. 234 

5. Nighttime riometer absorption using the Sodankylä Ion and Neutral Chemistry Model 235 

  As in Rodger et al. [2006] we use the SIC model to produce lower ionospheric electron density 236 

profiles during SPEs, but this time in the winter-time (i.e. nighttime) D-region above the Halley 237 

Bay IRIS instrument. During the daytime it is possible to calculate the non-cutoff riometer 238 

absorption using >10 MeV proton fluxes through the empirical relationship of Kavanagh et al. 239 

[2004], confirmed using the SIC model by Rodger et al. [2006]. Here we want to investigate the 240 

relationship between proton fluxes and riometer absorption during nighttime conditions in order 241 

to investigate rigidity cutoff effects during polar winter conditions. 242 

  We assume that the proton spectra at the top of the atmosphere will be determined only by the 243 

fluxes of experimentally observed proton flux spectra reported by GOES-borne instruments at 244 

geosynchronous altitude. The angular distribution of the protons is assumed to be isotropic over 245 

the upper atmosphere, which is valid close to the Earth [Hargreaves, 1992]. A SIC modeling run 246 

has also been undertaken without any proton forcing (i.e., zero proton fluxes), reasonable at 247 

Halley for low Kp conditions. The results of the no-forcing "control" SIC-run allow the 248 

calculation of "quiet-time" conditions. 249 
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  Each run of the SIC model is based on a neutral background atmosphere given by MSISE-90 250 

and provides concentration profiles of neutral and ionic species. Following Banks and Kockarts 251 

[1973; Part A, p. 194], we calculate the electron collision frequencies of N2, O2, and He from 252 

MSIS and of O and H from SIC using the neutral temperature profile of MSIS, which we can 253 

assume to be equal to electron temperature below 100 km. Electron density is obtained from SIC 254 

by subtracting the sum of negative ion concentrations from the sum of positive ion 255 

concentrations. Finally, we use the method of Sen and Wyller [1960] to compute differential 256 

absorption dL/dh and integrate with respect to height. This method takes the operational 257 

frequency of the riometer into account and assumes a dipole approximation for the geomagnetic 258 

field to obtain the electron gyrofrequency at the respective altitude and latitude. 259 

  The Sodankylä Ion and Neutral Chemistry (SIC) model is a 1-D chemical model designed for 260 

ionospheric D-region studies, solving the concentrations of 65 ions, including 29 negative ions, 261 

and 15 neutral species at altitudes across 20–150 km. This study makes use of SIC version 6.9.0. 262 

The model has recently been discussed by Verronen et al. [2005], building on original work by 263 

Turunen et al. [1996] and Verronen et al. [2002]. A detailed overview of the model was given in 264 

Verronen et al. [2005]. We summarize here to provide background for this study. 265 

  In the SIC model several hundred reactions are implemented, plus additional external forcing 266 

due to solar radiation (1–422.5 nm), electron and proton precipitation, and galactic cosmic 267 

radiation. Initial descriptions of the model are provided by Turunen et al. [1996], with neutral 268 

species modifications described by Verronen et al. [2002]. Solar flux is calculated with the 269 

SOLAR2000 model (version 2.27) [Tobiska et al., 2000]. The scattered component of solar 270 

Lyman-α flux is included using the empirical approximation given by Thomas and Bowman 271 

[1986]. The SIC code includes vertical transport [Chabrillat et al., 2002] which takes into 272 

account molecular [Banks and Kockarts, 1973] and eddy diffusion with a fixed eddy diffusion 273 

coefficient profile. The background neutral atmosphere is calculated using the MSISE-90 model 274 
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[Hedin, 1991] and tables given by Shimazaki [1984]. Transport and chemistry are advanced in 275 

intervals of 5 or 15 minutes. While within each interval exponentially increasing time steps are 276 

used because of the wide range of chemical time constants of the modeled species. 277 

  Daytime absorption has been shown to be described by proton fluxes with energies >10 MeV. 278 

However, during nighttime conditions the undisturbed D-region has lower electron number 279 

densities, such that lower energy protons are expected to play a significant role.  Nighttime 280 

ionization conditions are more complicated than during the day, with a negative charge transition 281 

from electrons to negative ions occurring at sunset [Verronen et al., 2006] as a result of changes 282 

in atomic oxygen. Thus we would expect different relationships between absorption and solar 283 

proton fluxes at night than during the day. Figure 6 shows the relationship found between SIC 284 

calculated polar nighttime riometer absorption and proton fluxes with energies >5 MeV, taken 285 

from the proton fluxes which occurred during the January 2005 SPE. These calculations indicate 286 

that nighttime absorption is proportional to (>5 MeV proton flux)0.75. This finding differs from 287 

the daytime relationship, not only in the power, but also the proton flux threshold. This agrees 288 

with previous work on nighttime absorption calculations, which suggested a threshold of 1-5 289 

MeV  [Sellers et al., 1977], although both day and night calculations in that study used a square 290 

root power relationship. A lower threshold of >5 MeV during nighttime means that Kp would 291 

have to be lower in order to cutoff the same fraction of the proton fluxes as during the day. The 292 

lower energy threshold is also consistent with the riometer absorption coming from higher 293 

altitudes during the night than the day. 294 

  During the period when IRIS data from Halley is available there was one significant SPE in 295 

nighttime conditions. In Figure 7 we show the observed and calculated absorption during the 296 

large SPE of 13-16 July 2000. The format of the plot is the same as Figures 2-5. To calculate the 297 

theoretical absorption values we have used the relation Absorption = 0.001×(>5 MeV proton 298 

flux)0.75. The plot shows that the theoretical and observed absorption values agree well, with 299 
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overestimates in the theoretically predicted absorptions occurring only on the southern 300 

(poleward) beam when Kp>7. No significant periods of over estimation occur on the northern 301 

(equatorward) beam. Of the eleven 3-hourly bins where proton fluxes are high in Figure 7, five 302 

show significant over estimates (~0.5 dB) in the predicted absorption in the southern (poleward) 303 

beam, while four over estimates occur in the northern (equatorward) beam. 304 

  Notably there are almost no data points in Figure 7 where either the predicted absorption or the 305 

observed absorption reach the same levels as the non-cutoff values during high proton fluxes 306 

(mainly 15 July). This is despite very high Kp values, and is partly as a result of the rigidity 307 

model limiting Kp to a maximum of 6, and also a result of the >5 MeV energy threshold used 308 

during the night. At the latitude of Halley IRIS northern (equatorward) beam the proton cutoff 309 

energy limit for Kp=6 is ~9 MeV [Rodger et al., 2006]. This means that protons with energies 310 

>9 MeV will reach to the latitude of this beam, but energies less than that will not be able to 311 

make it so far equatorward. During the day, when a >10 MeV proton flux energy threshold for 312 

the absorption calculation applies, and the Kp-dependent rigidity cutoff is ~9 MeV, 100% of the 313 

>10 MeV GOES proton fluxes will penetrate to that location, and thus contribute to the riometer 314 

absorption. However, during the night when a >5 MeV proton flux energy threshold applies, and 315 

the Kp-dependent rigidity cutoff is ~9 MeV, the calculations predict that only ~30-90% of the 316 

>5 MeV GOES proton fluxes penetrate to that location and contribute to the riometer absorption. 317 

Note that the 30-90% range is determined by the proton spectra, i.e., what percentage of the total 318 

proton number flux is greater than the rigidity cutoff energy. Thus at nighttime the only time that 319 

the predicted absorption gets close to the non-rigidity cutoff levels is on those occasions when 320 

the proton spectrum is very hard, i.e., there are high fluxes of protons with high energy 321 

(>10 MeV) in comparison with the lower energy protons (5-10 MeV).   322 

 323 

7. Discussion 324 
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  We have investigated the rigidity cutoff model developed by Rodger et al. [2006] based on 325 

previous work by Smart and Shea [2003]. Using a study of riometer absorption data during four 326 

daytime SPEs, i.e., high latitude summer measurements where the Sun is above the horizon all 327 

the time, we have shown that it is possible to reproduce the riometer data using a simple 328 

empirical relationship based on the incident proton fluxes, and a Kp-limited rigidity calculation.  329 

  For the southern (poleward) beam of the Halley IRIS Kp=6 represents a rigidity cutoff energy of 330 

0.0 MeV, and once Kp=6 is reached the predicted absorption is the same as the non-rigidity 331 

absorption levels. This can be seen in Figure 3 at the beginning of 27 Nov 2000, where the 332 

asterisks (rigidity calculation) overlap the short dashed line values (non-rigidity calculation). 333 

However, the observed absorption is not consistent with this picture, and when Kp>4 the 334 

predicted absorption is also over estimated. This suggests that the rigidity cutoff limit (Kp=6, 335 

0.0 MeV for the southern beam) needs to be higher than the proton flux energy threshold 336 

(10 MeV in daytime). Either decreasing the Kp "saturation" limit, or lowering the proton flux 337 

energy threshold can achieve this.  338 

  During the two large SPEs, when Kp approached 9, the southern (poleward) beam absorption 339 

was close to that of the calculated rigidity and non-rigidity cutoff absorption levels (Figures 4 340 

and 5), whereas this was not true when Kp=4-6 in the previous analysis. This clearly indicates 341 

that the Kp=6 saturation limit to the rigidity cutoff model is too low and needs to be higher. 342 

  For the northern (equatorward) beam of the Halley IRIS Kp=6 represents a rigidity cutoff 343 

energy of 9 MeV, thus the rigidity cutoff energy and the proton flux energy threshold (10 MeV) 344 

are similar, and when Kp=6 is reached the predicted absorption values are the same as the non-345 

rigidity levels. However, the observed absorption does not reach the non-rigidity level during 346 

high proton fluxes, and as a result this suggests that the Kp=6 saturation limit is too high or the 347 

absorption threshold is too high. 348 
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  Absorption data from the single nighttime SPE (July 2000) is reasonably modeled using a 349 

>5 MeV proton flux energy threshold. The behavior of the observed absorption on the southern 350 

(poleward) beam is very similar to the daytime examples in that the predicted absorption is over 351 

estimated when Kp≥6. This is because at Kp=6 the rigidity cutoff energy is 0.0 MeV which is 352 

lower than the proton flux energy threshold of >5 MeV. The northern (equatorward) beam 353 

behavior is slightly different from the daytime case because for Kp=6 the rigidity cutoff energy 354 

(9 MeV) is more than the proton flux energy threshold (>5 MeV), and thus although the 355 

predicted absorption is still an overestimate at high Kp, it is not as large as the maximum non-356 

cutoff case. 357 

  Using the rigidity cutoff model of Rodger et al. [2006] and empirical estimates of riometer 358 

absorption from proton fluxes we have been able to reproduce the absorption seen by the Halley 359 

riometer at two L-shells (L=4.32 and 4.80). Typically reasonable estimates of absorption were 360 

made 58-74 % of the time for the southern (poleward) beam, and 65-87 % of the time for the 361 

northern (equatorward) beam. The success of the Rodger et al. [2006] rigidity cutoff model is 362 

dependent on a balance between the rigidity cutoff energy for the protons at any given L-shell, 363 

and the proton flux energy threshold for the protons. At the times when the empirical estimates 364 

are in error there is usually an over estimate in the predicted absorption levels, caused by the 365 

Kp=6 saturation limit used in the rigidity cutoff calculation. In order to improve the success rate 366 

for the northern (equatorward) beam the Kp saturation limit in the rigidity model would have to 367 

be decreased to Kp=5.5 or the daytime proton flux energy threshold decreased to >5 MeV. For 368 

the southern beam changing the Kp saturation limit to 5 would be more appropriate, but no 369 

changes of the daytime proton flux energy threshold would make any significant effect. 370 

  Changing the proton flux energy threshold introduces significant difficulties in modeling the 371 

riometer absorption because of hysteresis in the relationship between the proton fluxes and 372 

absorption for any proton flux energy threshold values other than 10 MeV during the day and 373 
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5 MeV during the night. Thus we restrict ourselves here to investigate the effects of the Kp 374 

saturation limit used in the rigidity cutoff calculation. Figure 8 shows the northern and southern 375 

beam absorption during the solar proton event of 05-08 November 2001. The figure is the same 376 

format as Figure 4, except that the saturation limit has been changed to Kp=5, and the location of 377 

the southern (poleward) beam moved by 0.6° equatorwards. These changes have the effect of 378 

increasing the rigidity cutoff energy for the northern beam from 9 MeV to 28 MeV, and 379 

increasing the rigidity cutoff energy for the southern beam from 0.0 MeV to 8 MeV. In practice 380 

this means that the northern beam does not achieve the non-rigidity cutoff absorption maximum 381 

during this storm, in agreement with the observations. Generally the Halley northern 382 

(equatorward) beam will not achieve the non-rigidity cutoff  absorption maximum unless the 383 

proton spectrum is very hard and has little flux between 10-28 MeV. The southern beam will still 384 

experience absorption at the non-cutoff maximum, but the more equatorward location of the 385 

beam results in lower levels of absorption when Kp is just below the saturation  limit. Both of 386 

these effects result in much better agreement between the calculated absorption and the observed 387 

absorption for this large geomagnetic storm in comparison with the results shown in Figure 4. 388 

  However, for moderately disturbed solar proton events, where Kp remains close to the 389 

saturation limit the calculated absorption is not in such good agreement with the observations. 390 

Figure 9 shows the adjusted absorption for the 26-29 November 2000 period to be contracted 391 

with Figure 3. The Kp=5 saturation limit has reduced the northern beam absorption, and reduced 392 

the southern beam absorption when Kp is close to the Kp=5 saturation limit. However, during 393 

higher Kp the southern beam does not experience the maximum non-rigidity cutoff absorption 394 

levels that the relocated beam calculations predict. Overall there is a 50% decrease in the number 395 

of 3-hour data bins that previously showed poor agreement between the calculated and observed 396 

absorption. 397 
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  The adjustments to the rigidity cutoff calculations made here are relatively subtle. By changing 398 

the location of the southern (poleward) beam better agreement between theory and observations 399 

is obtained at times, and this indicates that initially the two beam locations were too far apart 400 

(i.e., smaller than the 2° of latitude assumed initially). The adjusted location for the southern 401 

(poleward) beam represents a separation from the northern beam of 1.4° of latitude, which can be 402 

interpreted as indicating that the dominant altitude that the absorption is occurring at lower 403 

altitude i.e., 60 km instead of the 90 km initially assumed. The lower Kp saturation limit 404 

improves the agreement between theory and observations, particularly on the northern 405 

(equatorward) beam during most geomagnetic conditions. The Kp change has little effect on the 406 

southern (equatorward) beam, which appears more sensitive to changes in beam location. This 407 

suggests that at L>4.5, and for high Kp, significant changes in L-shell location have occurred for 408 

the beam, in particular that the geographic location of the beam has moved to a lower L-shell. 409 

Some of this change can be accommodated by the lowering of the peak absorption altitude of the 410 

southern beam, which equates to a shift equatorwards for this riometer beam as Kp increases and 411 

greater latitudinal penetration of proton fluxes occur.  412 

  For large geomagnetic storms, such as that of 05-08 November 2001, the adjustments made 413 

here to the Rodger et al. [2006] rigidity cutoff model allow us to improve the absorption 414 

estimates. In Figure 10 we plot the predicted southern hemisphere absorption levels during the 415 

high proton flux period that occurred at 00 UT on 06 Nov 2001, when Kp reached 8+. This 416 

calculation was undertaken using the improved rigidity cutoff model. The plot shows the region 417 

of high absorption with levels of 14 dB, where all protons with energies greater than 10 MeV can 418 

access the polar atmosphere (i.e., rigidity cutoff effects are unimportant to the riometer 419 

absorptions). Surrounding this contour is an outer region where the absorption levels gradually 420 

reduce to the limits of detectability for most riometers (roughly 0.1 dB). This can be thought of 421 
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as an extreme example of SPE-produced riometer absorptions, occurring when both Kp and 422 

proton fluxes are very high. The outer zone of rigidity influenced absorption lies mostly at 50°S, 423 

except in the region of the Antarctic Peninsula where it is located at ~70°S. From the riometer 424 

absorption calculations we can see that the transition in access levels for energetic protons to the 425 

stratosphere and mesosphere is controlled by geomagnetic rigidity, with the shift from no-access 426 

to total access occurs over the range L=3-4.5, or across ~10° of latitude. For locations which are 427 

equatorward of the limits of the outer zone shown in Figure 10, SPEs should never lead to 428 

significant changes in riometer data. This provides an indication as to the limits inside which 429 

SPEs can play a role in modifying the neutral chemistry of the stratosphere and mesosphere 430 

[Verronen, 2005]. 431 

 432 

8. Summary 433 

  In the polar atmosphere, significant chemical and ionization changes occur during solar proton 434 

events. The access of solar protons to this region is limited by the dynamically changing 435 

geomagnetic field. In this study we have used riometer absorption observations to investigate the 436 

accuracy of a model to predict Kp-dependent geomagnetic rigidity cutoffs, and hence the 437 

changing proton fluxes. The imaging riometer at Halley, Antarctica is ideally situated for such a 438 

study, as the rigidity cutoff sweeps back and forth across the instrument's field of view, 439 

providing a severe test of the rigidity cutoff model. Specifically we investigate the accuracy of 440 

the rigidity cutoff model developed by Smart and Shea [2003], and improved by Rodger et al. 441 

[2006]. Using observations from the Halley riometer during five solar proton events, we have 442 

confirmed the basic accuracy of this rigidity model. However, we have shown that although the 443 

rigidity cutoff model can be used to reasonably estimate the absorption due to precipitating 444 

proton fluxes, it can be further improved by setting a lower Kp limit (i.e. Kp=5 instead of 6) at 445 
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which the rigidity process saturates. We also find that for L>4.5 there is significant change in the 446 

geomagnetic location of a riometer beam during a large geomagnetic storm, such that the 447 

apparent L-shell of the beam moves equatorward. This is in part explained by the decreasing 448 

altitude of peak riometer absorption as protons penetrate more readily at higher Kp into the 449 

rigidity dominated zone. 450 

  We have also used the Sodankyla Ion and Neutral Chemistry model to determine an empirical 451 

relationship between integral proton precipitation fluxes and nighttime ionosphere riometer 452 

absorption, in order to allow consideration of winter time SPEs. We find that during the 453 

nighttime the proton flux energy threshold is lowered to protons with energies of >5 MeV in 454 

comparison with >10 MeV during the daytime.  455 

  Where both Kp and proton fluxes are very high the transition in access levels for energetic 456 

protons to the stratosphere and mesosphere is controlled by geomagnetic rigidity, with the shift 457 

from no-access to total access occurs over the range L=3-4.5, or across ~10° of latitude. The 458 

outer zone of rigidity influenced absorption lies mostly at 50°S, except in the region of the 459 

Antarctic Peninsula where it is located at ~70°S. In the northern hemisphere this will equate to 460 

~45°N. These latitude bounds provide an indication as to the limits inside which SPEs can play a 461 

role in modifying the neutral chemistry of the stratosphere and mesosphere. 462 
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Figure 1.  Map showing the region in Antarctica in which our study is undertaken. The square 561 

marks the location of Halley (75.6ºS, 26.32°W, L=4.6), while the open circles show the northern 562 

(equatorward) and southern (poleward) IRIS riometer beams used in our study. 563 

Figure 2.  [Upper panel] The variation of the non-cutoff absorption that would be expected if 564 

there were no influence of rigidity on the proton fluxes into the atmosphere (short dashed line) 565 

during 08-11 November 2000, compared with the observed absorption on the Halley IRIS 566 

southernmost beam 1 (L=4.80, solid line). [middle panel] The variation of the non-cutoff 567 

absorption as in the upper panel (short dashed line), compared with the observed absorption on 568 

the northernmost beam 7, (L=4.32, long dashed line). The equivalent absorption levels using 569 

rigidity affected proton fluxes for each beam location are also shown (asterisk in the south, 570 

diamond in the north). [bottom panel] The variation of Kp during the SPE period. The horizontal 571 

dotted line represents the Kp saturation limit used in the rigidity model calculations. 572 

Figure 3.  As Figure 2 but for 26-29 November 2000 573 

Figure 4.  As Figure 2 but for 05-08 November 2001 574 

Figure 5.  As Figure 2 but for 28-31 October 2000 575 

Figure 6.  Comparison between the SIC calculated nighttime cosmic noise absorption for the 576 

Halley IRIS parameters and >5 MeV proton fluxes (crosses). The grey columns indicate the 577 

number of samples in each energy range (as labeled). A linear fit indicates a clear relationship 578 

between the riometer absorption and the proton fluxes. 579 

Figure 7.  As Figure 2, but using the nighttime empirical absorption/proton flux relationship for 580 

the wintertime SPE, 13-16 July 2000. 581 

Figure 8.  As Figure 2, but using Kp=5 instead of Kp=6 as the cutoff limit for 05-08 November 582 

2001, and with the southern (equatorward) beam moved to a lower L-shell. 583 

Figure 9.  As Figure 2, but using Kp=5 instead of Kp=6 as the cutoff limit for 26-29 November 584 

2000, and with the southern (equatorward) beam moved to a lower L-shell. 585 
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Figure 10. Map of the predicted levels of absorption globally for the peak fluxes during 06 Nov 586 

2001 based on the improved Kp-dependent geomagnetic rigidity cutoff model. 587 
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 598 

Figure 2.  [Upper panel] The variation of the non-cutoff absorption that would be expected if 599 

there were no influence of rigidity on the proton fluxes into the atmosphere (short dashed line) 600 

during 08-11 November 2000, compared with the observed absorption on the Halley IRIS 601 

southernmost beam 1 (L=4.80, solid line). [middle panel] The variation of the non-cutoff 602 

absorption as in the upper panel (short dashed line), compared with the observed absorption on 603 

the northernmost beam 7, (L=4.32, long dashed line). The equivalent absorption levels using 604 

rigidity affected proton fluxes for each beam location are also shown (asterisk in the south, 605 

diamond in the north). [bottom panel] The variation of Kp during the SPE period. The horizontal 606 

dotted line represents the Kp saturation limit used in the rigidity model calculations. 607 
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Figure 3.  As Figure 2 but for 26-29 November 2000. 610 
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Figure 4.  As Figure 2 but for 05-08 November 2001  613 
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Figure 5.  As Figure 2 but for 28-31 October 2003.  615 
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 617 

Figure 6.  Comparison between the SIC calculated nighttime cosmic noise absorption for the 618 

Halley IRIS parameters and >5 MeV proton fluxes (crosses). The grey columns indicate the 619 

number of samples in each energy range (as labeled). A linear fit indicates a clear relationship 620 

between the riometer absorption and the proton fluxes. 621 
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 624 

Figure 7.  As Figure 2, but using the nighttime empirical absorption/proton flux relationship for 625 

the wintertime SPE, 13-16 July 2000. 626 
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 627 

Figure 8.  As Figure 2, but using Kp=5 instead of Kp=6 as the cutoff limit for 05-08 November 628 

2001, and with the southern (equatorward) beam moved to a lower L-shell. 629 



35 

 630 

Figure 9.  As Figure 2, but using Kp=5 instead of Kp=6 as the cutoff limit for 26-29 November 631 

2000, and with the southern (equatorward) beam moved to a lower L-shell. 632 
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 633 

Figure 10. Map of the predicted levels of absorption globally for the peak fluxes during 06 Nov 634 

2001 based on the improved Kp-dependent geomagnetic rigidity cutoff model. 635 


