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Inverse Problems
Determine x ∈ R

N from

d̃ = P(x)+ v, d̃ ,v ∈ R
M (1)

Forward map (model) F : x 7→ y .

y = F(x) (2)

F(x) = P(x) ∀x , (3)

Where does the name come from:

x = F−1(d̃), (4)

Does not work as inverse problems are ill posed.
Regularization

Prior knowledge
→ F−1(d̃)
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AT CA what are they? Why are they
important?

What are they: Systems where the underlying stiffness matrix K can

be expressed by the form AT CA. C is diagonal and contains the

parameter (material values, etc.). A is a mapping.

The stiffness matrix depends linear to C
The system itself is nonlinear.

Why are they so important?: The appear in many inverse problems
with an underlying electrical, mechanical, heat transfer, hydraulic, etc.
problem (Gilbert Strang).

More general: everything with an underlying resistor network structure
→ so even in finite element discretiations of pde’s.
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Resistor Network

K (l,m) =

{
− 1

R(l,m)
l 6= m

∑N
k=1

1
R(l,k)

l = m

(5)

AT CA decomposition:

C(l,m) =

{
1

R(l,m)
(l,m) ∈ D

0 otherwise
(6)

A(l,m) =







+1 ’+’ end of resisor l is connected to node m
−1 ’−’ end of resisor l is connected to node m
0 otherwise

(7)
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How to obtain a full rank system?
Reduction of the reference node (nodal analysis)

Yu = i (8)

Most common method in circuit analysis. Easy to implement - just skip
the reference column from A.

Penalty method: Add some large number to the reference node.
Simple, but not exact, Problem with the condition number.

Variational formulation

u = argminuT Ku− iT u (9)

s.t.uT χ = 0 (10)

→ Constraint optimization problem

Non-standard penalty method*

*We have not found a better name yet
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Non-standard penalty method*

Approach

u = argminuT Ku− iT u (11)

s.t.uT c = 0 (12)

with iT c 6= 0

Unconstraint optimization problem

u = argmin(uT Ku− iT u)+λ uT cT cu (13)

Exact method for any value of λ (conditioning), the equation system
preserves all nice properties (symmetry, poss. def.).

i has to contain the input currents and the output current at the
reference node!

*We have not found a better name yet
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Solution with Green’s Functions

For all further derivations we assume that K = AT CA has full rank.

Our problem
K u = b (14)

is often a self adjoint (K is symmetric) problem

Solve for Green’s functions g

Solve
Kg i = ei , (15)

where ei is the i th unit vector

Solution
ui = gT b (16)
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Jacobian operation for Ku = b
Lets start with J : C 7→ u

(K + dK)(u+ du) = b, (17)

can be rearranged to
Kdu =−dK(u+ du). (18)

du

dcj
=−K−1 dK

dcj
u. (19)

Chain rule

du = Jdc = −∑
j

K−1 dK

dcj
udcj =−K−1

[

∑
j

dK̂

duj
duj

]

u (20)

= −K−1K dCu. (21)
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Jacobian operation 2

The last equation still requires K̂
−1

−→ replace by G

du =−GT K dCG. (22)

Similar JT : r 7→ C

JT r =−diag(
(
GT AT

)T (
RGT A

)
), (23)

with R = diag(r)
We have

a linear approximation and can do

gradient based optimization

for free by maintaining Green’s functions.
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Exact low rank updates for Ku = b
How does u change when a low number of elements 0f C are updated?
Purpose: line search, conditional sampling
Woodbury Formula:

(
K +UW T

)−1
= K−1 −K−1U

(
I +W T K−1U

)−1
W T K−1

︸ ︷︷ ︸

update term

, (24)

How can we use this:

K new = K old + γAT C∆AT = K̂ old + γUW T (25)

With G to replace K−1
old

∆u =−γGT U
(
I + γW T

:,CGC,CUC,:

)−1
W T G, (26)

Drawback: GC,C (Green’s functions for the effected nodes C) is needed
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Woodbury for AT SA systems 1

Can we do better for our system structure?
Assume

K old = AT CAT , (27)

with S being a m×m diagonal matrix and A being a m× n matrix.

K new = AT CA+AT C∆A, (28)

With the decomposition: U = AT and W T = C∆A, the Woodbury is given as

K−1
new = K−1

old −K−1
oldAT

(
I +C∆AK−1

oldAT
)−1

C∆AK−1
old, (29)

Is there a way to replace K−1
old ?
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Woodbury for AT CA systems 2
Assume

K−1
old = J−1

1 C−1J−T
2 , (30)

Thus
AT CAJ−1

1 C−1J−T
2 = I. (31)

CC−1 = I ... X

AT J−T
2 = I ... J−T

2 ? Pseudo inverse

J−1
2 =

(
AAT

)

︸ ︷︷ ︸

Laplacian

−1
A (32)

AJ−1
1 = I ... not possible

AT CA 8.1.2013 SUQ’13
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Woodbury for AT CA systems 3

J−1
1 is a problem. However, lets insert it into the inverse of the Woodbury

matrix

(
I +C∆AK−1

oldAT
)−1

=
(
I +C∆AJ−1

1 C−1J−T
2 AT

)−1
, (33)

=
(
I +C∆C−1J−T

2 AT
)−1

, (34)

Instead of GC,C now only the diagonal matrix S has to be inverted.
J−T

2 can be computed in advance.

Again, this form can be reduced and Green’s functions can be used
on the left and right hand side!

AT CA 8.1.2013 SUQ’13

14 / 34



tugraz

Institute of Electrical Measurement and Measurement Signal
Processing

www.emt.tugraz.at

Electrical Capacitance Tomography
Inverse problem using
capacitance measurements.

Ill-posed → regularization or
prior knowledge required.

Suitable for process
tomography due to good
contrast of the permittivity (i.e.
oil/water).

Noninvasive.

Cheap instrumentation but low
spatial resolution due to soft
field.

Non ionizing → safe.
Neumayer et. al.: Current Reconstruction Algorithms in Electrical Capacitance Tomography, Springer 2010
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Electrical Capacitance tomography

PVC tube

Inclusion

Shield

Ω: whole domain

ΩROI : interior of the pipe.

∂ΩROI : interior of the pipe.

PDE:

∇ · (ε0εr ∇V ) = 0, (35)

BC:

V∂Ω = 0, (36)

VΓi = VΓi , (37)

VΓj = 0 ∀j 6= i, (38)

Gauss law:

Ci,j =−
1

VΓi

∮

Γj

ε0εr ∇V ·~ndΓ.

(39)
Gives a Nelec ×Nelec matrix.

AT CA 8.1.2013 SUQ’13

16 / 34



tugraz

Institute of Electrical Measurement and Measurement Signal
Processing

www.emt.tugraz.at

Standard computations: F : ε 7→ C

Finite element system:

K =
Ne

∑
i=1

εi K e,i , (40)

With BC:
K̂v = r . (41)

Charge method:
Qelec = ∑

nelec

(K v)nelec , (42)

Derivatives:

dCi,j = γT
j

[[
∂ r

∂εk

]

−

[
∂ K̂

∂εk

]

v i

]

dεk , (43)
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Fast material update

Eigenvector decomposition:

K e = V eDeV−1
e , (44)

If K e = K T
e :

K e = AT
e SeAe, (45)

For FE system

K = K ini +
p

∑
l=1

AT
l E Al , (46)

with K ini such that K has full rank (includes the BC).
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Charge map: Qc : V∂ΩROI
7→∆Q

How does the potential on the tube influences the charge on the electrodes?
Solve

∇ · (ε0εr ∇V ) = 0 (47)

in Ω\ΩROI with BC:

V∂Ω = 0, (48)

V∂ΩROI
= δ (x − xi) ∀xi ∈ ∂ΩROI (49)

VΓj = 0 ∀j, (50)

Discrete version Qc : v∂ΩROI
7→∆Q

Q = Qa +QcV ∂ΩROI
, (51)

V ∂ΩROI
contains the nodal potentials on ∂ΩROI

AT CA 8.1.2013 SUQ’13
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Solution with Green’s functions

K̂G = E∂ΩROI
, (52)

V ∂ΩROI
= GT R, (53)

R contains the right hand side terms for each electrode.

Q = Qa +Qc GT R
︸︷︷︸

V ∂ΩROI

, (54)

... is bad, because E∂ΩROI
in equation (52) means the solution for all nodes

on ∂ΩROI .
Trick:

K̂GQT
c = Ek QT

c , (55)

K̂GQ = Ek QT
c = RQ , (56)

Hence:
Q = Qa +GT

QR. (57)

AT CA 8.1.2013 SUQ’13
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Jacobian operations for ECT

Linearization: J : ε 7→ Q

dQ = −GT
QK̂ dεGQ (58)

dQ = −GT
Q

[
p

∑
l

AT
l dE Al

]

GQ. (59)

Gradient: JT : Q 7→ ε

JT q =−diag(

(
p

∑
l=1

(
GT

QAT
l

)T (
QGT

QAl
)

)

), (60)
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Low Rank updates for ECT

With computation of the additional Green’s Funcions

∆Q =−γGT
QL(I + γU:,CGC,CLC,:)

−1 UGQ , (61)

AT CA form

∆Q =−GT
Q,C2,:

AT
1,:,C

(

I +SCS−1
0,CW T

3,:,CW 1,:,C

)−1
SW T

1,:,CGQ,C2,:,

(62)
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A speed comparison

Operation/Method tmesh1 tmesh2
ms ms

Forward problem standard 96 640
Forward problem new 4.8 26
Standard material update 35.5 230
Fast material update 0.039 2
Matrix inversion 3.3 19
Jacobian by AVM 360 > 2000
Jacobian op. J : ε 7→ Q 0.48 3.9
Jacobian transp. op. JT : Q 7→ ε 3.3 15.5
Exact low rank update (1 elem.) 3.5 16.3
WSW T Woodbury (1 elem.) 0.66 4.2
Exact low rank update (20 elem.) 11.6 55.4
WSW T Woodbury (20 elem.) 2.7 14.1
Exact update 1 elem × 20 5.6 18
WSW T Woodbury 1 elem × 20 1.1 3
Domain d. by Schur c. 23.8 66
Schur c. with Cho. 2.9 8
Woodb. for Schur c. with Chol. 0.895 17.1
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Fast Deterministic Method

x∗ = argmin
x

∥
∥F(x)− d̃

∥
∥

2

2
+αxT LT Lx, (63)

Gauss Newton method:

xk+1 = xk − s
(
JT J+αLT L

)−1 (
JT rk +LT Lxk

)
, (64)

BFGS scheme:

1 Evaluate the Newton direction pk =−H−1
k gk

2 Find s to set xk+1 = xk + spk and set sk = spk

3 Compute yk = g(xk+1)−g(xk).

4 Evaluate H−1
k+1 = H−1

k +
sT

k yk+yT
k H−1

k yk

(sT
k yk )

2 sk sT
k −

H−1
k yk sT

k +sk yT
k H−1

k
(sT

k yk )
2 .
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Bayesian Inversion

Deterministic results:

About 50 iterations per second are possible on a standard PC.
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Bayesian Inversion

Posterior to sample from

π(x|d̃) ∝ exp

(

−
1

2
eT

Σ
−1
v e

)

exp

(

−
1

2
αxT LT Lx

)

I(x). (65)

L: smoothing prior

Signal disturbed by additive Gaus-
sian noise.
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How to implement a Gibbs sampler

General Steps

1 Draw a conditional sample.
2 If the new sample is accepted, compute the new

forward map to obtain the new Green’s functions GQ

for the cheap evaluation of the next conditional
sample.

Versions:

Bimodal (two valued) material distributions

General material values

AT CA 8.1.2013 SUQ’13
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Bimodal Material Distributions

Computation steps:

1 Flip one element of x to generate the proposal x ′.

2 Compute the likelihood ratio α = min
[

1, π(x ′|d̃)
π(x |d̃)

]

.

3 Accept x ′ with probability α .
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Bimodal Material Distributions

Mean estimate and standard deviation

About 3 frames per second are possible using the Jacobian operations
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Bimodal Material Distributions

Behavior of the chain
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General Gibbs Sampler
Conditional sampling by ARS
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Gibbs Sampler

We use a reduced version of ARS
- not the correct statistic (can be
worked out), but fast. A sample in
the time of an optimization result!
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Gibbs Sampler

Behavior of the chain
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And this is just the most trivial version of a Gibbs sampler!
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Summary

Inverse problems

General introduction to AT CA systems

Computational aspects

Fast low rank updates

Example on ECT

→ with some tricks we can generate samples in the time of an optimization
run.

Neumayer and Fox, JUQ 2013
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