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ABSTRACT

We present a theoretical study of wave propagation in two ad-
joining floating plates of different flexural rigidity, such as fast-ice
sheets that abut across a pressure ridge, etc. Analytical for-
mulas for the transmission and reflection coefficients for various
conditions at the interface are obtained using the Wiener-Hopf
technique for the case of semi-infinite elastic plates joined by a
straight line. Solutions are scaled using the well-known charac-
teristic length and time for an infinite floating plate, then catego-
rized according to non-dimensional wave frequency that is inde-
pendent of physical parameters. Thus the results give a relation-
ship between scale-model experiments and real-sized structures.

KEY WORDS: Elastic plate; flexural waves; ice sheets; scaling;
Wiener-Hopf.

INTRODUCTION

The shore-fast sea ice around Antarctica seasonally forms vast
sheets that appear relatively featureless, and homogeneous, to the
casual observer. However, closer inspection reveals that the ice
sheets have substantial inhomogeneity at many length scales.

The ice sheet is typically a composite of floes that have frozen
together after initial freezing and apparent break-up during win-
ter. Each floe is typically tens of metres or kilometres across
and often has very uniform thickness giving an abrupt change
of thickness between some adjacent floes. The abutting of floes
can occur across regions of frozen sea-water or ice rubble, or with
pressure ridges when the floes are forced together, or partially re-
freezing cracks when the floes are moving apart. Stresses within
the ice sheet, due to wind or current forcing, or due to thermal ef-
fects, cause further inhomogeneity in the form of pressure ridges,
cracking, or finger jointing. These structures are most visible
around islands or headlands where stress concentration occurs.
However, cracking in the ice sheet, perhaps only partially through
the thickness of the sheet, is prevalent and can occur with tens-
of-metres spacing by the summer when wave-induced break-up
typically occurs. Brine drainage pores give further structure to

the ice sheet over metre scales.
The flexural gravity waves that propagate in the ice sheet,

corresponding to ocean waves, have wavelengths of tens to hun-
dreds of metres for typical thicknesses of first-year sea ice. Con-
sequently the wave propagation, in the ice sheet at least, occurs
in a medium with significant structure over the scale of wave-
lengths. Our interest is in modelling flexural wave propagation
in an inhomogeneous ice sheet with particular interest in the
scattering of wave energy, and the effective mechanical proper-
ties of a homogeneous sheet that would allow calculation of the
unscattered wave component. In this paper we take a first step
towards a comprehensive model by solving for the change in wave
field across a single straight-line interface between large floes, al-
lowing for changes in thickness with an open (cracked) or joined
(refrozen) interface.

Mathematical modeling of ice sheets of large scale in marginal
ice zone is mainly concerned with propagation of wave energy
from the ocean which affects the breaking-up process of the ice
sheets. For many years the formation and break-up of sea ice
have interested not only geophysicists but also mathematicians
(Balmforth and Craster, 1999; Evans and Davies, 1968; Fox
and Squire, 1994; Gol’dshtein and Marchenko, 1989; Marchenko,
1997; Squire, Robinson, Langhorne and Haskell, 1988), because
despite a great deal of idealization of the physical conditions,
there have been few analytical solutions to the boundary value
problems. We here present examples of analytical solutions of
one category of boundary value problems related to the dynam-
ics of sea ice sheets and from that solution we consider scaling
effects on the interaction between two ice sheets.

In this paper we study the wave propagation on the surface of
ocean which is covered with two semi-infinite ice sheets or very
large floating structures (VLFS) which give elastic responses for
deflection of small amplitude and long wave length. The two
plates are assumed to have different flexural rigidity and joined
at an infinite straight line which we call transition or interface.
Our main focus is on the reflection and transmission coefficients
of plane waves when a plane wave of a given frequency is obliquely
incident from infinity.

We use the Wiener-Hopf technique (Noble, 1958) to derive an-

Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference
Kitakyushu, Japan, May 26–31, 2002
Copyright © 2002 by The International Society of Offshore and Polar Engineers
ISBN 1-880653-58-3 (Set); ISSN 1098-6189 (Set)

808



alytical solutions of the problem. Evans and Davies (1968) used
the Wiener-Hopf technique (Noble, 1958) to derive analytical
formulas of the reflection and transmission coefficients of waves
propagating from free ocean surface to a semi-infinite ice sheet.
However, the formulas were explained to be too complicated for
the numerical computation at the time. The first computation
of formal solutions was shown by Fox and Squire (1990) using
a computational mode matching technique. In Balmforth and
Craster (1999) numerical computation of analytical solutions is
carried out using quadrature computation of integral transforms.
Chung and Fox (2002) showed that the solutions obtained by
Evans and Davies (1968) could in fact be computed without nu-
merical computation of integral transforms by finding roots of
the dispersion equations. The formulas given in this paper can
be directly implemented to computer codes without any numeri-
cal computational considerations such as numerical integrations.

The method of solution used in this article is different from
that by Meylan (2001) and Wang, Ertekin and Riggs (1997) who
used a Green’s function of free surface to compute flexural mo-
tion of a VLFS. They were able to compute the flexural response
of a plate or plates from numerical evaluation of integral repre-
sentation of the solutions. Simple integral representation of the
velocity potential of fluid have been used by Crighton (1979),
Gol’dshtein and Marchenko (1989) and Marchenko (1997). In
recent years, Grant and Lawrie (2000) and Norris and Wick-
ham (1995) gave studies of acoustic wave propagation in a fluid-
loaded elastic plate with varying rigidity using the Wiener-Hopf
technique. Lawrie and Abrahams (1999) used an orthogonality
relation of the mode-expansion of solutions to derive numerical
solution, which is closely related to the method by Fox and Squire
(1994).

In this article, it is assumed that the deflection of ocean sur-
face is small so that water can be modelled as incompressible and
irrotational and the classic thin plate theory can be applied to
the ice sheets, that is, ice sheet is modelled as a thin elastic plate
(Kerr and Palmer, 1972). We deal with a time harmonic system
by assuming existence of an incident wave from the infinity that
is harmonic in time. At the joint of two ice sheets, the edges may
be either free to move or frozen continuously. We by following
and extending the method by Evans and Davies (1968) show that
we can deal with changes of edge conditions without going back
to the original differential equations. Furthermore, we apply the
scaling scheme shown by Fox (2000) to categorize the solutions
by non-dimensional wave frequency, which is insensitive to phys-
ical parameters, such as thickness of the plate. Hence, the non-
dimensional values obtained here may help to design and evaluate
scale-model experiments on ice sheets or floating structures.

MATHEMATICAL FORMULATION

We consider dynamics of two semi-infinite homogeneous thin
plates joined at x = 0 as shown in Fig. 1. The flexural rigidity
of the ice sheets in x < 0 and x > 0 are denoted by D1 and
D2 respectively. The flexural rigidity is calculated using Di =
Eh3

i /12
(
1 − ν2

)
, where hi, i = 1, 2 are the thickness of the plates

in x < 0 and x > 0 respectively. ν is Poisson’s ratio and E is
effective Young’s modulus that is constant in the plate. A plane
wave of radial frequency ω is coming from x = −∞ at an angle
θ. We assume that amplitude and frequency of the incident wave
are small and low enough so that the water can be assumed to
be incompressible and irrotational, and the ice sheets can be
modelled as an elastic thin plate. Then, vertical displacement of

x
z

x
y z

z=-H

ice

plane wave

θ

Fig.1 Schematics of the interaction of two semi-infinite plates
with a straight line interface.

the plates, w (x, y, t), and velocity potential of water, φ (x, y, z, t)
satisfy following partial differential equations.(Evans and Davies,
1968; Fox and Squire, 1994),

p = D1∇4
x,yw + m̄1 (wtt + g) , for x < 0,

p = D2∇4
x,yw + m̄2 (wtt + g) , for x > 0,

wt = φz,
ρφt + ρgw + p = 0,


 at z = 0

φz = 0 at z = −H,
∇2

x,y,zφ = 0 in the water.

(1)

g, ρ and p are acceleration due to the gravity, mass density of
sea water and pressure acted on the surface of the water respec-
tively. The mass density of each plate is denoted by mi = ρihi (ρi

is the mass density of the ice), i = 1, 2 respectively. We assume
that there exists an incoming plane wave obliquely incident from
infinite that is harmonic in time, that is, at x = −∞ we have

i I exp i (λx + ωt), where I is amplitude of the wave (i is there
to simplify the calculations later) and the wave number λ is de-
termined by the incident angle of the plane wave to the x-axis.
Since the system of the equations given in Eq. 1 are linear with
respect to φ (x, y, z, t), we may express the solution as

φ (x, y, z, t) = Re
[
φ (x, z, ω) ei(ky+ωt)

]
where φ (x, z, ω) (or φ (x, z) for simplicity) is the complex func-
tion of amplitude of the solution and k denotes the wave number
in the y-axis, i.e., k = λ′ sin θ, θ being the incident angle as
depicted in Fig. 1.

We scale (or non-dimensionalize) the system of equations given
above using characteristic length and characteristic time denoted
by li and ti, i = 1, 2 respectively. The subscript i = 1 corresponds
to the plate for x < 0 and i = 2 for x > 0 and characteristic length
and characteristic time are defined as

li =

(
Di

ρg

)1/4

, ti =

√
li
g

.

We also define the ratio of each characteristic value, lr = l1/l2
and tr = t1/t2, then the ratio of the flexural rigidity is

D1

D2
= l4r =

(
h1

h2

)3

.

We here assume that lr < 1, i.e., the plate on the right is more
rigid than the other. If we denote the non-dimensional variables
with the bar, then the non-dimensionalized variables of space and
time using l2 are

(x̄, ȳ, z̄) =
1

l2
(x, y, z) , t̄ =

t

t2
.
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We omit the bar to avoid the clutter from now. Then, the system
of equations given in Eq. 1 scaled by l2 for x < 0 and x > 0
become {

l4r
(
∂2

x − k2
)2 − m1ω

2
}

φz (x, 0) = ω2φ (x, 0){(
∂2

x − k2
)2 − m2ω

2
}

φz (x, 0) = ω2φ (x, 0)
(2)

respectively. The mass density terms are now mi = m̄i/ρl2,
i = 1, 2. Note that φ (x, z) satisfy Helmholtz’s equation for −H <
z < 0, (

∂2

∂x2
+

∂2

∂z2
− k2

)
φ (x, z) = 0.

SOLUTION USING THE WIENER-HOPF TECH-
NIQUE

We derive scaled version of the reflection and transmission
coefficients from the system of equations given by Eq. 2 using a
slightly modified version of the standard Wiener-Hopf technique
shown by Chung and Fox (2002). We apply the Fourier transform
to the differential equations of φ in the respective domains x < 0
and x > 0, which are defined as

Φ+ (α, z) =
∫ ∞
0

φ (α, z) ei αxdx,

Φ− (α, z) =
∫ 0

−∞ φ (α, z) ei αxdx.
(3)

We also denote the same transforms of φz (x, 0) in x > 0 and
x < 0 by Φ′

± (x) respectively From the transforms of Laplace’s
equation and the condition at z = −H, we have{

∂2

∂z2
−

(
α2 + k2)} Φ± (α, z) = ±{i αφ (0, z) − φx (0, z)} .

Note that the functions Φ± (α, z) are regular in Im α > 0 and
Im α < 0 respectively Hence, the solutions of the ordinary dif-
ferential equations with the fixed bottom surface condition are
written as

Φ± (α, z) = Φ± (α, 0)
cosh γ (z + H)

cosh γH
± g (α, z) (4)

where γ =
√

α2 + k2 and g (α, z) is a function determined by
{φx (0, z) − i αφ (0, z)},

g (α, z) = hz(α,−H)
γ

(tanh γH cosh γ (z + H)

− sinh γ (z + H)) + h (α, z)
(
1 − cosh γ(z+H)

cosh γH

)
,

h (α, z) =
∫ z sinh γ(z−ζ)

γ
{φx (0, ζ) − i αφ (0, ζ)} dζ.

Note that Re γ > 0 when Re α > 0 and Re γ < 0 when Re α < 0.
We have, by differentiating the both sides of Eq. 4 with respect
to z at z = 0

Φ′
± (α) = Φ± (α) γ tanh γH ± gz (α, 0) (5)

where Φ′
± (α) is the z-derivative of Φ± (α, z) at z = 0 which is

denote by Φ± (α) respectively.
Applying the same integral transforms given by Eq. 3 to the

plate equations in x < 0 and x > 0 we obtain{
l4r γ

4 − m1ω
2 + 1

}
Φ′

− (α) − ω2Φ− (α) = −P1 (α) , (6){
γ4 − m2ω

2 + 1
}

Φ′
+ (α) − ω2Φ+ (α) = P2 (α) , (7)

where

Pj (α) = Dj

[
cj
3 − icj

2α −
(
α + 2k2

) (
cj
1 − icj

0α
)]

, j = 1, 2,

c1
i = ∂iφz(0−,0)

∂xi , c2
i = ∂iφz(0+,0)

∂xi , i = 0, 1, 2, 3.

From Eqs. 5˜7 we have

f1 (γ) Φ′
− (α) + C1 (α) = 0 (8)

f2 (γ) Φ′
+ (α) + C2 (α) = 0 (9)

where

f1 (γ) = l4r γ
4 − m1ω

2 + 1 − ω2

γ tanh γH
,

f2 (γ) = γ4 − m2ω
2 + 1 − ω2

γ tanh γH
,

C1 (α) = −ρω2gz (α, 0)

γ tanh γH
+ P1 (α) ,

C2 (α) =
ρω2gz (α, 0)

γ tanh γH
− P2 (α) .

Functions f1 and f2 are called dispersion functions and zeros
of these functions are the primary tools of our method of deriving
the solutions. How to compute the zeros of the dispersion func-
tions are given by Chung and Fox (2002) and Fox and Chung
(1998). The zeros of f1 and f2 are in pairs of positive and neg-
ative and complex conjugates. There are two real zeros due to
tanh function and infinite number of pure imaginary zeros due
to tan function. In addition to real and pure imaginary zeros,
from Rouché theorem (Carrier, Krook and Pearson, 1966, page
60) there are four complex zeros.

Functions Φ−
z (α, 0), and Φ+

z (α, 0) are defined in Im α < 0
and Im α > 0 respectively, however they can be extended in the
whole plane defined by Eqs. 8 and 9 using the analytic contin-
uation. Eqs. 8 and 9 show that the singularities of Φ−

z and Φ+
z

are determined by the positions of the zeros of f1 and f2, since
gz (α, 0) is bounded and zeros of γ tanh γH are not the singular-
ities of Φ±

z . We denote sets of singularities corresponding zeros
of f1 and f2 by S1 and S2 respectively

Sj =
{

α ∈ C | fj (γ (α)) = 0, α =
√

γ2 − k2,

either Im α > 0 or α > 0} .

We indicate the roots of the dispersion function corresponding to
the elements of Sj by the prime, for example if λ ∈ S1 then λ′

on the γ-plane satisfies f1 (λ′) = 0. We find that Eqns. 6 and
7 together with the regions in which Φ± are regular tell us that
Φ− (α) is singular at a real negative wave number denoted by −λ
(λ ∈ S1) and S1, and Φ+ (α) is singular at α = −q where q ∈ S2.

At the moment the two functions Φ′
− (α) and Φ′

+ (α) do not
share the domains of regularity in the upper and the lower half
planes separated by the real axis. We are able to manipulate
the region of the regularity by adding or subtracting one (or
more) singular part of the functions. Here, we subtract a singular
part corresponding to −λ from Φ′

− (α) and from Φ′
+ (α), that is,

denoting the modified functions Ψ′
± (α), we have

f1 (γ) Ψ′
− (α) + C1 (α) = 0, (10)

f2 (γ) Ψ′
+ (α) − If2 (λ)

α + λ
+ C2 (α) = 0. (11)

Then, considering infinitesimal dissipation and the time factor
exp (+ i ωt), the functions Ψ′

− (α) and Ψ′
+ (α) are regular on the

real axis, or more precisely, the real axis indented over the nega-
tive real wave numbers −λ, −µ and indented under the positive
real wavenumbers λ, µ. Let D+ and D− denote the upper and
lower half of the α-plane that are sharing the indented region
on the real axis described above and shown in Fig. 2. Then, we
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may now add the both sides of Eqs. 10 and 11 to derive a typical
Wiener-Hopf equation which is defined on D+ ∩ D−,

f1 (γ)Ψ′
− (α) + f2 (γ)Ψ′

+ (α) − If2 (λ)

α + λ
+ C (α) = 0 (12)

where C = C1 + C2.
We now follow the standard method of solution of the Wiener-

Hopf equation, which requires the factorization of the two disper-
sion functions. We have from Weierstrass’ factor theorem and the
symmetry of the positions of the roots in S1 and S2,

f2

f1
= K (α) K (−α) ,

K (α) =

( ∏
q=S1

q′

q + α

) ( ∏
q=S2

q + α

q′

)
. (13)

Note that K (α) is regular in the upper half plane and on the real
axis except at −λ and −µ. Then, Eq. 12 becomes

f2

[
fΨ′

+ − f2 (λ) I

α + λ
+ C

]
= −f1

[
fΨ′

− +
f2 (λ) I

α + λ
− C

]
(14)

where f (γ) = f2 (γ) − f1 (γ) . Note that the splitting is actually
performed on f1γ sinh γH and f2γ sinh γH which are none zero
at γ = 0.

Then Eq. 14 can be rewritten as

K (α) [fΨ′
+ + C] −

(
K (α) − 1

K(λ)

)
f2(λ′)I

α+λ

= − 1
K(−α)

[fΨ′
− − C] −

(
1

K(−α)
− 1

K(λ)

)
f2(λ′)I

α+λ
.

(15)

We note that the infinite products in Eq. 13 converge in the order
of q−5 as |q| becomes large, thus numerical computation of K (α)
does not pose any difficulties.

The left hand side of Eq. 15 is regular in D+ and the right
hand side is regular in D−. Notice that a function is added to
the both sides of the equation to make the right hand side of the
equation regular in D−. The left hand side of Eq. 15 is o

(
α4

)
as

|α| → ∞ in D+, since Ψ+
z → 0 and K (α) = O (1) as |α| → ∞

in D+. And the right hand side of Eq. 15 has the same analytic
properties in D−. The Liouville’s theorem (Carrier, Krook and
Pearson, 1966, section 2.4) tells us that there exists a function,
denoted by J (α), uniquely defined by Eq. 15, and function J (α)
is a polynomial of degree three in the whole plane

J (α) = d0 + d1α + d2α
2 + d3α

3.

Equating Eq. 15 for Ψ′ = Ψ′
− + Ψ′

+ gives

Ψ′ (α) =
−F (α)

K (α) f1 (γ)
or − K (−α) F (α)

f2 (γ)
(16)

where

F (α) = J (α) − If2 (γ)

(α + λ) K (λ)
.

Notice that procedure from Eq. 14 to Eq. 15 eliminates the need
of calculating C. We are now able to calculate using the following
inverse Fourier transform

φz (x, 0) =
1

2π

∫ ∞

−∞
Φ′ (α) e− i αx dx

where the integration path on the real axis is indented around
the real singularities and may be closed in either the upper or
lower half plane depending whether x < 0 or x > 0.

λ Re

Im

−λ
x

x

x

x
−µ

x x

S1

-S2

D+

D-

Fig.2 Schematics of the contour integration paths of the ivn-
erse Fourier transform and the positions (not to scale)
of the corresponding roots in the α-plane.

For x < 0 we close the integral contour in D+ as depicted in
Fig. 2, and put the incident wave back, then we have

φz (x, 0) = i Iei λx −
∑
q∈S1

i F (q) q′R1 (q′)
qK (q)

e− i qx, (17)

where R1 (q′) is a residue of [f1 (γ)]−1 at γ = q′

R1

(
q′

)
=

(
df1 (γ)

dγ

∣∣∣∣
γ=q′

)−1

=
ω2q′

(5l4r q′4 + b1) ω2 + H
(
(l4r q′5 + b1q)

2 − ω4
) . (18)

We used b1 = −m1ω
2 + 1 and f1 (q′) = 0 to simplify the for-

mula. Displacement w (x) can be obtained by multiplying − i /ω
to Eq. 17. The velocity potential φ (x, z) can be obtained using
Eqs. 4 and 5,

φ (x, z) =
i I cosh λ′ (z + H)

λ′ sinh λ′H
ei λx

−
∑
q∈S1

i F (q) R1 (q′) cosh q′ (z + H)

qK (q) sinh q′H
e− i qx

where λ′ =
√

λ2 + k2. And for x > 0, we derive φz (x, 0) then
φ (x, z) by closing the integral contour in D− as depicted in Fig. 2,

φz (x, 0) = −
∑
q∈S2

i K (q) F (−q) q′R2 (q′)
q

ei qx, (19)

φ (x, z) = −
∑
q∈S2

i K (q) F (−q) R2 (q′) cosh q′ (z + H)

q sinh q′H
ei qx,

where R2 is a residue of [f2 (γ)]−1 and its formula can be obtained
by replacing the subscript 1 with 2 and lr with 1 in Eq. 18. Notice
that from Rj ∼ O

(
q−9

)
coefficients of φz decay as O

(
q−6

)
as |q|

becomes large, thus the displacement is bounded up to the fourth
x-derivatives. The coefficients of φ, have extra 1/q′ tanh q′H term
which is O

(
q4

)
, hence the coefficients decay as O

(
q−2

)
as |q|

becomes large. Therefore, φ is bounded everywhere including at
x = 0.

TRANSITION CONDITIONS

The four coefficients of J (α) are determined by physical con-
ditions at x = 0, which we call transition conditions. We consider
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two kinds of conditions at the interface, open crack and continu-
ously joined transition.

Let boundary differential operators acting on the displacement
at the interface, x = 0+ and x = 0−, that corresponds to the
effective shear force intensity and the bending moment by B1 and
B2 respectively, Then, the transition conditions are expressed by
displacement w|x=0±, slope of the plate wx|x=0±, scaled effective
shear force (Shames and Dym, 1991, section 6.3)

B1w|x=0+ = wxxx − k2 (2 − ν) wx (20)

B1w|x=0− = l4r
{
wxxx − k2 (2 − ν) wx

}
(21)

and scaled bending moment

B2w|x=0+ = wxx − k2νw (22)

B2w|x=0− = l4r
(
wxx − k2νw

)
(23)

Since all possible transitions conditions are linear equations with
respect to w, the transition conditions can be expressed by alge-
braic equations of column vector d = (d0, d1, d2, d3) made of the
coefficients of polynomial J .

w|x=0± = A± · d + B±, wx|x=0± = C± · d + D±,

B1wx|x=0± = E± · d + F±, B2wx|x=0± = G± · d + H±

where A±, C±, E± and G± are row vectors, and B±, D±, F±

and H± are scalar values that are calculated from Eqs. 17, 19,
20 and 22, and · is the vector inner product.

Open crack condition are B1wx|x=0± = 0 and B2wx|x=0± =
0. Then the coefficients of J are computed from


E−

E+

G−

G+


 d = −




F−

F+

H−

H+


 . (24)

When the two plates have the same thickness, i.e., lr = 1, and
transition is free to move, then we have one dispersion function
f1 (γ) = f2 (γ). Note that there is no need for factorization since,
K ≡ 1. The sets of wave numbers S1 and S2 are the same. The
incident wave does not automatically appear in this case since
the wave number for incident wave and traveling wave are the
same. Hence, Eq. 19 must be changed to

φz (x, 0) = i Iei λx −
∑
q∈S1

i J (−q) q′R2 (q′)
q

ei qx.

Squire and Dixon (2000) used a Green’s function satisfying
the plate equation at z = 0 to derive analytical solutions for a
case of normal incident wave.

Two continuously joined plates are expressed by following con-
tinuity conditions

B1wx|x=0− = B1wx|x=0+ , B2wx|x=0− = B2wx|x=0+ ,

w|x=0− = w|x=0+ , wx|x=0− = wx|x=0+ .

Then, d can be obtained from


A− −A+

C− − C+

E− − E+

G− − G+


 d = −




B− − B+

D− −D+

F− −F+

H− −H+


 . (25)

We showed that the conditions at x = 0± can be expressed by
a matrix made of row vectors A±, C±, E±, G± and a vector made
of B±, D±, F±, H±. Hence, we may say that problems described
by Eq. 1 are now reduced to algebraic Eqs. 24 and 25 and sets
of wavenumbers calculated from the dispersion functions, S1 and
S2.

ωIncident angle

R

0.1

1

10

0◦
20◦

40◦
60◦

80◦
0

0.2

0.4

0.6

0.8

1

Fig. 3 The reflection coefficient as a function of the in-
cident angle (in degrees) and the non-dimensional
radial frequency ω (log-scale) when lr = 1 and
H = 2π. The mass density term is set to be zero.

REFLECTION AND TRANSMISSION COEFFI-
CIENTS

At |x| → ∞ the only the travelling waves of the displacement
are left. Hence, we have a relation between the transmission and
reflection coefficients

sT 2 + R2 = 1 (26)

where T and R are ratio between amplitude of displacement of
transmitted and reflected wave and amplitude of incident wave.
Setting I = 1 gives formulas for the transmission and reflection
coefficients,

T =

∣∣∣∣µ′F (−µ) R2 (µ′) K (µ)

µ

∣∣∣∣ ,

R =

∣∣∣∣λ′F (λ) R1 (λ′)
λK (λ)

∣∣∣∣ .

The multiplying factor s is

s =
Re (µ) λ′2 sinh 2λ′H
Re (λ) µ′2 sinh 2µ′H

×
2µ′H

(
µ′4 + b2

)
+

(
5µ′4 + b2

)
sinh 2µ′H

2λ′H
(
l4r λ

′4 + b1

)
+

(
5l4r λ

′4 + b1

)
sinh 2λ′H

The power-flow relation (26) holds for all transition conditions
which do not introduce any potential energy to the system. We
note that when lr = 0 and m1 = 0 the formula for multiplying
factor s is reduced to the one shown by Fox and Squire (1994)
for ocean wave-ice interaction problem. The numerical compu-
tations given here are obtained using up to 80 zeros of f1 and f2

depending on the water depth, since the smaller H is, the faster
the functions K (α) and R1, R2 converge.

Fig. 3 shows the reflection coefficient for lr = 1 and m1 =
m2 = 0. We will justify setting the mass density to be zero in
the following section. We notice that for lr = 1, the reflection
coefficient reaches zero at a finite frequency around ω = 1, which
is confirmed by Squire and Dixon (2000) using a Green’s function
for an infinite plate floating on the surface of deep water. The
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Fig. 4 Amplitude of the displacement at the transition
x = 0± when lr = 1. |w (0−)| is solid line, and
|w (0+)| is dashed line.
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Fig. 5 Three dimensional graph of the reflection coeffi-
cient as a function of the non-dimensional radial
frequency ω (log-scale) and the incident angle (in
degree) when lr = 1/2, H = 2π and the transition
is free to move.

zero reflection occurs at around ω = 1 for a range of incident angle
up to π/3 as shown in Fig. 3. The amplitude of the displacement,
|w (0±)|, at the transition is given in Fig. 4 when the amplitude
of the incident wave is one. Fig. 4 shows that at ω ∼ 1, the
amplitude of the displacement of the ice sheets at x = 0± are
equal. The amplitude of displacement at x = 0− is larger than
that at x = 0+ when ω < 0 and |w (0+)| is smaller than |w (0−)|
when ω > 1.

Figs. 5 and 6 show the reflection coefficients when lr = 1/2 for
two different physical situations at the transition, open crack and
continuous joint respectively. We find that there is little differ-
ence between the two graphs in the region {ω < 1.3 or θ > π/5}.
Tha mass density terms are again set to be zero, m1 = m2 = 0.
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Fig. 6 Three dimensional graph of the reflection coeffi-
cient as a function of the non-dimensional radial
frequency ω (log-scale) and the incident angle (in
degrees) when lr = 1/2, H = 2π and the transition
is continuously joined.

EFFECTS OF NON-DIMENSIONALIZATION

We study the behaviour of the reflection coefficient under the
scaling scheme.

From Figs. 3 and 4, we may categorize the reflection coefficient
according to its behaviour and the non-dimensional frequency
using the values. At ω < 0.7 (low frequency), the open crack is
virtually invisible to the incident waves. 0.7 < ω < 1, the plate
on the right (x > 0) has larger displacement.

Figs. 7 and 8 show the curves of the reflection coefficient R
versus the non-dimensional radial frequency ω for a various water
depth and incident angles. We find that the reflection coefficient
is not affected by the water depth that is greater than 2π for
both open crack and continuous joint cases. Hence, we may say
that non-dimensional water depth H = 2π is deep. The graphs
for θ = π/3 in Figs. 7 and 8 show that at high incident angle, the
transition conditions have no effects on the wave propagation.

Fig. 9 shows the reflection coefficients for various mass density
terms. We find that the mass density terms m1 and m2 have no
qualitative effects on the reflection at the transition of the plates.
Hence, we may consider only the cases when m1 = m2 = 0 for
a typical range of non-dimensional mass density of an ice sheet
around 0 to 0.1. Then, the resulting dispersion functions f1 and
f2 for deep-water, H > 2π, are completely independent of the
physical parameters, mainly the thickness, of the ice sheets. The
interaction of two ice sheets are now described only by the ratio
of the two characteristic length lr.

Fig. 10 shows the changes in the reflection coefficient as the
ratio of the characteristic length lr varies. For open crack transi-
tion case the reflection reaches the same value as the frequency
increases, where as the continuous transition case shows decrease
in the reflection as lr tends to one. Of course there will be no
reflection of waves when lr = 1 for the continuous transition and
the two curves of the reflection coefficient will become the same
as lr tends to zero. i.e., the left hand side of the surface is free
ocean surface.

Let ω1 denote the non-dimensional radial frequency that are
scaled by the characteristic time t1, i.e., ω1 = ωtr =

√
lr. Then,

the unit radial frequency ω1 = 1 is ω = 1/
√

lr. From the top
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Fig. 7 The reflection coefficients for various non-
dimensional water depth, H = 0.2π(solid
curve), 2π(dash-dot curve), 4π(dotted curve).
The transition conditions are open crack and
the incident angles are from the top 0, π/6, π/3.
The curves for H = 2π and 4π are indistin-
guishable. The parameters are lr = (1/2)3/4 and
m2 = 0.05, m1 = m2/2.

graph of Fig. 10, we find using the value of ω1 = 1 that the curves
of the reflection coefficients can be categorized into four regions
of frequency according to their behaviour. First, low frequency,
ω < 0.7, at which virtually zero reflection for any values of lr.
Second, 0.7 < ω < 1/

√
lr (unit frequency normalized by t1),

at which the curves are ‘wobbly’. Third, 1/
√

lr < ω < 4, at
which the reflection increased steadily and rapidly. Fourth, high
frequency, 4 < ω, at which the curves for all lr reach the limit and
stay unchanged. We notice from Fig. 10, there exist a frequency
between 0.7 and 1/

√
lr, at which the reflection coefficients for the

two transition conditions are equal.

CONCLUSIONS

We have presented the analytical formulas and numerical com-
putation of the coefficients of the mode expansion of the flexural
waves in two semi-infinite plates. The coefficients are computed
from the conditions at the transition of the two plates, which are
expressed by a 4 × 4 matrix and 4 element vector. The formulas
of the solutions can be directly turned into stable computer codes
that can deal with various transition conditions by changing the
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Fig. 8 The reflection coefficients for the same non-
dimensional parameters as in Fig. 7, except the
transition conditions are now continuous joint.
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Fig. 9 Curves of the reflection coefficient versus non-
dimensional radial frequency for various mass den-
sity factors. m1 = m2/2 and m2 = 0.1 (dotted
curve), 0.05 (dash-dot curve) and zero (solid curve).

matrix and vector of the transition conditions. We have shown
that the Wiener-Hopf equation can be obtained directly from the
Fourier transforms of the system of equations rather than assum-
ing the modal expansion of the solution to find the analyticity of
the Fourier transforms of the solution in x < 0 and x > 0. The
splitting of f2/f1 is expressed by one function K (α) because of
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Fig. 10 The reflection coefficients versus non-dimensional
radial frequency ω when lr = 1/1.2, 1/2, 1/4 (from
the top) and open crack (solid) and continuous joint
(dashed).

the symmetry of the positions of the singularities in D− and D+,
which simplifies the formulas of the solutions.

The space and time variables are non-dimensionalized using
the characteristic length li, i = 1, 2, characteristic time ti, i =
1, 2. The resulting solutions are insensitive to the change of ice
thickness, hence we are able to set the mass density term to be
zero and find that the water depth H > 2π can be considered as
deep. Using the graphs of the reflection coefficient R for various
lr, we are able to categorize the wave propagation across a transi-
tion in two semi-infinite plate into four distinctive regimes by the
values of the non-dimensional frequency ω = 0.7, 1/

√
lr, 4. These

values can be interpreted to ice sheets or floating structures of
any thickness, such as scale-models created in a laboratory.
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