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Outline

Introduction

Magic Dance

Another sunny day

“Further complications”

Pass it on
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“The minotaur justifies the
labyrinth”—Jorge Luis Borges

http://oglaf.com/labyrinth/ (NSFW)
www.ntnu.no D. Simpson, Another sampling talk
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Scream and run away

Observed field y

Latent field
x (covariates

+ space +
time + noise)

Parameters θ

Question: CAN WE INFER x AND θ FROM y WHEN THE SIZES OF x
AND y ARE LARGE?
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Against pollution
PM-10 concentration in Piemonte, Italy

www.ntnu.no D. Simpson, Another sampling talk



7

The point of it all
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A very ugly likelihood

The likelihood in the most boring case is

log(π(Y |η)) = |Ω| −
∫

Ω
Λ(s) ds +

∑

si∈Y

Λ(si),

where Y is the set of observed locations and Λ(s) = exp(Z (s)),
and Z (s) is a Gaussian random field.

www.ntnu.no D. Simpson, Another sampling talk
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Add it up
NB: The number of points in a region R is Poisson distributed with
mean

∫
R Λ(s) ds.

— Divide the ‘observation
window’ into rectangles.

— Let yi be the number of
points in rectangle i .

yi |xi ,θ ∼ Po(exi ),

— The log-risk surface is
replaced with

x|θ ∼ N(µ(θ),Q(θ)−1).

Introduction Case study I Case study II Summary Resolution Spatial e↵ect Interaction Estimated e↵ects

Andersonia heterophylla: 55 ⇥ 55 grid
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Sigrunn Holbek Sørbye, University of Tromsø Spatial point patterns - simple case studieswww.ntnu.no D. Simpson, Another sampling talk
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Makes an ass out of you and umption

y ∼ π (x | θ)

x ∼ N(µ(θ),Qx (θ)−1)

θ ∼ π(θ)

π(x |y) ∝ π(y | x ,θ)π(x | θ)π(θ)

HOW DO WE DO THIS WHEN THE DIMENSIONS OF x AND y ARE

HUGE?

www.ntnu.no D. Simpson, Another sampling talk
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Knowing me, knowing you
What does the precision matrix (usually) look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NB: It’s good to consider the whole (jointly) Gaussian part: fixed +
random effects + noise.

www.ntnu.no D. Simpson, Another sampling talk
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Gimme! Gimme! Gimme! (A man after
midnight)

So what do we want?

We are typically interested in MCMC proposals that require:
— A single sample from x ∼ N(µ,Q−1); or
— A sequence of samples from x ∼ N(µi ,Q

−1
i ).

— Possible the log-density

It is often (usually) the case that the precision matrix of the
Gaussian that we are sampling from changes at every MCMC
sweep (due to parameter updating or local approximation to the
posterior).

www.ntnu.no D. Simpson, Another sampling talk
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The village green preservation society

Direct methods
All methods from sampling from a Gaussian require a factorisation
of the covariance matrix Σ = RRT or the precision matrix
Q = Σ−1 = LLT . This is always† done with a Cholesky
factorisation.

— Making these factorisations computationally feasible is the
main aim of modern spatial statistics.

— Sparse matrices (aka models with the Markov property) are
necessary‡ to make large problems feasible.

— This was the (computational) state of the art 10 years ago and,
with some minor blips, it is still the state of the art.

www.ntnu.no D. Simpson, Another sampling talk
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Danicing on my own (2005–2008)
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“Oh those Russians!”—Indirect methods

For spatial problems in applied mathematics, physics, and
engineering, direct methods are typically overlooked in favour of
iterative methods.

— The are a huge variety of Krylov subspace methods, the most
famous being the Conjugate Gradient method (also GMRES,
BiCG-Stab, LSQR,...)

— These do not require the matrix, but rather access to
matrix-vector products of the form Qx .

— Typically, these methods are exact if you run them for long
enough, and they converge superlinearly in subspace size.

www.ntnu.no D. Simpson, Another sampling talk
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Ignition

Sampling from a Gaussian

If we have a factorisation of the precision matrix Q = LLT , then it’s
easy to see that x = L−T z , z i.i.d. standard normal, is a sample
from N(0,Q−1).

— We need a version of L−T z that we can compute using only
matrix-vector products from Q.

— The standard is to take L to be the Cholesky triangle of Q, but
maybe this isn’t a good idea....

www.ntnu.no D. Simpson, Another sampling talk
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Dumb things

If we can diagonalise Q = OΛOT , then we can take Q = LLT

where

L = Q1/2 ≡ O



λ

1/2
1

. . .
λ

1/2
n


OT .

— It’s easy to see that x = Q−1/2z has the correct precision
matrix

— Clearly this is a stupid thing to do!

www.ntnu.no D. Simpson, Another sampling talk
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Not that kind of girl

Idea
It’s easy to show that if Q = VTV T , V orthogonal, T tridiagonal,
then

Q−1/2z = VT−1/2V T z .

What if we don’t go all the way??

— Try to pick smart directions that know about Q and z .
— Analogy with CG and other Krylov methods for linear systems
— Analogy with partial least squares...

www.ntnu.no D. Simpson, Another sampling talk
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Hallo Spaceboy

Definition (Krylov Subspace)

The m-dimensional Krylov Subspace generated by Q and z is
defined by

Km(A, z) = span
{

z ,Az ,A2z , . . . ,Am−1z
}
.

— Defined as all vectors of the form pm−1(Q)z , where pm−1 is
any polynomial of degree m − 1.

— The basis given in the definition is useless for computation!
— If we find the best approximation to Q−1/2z in Km(Q, z).... best

polynomial approximation...

www.ntnu.no D. Simpson, Another sampling talk
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Ace of Bas(is)

Theorem (Lanczos Decomposition )

If {v1,v2, . . . ,vm} forms an ONB for Km(Q, z), then the matrix
V m = [v1,v2, . . . ,vm], with v1 = z/ ‖z‖, satisfies

QV m = V mT m + βmvm+1eT
m,

where V T
mvm+1 = 0 and T m = V T

mQV m.

— The columns of V m ∈ Rn×m form an orthonormal basis for
Km(Q, z).

— Tm is small (m ×m), symmetric and tridiagonal.

www.ntnu.no D. Simpson, Another sampling talk
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Little people
So, after computing the Lanczos decomposition, we have the
estimate

xm = V mT−1/2
m V T

mz .
How do we compute the inverse square root of T m??
— Eigendecomposion. O(m3).
— Rational approximation

T−1/2
m e1 ≈

p∑

i=1

αi(wi I + T m)−1e1

— Best rational approximation (Zolotarev): αi ,wi > 0 given
explicitly in terms of Jacobi elliptic functions. (See Hale,
Higham and Trefethen 2008)

— Actually, can do this directly for Q. Converges geometrically in
p (= O (log(κ2(Q))))

www.ntnu.no D. Simpson, Another sampling talk
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The Lanczos Decomposition

Input: A, z, and m.
Output: Vm and Tm.

Set v1 = z/ ‖z‖.
for j = 1 : m do

q = Avj .
if j 6= 1 then

q = q − βj−1vj−1.
end
αj = vT

j q
q = q − αjvj

βj = ‖q‖2
vj+1 = q/βj

end
Set xm = V mT−1/2

m V T
mz.

www.ntnu.no D. Simpson, Another sampling talk
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Just like you imagined
Theorem
Let xm be the sample produced in the mth step of the Krylov
sampler and let x = Q−1/2z be the true sample from
x ∼ N(0,Q−1). If rm is the residual at the mth iteration of the
conjugate gradient method for solving Qy = z , then

‖x − xm‖ ≤ λ−1/2
min ‖rm‖ , (1)

where λmin is the smallest eigenvalue of Q. Furthermore, the
following a priori bound holds:

‖x − xm‖ ≤ 2λ−1/2
min
√
κ

(√
κ− 1√
κ+ 1

)m

‖z‖ , (2)

and κ = λmax/λmin is the condition number of Q.
www.ntnu.no D. Simpson, Another sampling talk
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Float on! 43

any row of A. Furthermore, let ✏0 = (n+4)✏M and ✏1 = 2(7+nnz k|A|k / kAk)✏M
be such that [38]

✏0 <
1

12
, m(3✏0 + ✏1) < 1.

Theorem 3.4 Let the finite precision Lanczos decomposition take the form

AṼm = ṼmT̃m + �̃mṽm+1e
T
m + F̃m,

where the columns of Ṽm and T̃m are the output of the Lanczos procedure in finite
precision arithmetic and the columns of F̃m contain the local errors [38]. Let

m <

✓
�min

kAk ✏2

◆2/5

,

where �min is the smallest eigenvalue of A and ✏2 =
p

2 max{6✏0, ✏1}. Then, for
any f 2 S, the error in the Lanczos approximation to f(A)b satisfies

���f(A)b � kbk Ṽmf(T̃m)e1

���  (f(�min) � a) kr̃mk + C kbkpm✏1, (3.6)

where kr̃mk = kbk �m+1|eT
mT̃�1

m e1| is the computed residual after using m itera-
tions of FOM to solve Ay = b,

C = kAk f [�min, �min � m5/2 kAk ✏2]

and f [a, b] is the first divided di↵erence of f at (a, b).

Proof. For convenience, we will set em = kbk Ṽmf(T̃m)e1 � f(A)b. Using the
integral representation of a Stieltjes function, it follows that

em = �
Z 1

0

(A + tI)�1
⇣
b � kbk (A + tI)Ṽm(T̃m + tI)�1e1

⌘
dµ(t)

=

Z 1

0

(A + tI)�1
⇣
kbk �̃mṽm+1e

T
M(T̃m + tI)�1e1 + kbk F̃m(T̃m + tI)�1e1

⌘
dµ(t)

The result follows by bounding the quantities in the integral. Firstly, the spectral
theorem gives k(A + tI)�1k  (�min + t)�1. Secondly, the crux of Lemma 5 in
[141] is that for any SPD tridiagonal matrix T and any t > 0, |eT

m(T + tI)�1e1| 
|eT

mT�1e1|. Thirdly, Theorem 2.1 in [38] (which is due to Paige [97]) shows that
the smallest eigenvalue of T̃m, denoted ✓̃min satisfies ✓̃min � �min �m5/2✏2 kAk >
0, where the last inequality follows from the assumption on m. Hence

���(T̃m + tI)�1
���  1

✓̃min + t
 1

�min � m5/2✏2 kAk + t
.

With these bounds in place, it follows that

kemk  f(�min) kr̃mk + kbk
���F̃m

���
Z 1

0

dµ(t)

(�min + t)(�min � m5/2✏2 kAk) .
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Running up that hill

0 50 100 150 200 250 30010−15

10−10

10−5

100

105
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I like big buts

But...
www.ntnu.no D. Simpson, Another sampling talk



28

No easy way down

0 200 400 600 800 100010−15

10−10

10−5

100

105

 

 

n=256
n=1024
n=4096
n=16384
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When all is said and done

What went wrong?
— The matrix in question was the precision for a CAR(2) process

(essentially the discrete biharmonic operator)
— The rate of convergence depends on the condition number of

Q, which is O(h4).
— This is a standard problem with Krylov subspace methods.
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Your other man

A variety of other things were tried:

— 2–pass Lanczos: Compute T−1/2
m e1 in one sweep, compute

xm in the second.
• Very fast!
• Low storage (3 vectors rather than m).
• Twice the work.

— Using a different basis Km
(
(ξI −Q)−1, z

)
,

Km(Q, z) ∪ Km(Q−1, z)

— Rational approximation.
— “Least-squares sampling” (i.e. the simplest of John’s methods)

www.ntnu.no D. Simpson, Another sampling talk
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I’m so glad

www.ntnu.no D. Simpson, Another sampling talk
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Stand by your manatee

Some obvious points...
— When solving linear systems, the solution is to precondition

the system, i.e. find FF T ≈ Q and solve F−1QF−T y = F−1z .
— A preconditioner is optimal if the condition number remains
O(1) as h→ 0.

Can we precondition the sampling routine?

www.ntnu.no D. Simpson, Another sampling talk
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Ignition (Remix)

Rather than looking for a transformation that preserves the solution
to the linear system, we look for one that gives the same
distribution.

— Connection with re-parameterisations of models
— In particular with centred and non-centred parameterisations
— (Can help improve mixing between the latent field and the

hyper-parameters)

www.ntnu.no D. Simpson, Another sampling talk
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We both go down together
Preconditioned Sampling

Let Q and M = FF T be symmetric positive definite matrices. If

y ∼ N
(

0,
(

F−1QF−T
)−1

)
, then the solution to F T x = y is a

zero-mean Gaussian random vector with precision matrix Q.

— This replaces the problem of sampling from N(0,Q−1) with

sampling from ∼ N
(

0,
(

F−1QF−T
)−1

)
, which should be

better behaved.
— Generic choice of F : incomplete Cholesky factorisation of Q.
— Key point: F−1QF−T is almost certainly dense, but the product

is cheap!
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Speed Lab
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Breaking Glass

For stationary Gaussian random fields on a regular lattice (on a
torus), the precision matrix (and the covariance matrix) is circulant
and all of the calculations can be done in O(n log n) operations
using FFTs.

— Any operation involving data destroys the circulant structure,
leading to precision matrices of the form Qpost = Qprior + Λ.

— This means that good MCMC methods that take into account
the second order properties of the likelihood cannot be used!
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All the best
Equivalent operator preconditioning

For Log-Gaussian Cox processes, if we precondition with the
circulant prior precision, Λ is the Fisher information matrix, and we
only observe a finite number of point patterns, then

‖x − xm‖ ≤ C

((∫
W exp(x(s)) ds

)

m

)−m

.

— Mesh independent superlinear convergence!
(NB: superlinear ≡ super-geometric...)

— Therefore sampling from circulant + (nice) sparse matrices can
be done in O(n log n) operations!

— (“Nice” means tr(Q)−1Λ) can be uniformly bounded)
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Simon Smith and his amazing dancing
bear

Q is generated using the exponential covariance function on a
torus and the diagonals of Λ are U[0,10].

m (m ×m grid) 16 32 64 128 256 512 1024 2048 4096
Preconditioned 6 6 6 6 6 6 6 6 6

Unpreconditioned 102 286 790 2166 - - - - -
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Less talk, more rock
A classic latent Gaussian process in which the latent field is almost
always modelled as block circulant (or block Toeplitz) is the
log-Gaussian Cox process model for point pattern data.

yi |η ∼ Po(h2eηi )

η|θ ∼ N(0,Q(θ)−1)

θ ∼ π(θ).

— Here Q is a circulant matrix that has possibly been extended
to include fixed effects.

— The preconditioner for in the case of fixed effects is the same!
(block diagonal with the circulant preconditioner and maybe a
scaling for the fixed effects components).

www.ntnu.no D. Simpson, Another sampling talk



42

The problem with iterative methods

Iterative methods (LSQR for least squares sampling, and the
matrix function methods) have one major drawback:

THEY DON’T COMPUTE THE
LOG-DETERMINANT!

DETERMINANTS ARE VERY DIFFICULT TO
COMPUTE!
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Idea 1: Approximate factorisations

Concept: Even if we don’t want to use the approximate
factorisation to compute the sample, it will give a decent
approximation to the determinant.

Problem: We have no control over the error. Furthermore, there is
no way of checking how good your answer is.

www.ntnu.no D. Simpson, Another sampling talk



44

Idea 2: Matrix functions (Bai et al ’96)

If the Cholesky decomposition is unavailable, a better way is to use
the identity

log(det(A)) = tr(log(A)) =
n∑

i=1

eT
i log(A)ei .

Is there a cheap way to approximate tr(log(A))?
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A Stochastic Estimator of the Trace

Theorem (Hutchinson ’90)

Let B ∈ Rn×n be a symmetric matrix with non-zero trace. Let Z be
the discrete random variable which takes the values −1,1 each
with probability 1/2 and let z be a vector of n independent samples
from Z . Then zT Bz is an unbiased estimator of tr(B) and Z is the
unique random variable amongst zero mean random variables for
which zT Bz is a minimum variance, unbiased estimator of tr(B).

Therefore
log(det(A)) = E

(
zT log(A)z

)
.

This can be estimated using a Monte Carlo method.
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Nobody does it better?

The advantage of the MC scheme is that it is unbiased and, should
you so desire, you can account for the extra randomness in an
MCMC scheme to keep it asymptotically exact.

But it is slow!

As with all other things, it turns out that if you chose “better” than
random vectors, you can get a method that is practically much
better.
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Putting it together

Here is the procedure that works best:
1. Pick a value p and produce a graph colouring of Qp.
2. For each colour c , construct a vector zc that is randomly ±1

(w.p. 1/2) at the vertices of that colour and zero everywhere
else

3. Use these vectors in Hutchinson’s estimator of log(det(Q))

Sometimes it’s worth doing a change of basis (wavelet transform).
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A probing vector
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I have no idea why this works!
What I know
— The elements of log(Q) decay exponentially away from the

non-zero entries of Q
— For each colour c,

zT
c log(Q)zc =

∑

i∈c

[log(Q]ii + 2
∑

i,j∈c

(±1) log(Q)ij

and the first term will (maybe) dominate asymptotically.
— The “accidental” off diagonals cancel (?) and there are fewer

of them than in the basic sampler and they are smaller (???)
— High p means more colours, but fewer vertices with each

colour. If p = n then you recover the trace formula.
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Precondtioning?

If M = LLT is a preconditioner, then

log(det(Q)) = 2 log(det(L)) + log(det(L−1QL−T )).

Typically, the first term is easy to compute, while the second is
much better conditioned!
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I could never take the place of your man

Hopefully, I have convinced you that there are a suite of iterative
methods that can be used as efficient replacements for traditional
methods.

That being said, these are still methods for HARD problems—if
existing methods are satisfactory, there is no reason to change!
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Au Suivant

Advertisement

Next September, the Third conference in Latent Gaussian Models
and applications will be held in Reykjavik!

Come!
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Working 9 to 5

We have a PhD position at NTNU working on the methods I have
been talking about.
— Working with Elena Celledoni (numerics), Håvard Rue

(statistics) and me.
— Topic: applying fast iterative methods to approximate inference

for latent Gaussian models
— We need: Numerics person, parallel programming, C/C++,

linear algebra/ Krylov methods.

www.ntnu.no D. Simpson, Another sampling talk


	Introduction
	Magic Dance 
	Another sunny day
	``Further complications''
	Pass it on

