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ABSTRACT

This article presents a mathematical model and a method of solution for the
wave propagation across a crack in an ice sheet. Wiener-Hopf (W-H) technique
is used to derive analytical solutions of the problem, which leads to simple
description of the conditions at the crack. The conditions at the crack are
represented by a 4-by-4 matrix and a vector in the W-H solutions. Thus it
is possible to study the effects of the crack on the wave propagation using
the matrix and the vector. As a beginning of mathematical modelling of the
crack conditions, the connection at the crack is mimicked by a rotational and
a vertical springs. These springs transmit the vertical and gradient differences
from one ice sheet to the other. The wave propagation is studied under varying
spring constants.

INTRODUCTION

This paper presents a W-H solution of wave propagation across a crack where
two semi-infinite floating elastic plates are joined by various transition condi-
tions (see Fig. 1). There has been a steady development of analytical solutions
of floating elastic plates and water waves. A simple case of water-plate in-
teraction problem is solved in (Balmforth and Craster, 1999) and (Evans and
Davies, 1968) using the W-H technique. (There are too many papers on the
W-H to list them all here.) A similar technique is used in (Chung and Fox,
2002) to solve a plate-plate interaction with an open gap and a rigid joint. In a
slightly different situation, (Chung and Linton, 2003) gives analytical solutions
of plate-water-plate problem using the residue calculus technique. A comple-
mentary problem, water-plate-water with free edge conditions is solved using
the W-H in (Tkacheva, 2002). Wave scattering by a long crack is studied in



(Evans and Porter, 2003) using a Green’s function for a floating elastic plate.
The family of problems concerning floating elastic plates, which can be solved
analytically, is growing. However, the conditions at the edges of the plates
have been usually assumed to be free. In this paper we exploit the fact that
the W-H technique can, with some modifications shown in (Chung and Fox,
2002), incorporate more complex transition conditions than the simple open
gap or rigid joint.
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Figure 1: Schematic drawing of the crack in an ice sheet.

Our motivation here is to model the cracks in sea-ice sheets, because wave
propagation into the ice field plays an important role when the ice sheets
around the coast of Antarctica are broken up every year. We use a theoretical
model of the ice sheet that assumes ice thickness, mass density and Young’s
modulus to be constant. This model is often used to study the dynamics of
ice sheets with fairly homogeneous appearance. We focus on a relatively long
and straight crack in an ice sheet. Such a crack can have a variety of physical
properties depending on how it is formed, for example partially frozen slosh or
solidly re-frozen crack. However, the mechanism of wave propagation across
such a crack is not yet well understood.

In order to model varying characteristics of the crack, we introduce theoret-
ical transition conditions using two springs linking the ice sheets (see Fig. 2).
The vertical spring transmits the shear force that is determined by the dis-
placement difference. The rotational spring transmits the bending moment
that is determined by the difference of the gradient at the edges of the ice
sheets.

Figure 2: The rotational and the vertical springs connecting the two ice sheets.

The solutions here are given as an expansion over the modes that exist in
ice sheets. The coefficients of the expansion are linear combination of four



constants that must be determined by the transition conditions. Although,
the W-H technique has been used by several researchers, its strength, which is
the simple use of the transition conditions, has not been exploited. From the
transition conditions a system of equations for the constants can be formulated
with a 4×4 matrix and a vector. We therefore focus on the formulation of the
matrix and the vector to study the qualitative behaviour of the solutions.

METHOD OF SOLUTION

Governing equations

We here use thin plate (Kirchhoff plate) model for the ice sheets. The flexural
rigidity of the ice sheets in x < 0 and x > 0 are denoted by D1 and D2,
respectively. The flexural rigidity is calculated using Di = Eh3

i /12 (1 − ν2),
where hi, i = 1, 2 are the thickness of the plates in x < 0 and x > 0 respectively.
ν is Poisson’s ratio and E is effective Young’s modulus that is constant in the
plate. A plane wave of radial frequency ω is coming from x = −∞ at an angle
θ. We assume that amplitude and frequency of the incident wave are small
and low enough so that the water can be assumed to be incompressible and
irrotational. Then, vertical displacement of the plates, w (x, y, t), and velocity
potential of water, φ (x, y, z, t) satisfy following partial differential equations
(see (Evans and Davies, 1968) and (Balmforth and Craster, 1999)),

(1)

p = D1∇4
x,yw + m1wtt, for x < 0,

p = D2∇4
x,yw + m2wtt, for x > 0,

wt = φz,
ρφt + ρgw + p = 0,















at z = 0

φz = 0 at z = −H,
∇2

x,y,zφ = 0 in the water.

g, ρ and p are acceleration due to the gravity, mass density of sea water and
pressure acted on the surface of the water, respectively. The mass density of
each plate is denoted by mi = ρihi (ρi is the mass density of the ice), i = 1, 2,
respectively. The incoming plane wave obliquely incident from infinite can
be written as i I exp i (λx + ωt), where I is amplitude of the wave (i is there
to simplify the calculations later) and the wave number λ is determined by
the incident angle of the plane wave to the x-axis. Since the system of the
equations given in Eq. 1 are linear with respect to φ (x, y, z, t), we may express
the solution as

φ (x, y, z, t) = Re
[

φ (x, z, ω) ei(ky+ωt)
]

where φ (x, z, ω) (or φ (x, z) for simplicity) is the complex function of amplitude
of the solution and k denotes the wave number in the y-axis, i.e., k = λ′ sin θ
λ′ =

√
λ2 + k2.



We scale (or non-dimensionalize) the system of equations given above using
characteristic length, characteristic time denoted by li and ti, and the ratio of
each characteristic values, which are defined as

li =

(

Di

ρg

)1/4

, ti =

√

li
g
, lr =

l1
l2

.

We here assume that lr < 1, i.e., the plate on the right is more rigid than
the other. lr may be zero when x < 0 is free-surface. If we denote the non-
dimensional variables with the bar, then the non-dimensionalized variables of
space and time using l2 are (x̄, ȳ, z̄) = (x, y, z) /l2 and t̄ = t/t2. We omit the
bar to avoid the clutter from now. Then, the system of equations given in
Eq. 1 scaled by l2 for x < 0 and x > 0 become

(2)

{

l4r (∂2
x − k2)

2 − m1ω
2 + 1

}

φz (x, 0) = ω2φ (x, 0)
{

(∂2
x − k2)

2 − m2ω
2 + 1

}

φz (x, 0) = ω2φ (x, 0) .

The mass density terms are now mi/ρl2, i = 1, 2 and the same notation is uses
to avoid the clatter.

Solution using the W-H technique

This section briefly describes the derivation of the solution of the system of
equations given in the previous section using the W-H technique shown in
(Chung and Fox, 2002). We apply the Fourier transform to the differential
equations of φ in the respective domains x < 0 and x > 0, which are defined
as

(3) Φ+ (α, z) =

∫

∞

0

φ (x, z) ei αxdx, Φ− (α, z) =

∫ 0

−∞

φ (x, z) ei αxdx.

We also denote the same transforms of φz (x, 0) in x > 0 and x < 0 by Φ′
± (x),

respectively. From the transforms of Laplace’s equation and the condition at
z = −H, we have

(4) Φ± (α, z) = Φ± (α, 0)
cosh γ (z + H)

cosh γH
± g (α, z)

where γ =
√

α2 + k2 and g (α, z) is a regular function determined by
{φx (0, z) − i αφ (0, z)}. Note that Re γ > 0 when Re α > 0 and Re γ < 0
when Re α < 0. Note that the functions Φ± (α, z) are regular in Im α > 0 and
Im α < 0, respectively. We have, by differentiating the both sides of Eq. 4 with
respect to z at z = 0,

(5) Φ′

± (α) = Φ± (α, 0) γ tanh γH ± gz (α, 0)



where Φ′
± (α) is the z-derivative of Φ± (α, z) at z = 0.

Applying the same integral transforms given by Eq. 3 to the plate equations
in x < 0 and x > 0 and from Eq. 5, we obtain

f1 (γ) Φ′

− (α) + C1 (α) = 0(6)

f2 (γ) Φ′

+ (α) + C2 (α) = 0(7)

where

f1 (γ) = l4r γ
4 − m1ω

2 + 1 − ω2

γ tanh γH
, f2 (γ) = γ4 − m2ω

2 + 1 − ω2

γ tanh γH
,

C1 (α) = −ρω2gz (α, 0)

γ tanh γH
+ P1 (α) , C2 (α) =

ρω2gz (α, 0)

γ tanh γH
− P2 (α) .

and Pj, j = 1, 2, are second order polynomials of α. Functions f1 and f2 are
called dispersion functions and zeros of these functions are the primary tools
of our method of deriving the solutions. How to compute the zeros of the
dispersion functions are given in (Fox and Chung, 2002).

Functions Φ′
− (α, 0), and Φ′

+ (α, 0) are defined in Im α < 0 and Im α > 0
respectively, however they can be extended in the whole plane defined by Eqs. 6
and 7 using the analytic continuation. Eqs. 6 and 7 show that the singularities
of Φ′

− and Φ′
+ are determined by the positions of the zeros of f1 and f2, since

gz (α, 0) is bounded and zeros of γ tanh γH are not the singularities of Φ′
±. At

the moment the two functions Φ′
− (α) and Φ′

+ (α) do not share the domains of
regularity in the upper and the lower half planes separated by the real axis. We
are able to manipulate the region of the regularity by adding or subtracting
one (or more) singular part of the functions. Here, we subtract a singular
part corresponding to −λ from Φ′

− (α) and from Φ′
+ (α), that is, denoting the

modified functions Ψ′
± (α), we have

f1 (γ) Ψ′

− (α) + C1 (α) = 0,(8)

f2 (γ) Ψ′

+ (α) − If2 (λ)

α + λ
+ C2 (α) = 0.(9)

Then, considering infinitesimal dissipation and the time factor exp (+ i ωt), the
functions Ψ′

− (α) and Ψ′
+ (α) are regular on the real axis, or more precisely, the

real axis indented over the negative real wave numbers −λ, −µ and indented
under the positive real wavenumbers λ, µ, respectively. Let D+ and D− denote
the upper and lower half of the α-plane that are sharing the indented region on
the real axis described above and shown in Fig. 3. Then, we may now add the
both sides of Eqs. 8 and 9 to derive a typical W-H equation which is defined
on D+ ∩ D−,

(10) f1 (γ) Ψ′

− (α) + f2 (γ) Ψ′

+ (α) − If2 (λ)

α + λ
+ C (α) = 0



where C = C1 + C2.
We now follow the standard method of solution of the W-H equation, which

requires the factorization of the two dispersion functions. We have from Weier-
strass’ factor theorem and the symmetry of the positions of the roots in S1 and
S2 (sets of roots of f1 and f2 in D+, respectively),

f2

f1

= K (α) K (−α) , K (α) =

(

∏

q∈S1

q′

q + α

)(

∏

q∈S2

q + α

q′

)

.

Note that K (α) is regular in the upper half plane and on the real axis except
at −λ and −µ and the infinite products converge in the order of q−5 as |q|
becomes large. Then Eq. 10 can be rewritten as

(11)
K (α)

[

fΨ′
+ + C

]

−
(

K (α) − 1
K(λ)

)

f2(λ′)I
α+λ

= − 1
K(−α)

[

fΨ′
− − C

]

−
(

1
K(−α)

− 1
K(λ)

)

f2(λ′)I
α+λ

.

where f (γ) = f2 (γ)− f1 (γ) . Note that the splitting is actually performed on
f1γ sinh γH and f2γ sinh γH which are none zero at γ = 0.

The left hand side of Eq. 11 is regular in D+ and the right hand side is
regular in D−. Notice that a function is added to the both sides of the equation
to make the right hand side of the equation regular in D−. The left hand side
of Eq. 11 is o (α4) as |α| → ∞ in D+, since Ψ′

+ → 0 and K (α) = O (1) as
|α| → ∞ in D+. And the right hand side of Eq. 11 has the same analytic
properties in D−. The Liouville’s theorem in section 2.4 of (Carrier et al,
1966) tells us that there exists a function, denoted by J (α), uniquely defined
by Eq. 11, and function J (α) is a polynomial of degree three in the whole
plane

J (α) = d0 + d1α + d2α
2 + d3α

3.

Equating Eq. 11 for Ψ′ = Ψ′
− + Ψ′

+ gives

(12) Ψ′ (α) =
−F (α)

K (α) f1 (γ)
or − K (−α) F (α)

f2 (γ)

where

F (α) = J (α) − If2 (γ)

(α + λ) K (λ)
.

Notice that procedure in Eq. 11 eliminates the need of calculating C. We are
now able to calculate using the following inverse Fourier transform

φz (x, 0) =
1

2π

∫

∞

−∞

Φ′ (α) e− i αx dα.
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Figure 3: Schematics of the contour integration paths of the inverse Fourier
transform and the positions (not to scale) of the corresponding roots in the
α-plane. µ is not shown since it is not a singularity of the integrand.

For x < 0 we close the integral contour in D+ as depicted in Fig. 3, and
put the incident wave back, then we have

(13) φz (x, 0) = i Iei λx −
∑

q∈S1

i F (q) q′R1 (q′)

qK (q)
e− i qx,

(14) R1 (q′) =

(

df1 (γ)

dγ

∣

∣

∣

∣

γ=q′

)−1

=
ω2q′

(5l4r q
′4 + b1) ω2 + H

(

(l4r q
′5 + b1q)

2 − ω4
) ,

where R1 (q′) is a residue of [f1 (γ)]−1 at γ = q′. We used b1 = −m1ω
2 + 1

and f1 (q′) = 0 to simplify the formula. The velocity potential φ (x, z) is, from
Eqs. 4 and 5,

φ (x, z) =
i I cosh λ′ (z + H)

λ′ sinh λ′H
ei λx −

∑

q∈S1

i F (q) R1 (q′) cosh q′ (z + H)

qK (q) sinh q′H
e− i qx

where λ′ =
√

λ2 + k2. And for x > 0, we derive φz (x, 0) then φ (x, z) by
closing the integral contour in D− as depicted in Fig. 3,

φz (x, 0) = −
∑

q∈S2

i K (q) F (−q) q′R2 (q′)

q
ei qx,(15)

φ (x, z) = −
∑

q∈S2

i K (q) F (−q) R2 (q′) cosh q′ (z + H)

q sinh q′H
ei qx,

where R2 is a residue of [f2 (γ)]−1 and its formula can be obtained by replacing
the subscript 1 with 2 and lr with 1 in Eq. 14. Notice that from Rj ∼ O (q−9)
coefficients of φz decay as O (q−6) as |q| becomes large, thus the displacement
is bounded up to the fourth x-derivatives. The coefficients of φ, have extra
1/q′ tanh q′H term which is O (q4), hence the coefficients decay as O (q−2) as
|q| becomes large. Therefore, φ is bounded everywhere including at x = 0.
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Figure 4: The reflection coefficients and the spring constants. The axes τ1 and
τ2 are in log-scale.
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Figure 5: The singular values of the transition matrix for various spring con-
stants. The dotted line is at ω = 0.7.

TRANSITION CONDITIONS

The four coefficients of J (α) are determined by physical conditions at x = 0,
which we call transition conditions. We consider an elastic joining material
at the transition. By changing the elasticity and the thickness of the joining
material, the transmission of waves can be studied as function of the transition
conditions.

The transition conditions are given by the scaled effective shear force,

B1w|x=0+ = wxxx − k2 (2 − ν) wx(16)

B1w|x=0− = l4r
{

wxxx − k2 (2 − ν) wx

}

(17)

and the scaled bending moment

B2w|x=0+ = wxx − k2νw(18)

B2w|x=0− = l4r
(

wxx − k2νw
)

(19)

Since all possible transitions conditions are linear equations with respect to w,
the transition conditions can be expressed by algebraic equations of column
vector d = (d0, d1, d2, d3) made of the coefficients of polynomial J .

w|x=0± = A± · d + B±, wx|x=0± = C± · d + D±,

B1wx|x=0± = E± · d + F±, B2wx|x=0± = G± · d + H±,



where A±, C±, E± and G± are row vectors, and B±, D±, F± and H± are scalar
values that are calculated from Eqs. 13, 15, and · is the vector inner product.

When the two plates have the same thickness, i.e., lr = 1 and k = 0. Note
that there is no need for factorization since, K ≡ 1. The incident wave does
not automatically appear from the inverse Fourier transform in this case since
the wave number for incident wave and traveling wave are the same. Hence,
Eq. 13 must be changed to

φz (x, 0) = i Iei λx −
∑

q∈S1

i J (−q) q′R2 (q′)

q
ei qx.

We consider the transition linked with two springs in the vertical and the
rotational directions as shown in Fig. 2. Thus, the bending moment at the
transition is determined by the rotational spring constant and the difference
of the gradient of the two ice sheets. The shear force at the transition is
determined by the vertical spring constant and the difference of the vertical
displacement of the ice sheets. From the equilibrium of the force, the bending
moment and the shear force are continuous at the transition. We thus have
the following equations,

(20) B1w1 = B1w2, B2w1 = B2w2.

From the argument above, the displacement and the gradient are coupled
with the above equations by the following equations

(21)
τ1

(

w|x=0− − w|x=0+

)

= ± B1w|x=0± ,
τ2

(

wx|x=0− − wx|x=0+

)

= ± B2w|x=0± ,

where τ1 and τ2 are the rotational and the vertical spring constants, respec-
tively. Equations 20 and 21 can then be expressed by the following matrix
equation,

T d = v

where T and v are the transition matrix and the corresponding vector, respec-
tively.

At a low frequency range the variation of the transitions conditions makes
little difference to the wave propagation. Fig. 5 shows 4 singular values of
T . The figures show that the transition matrix stays virtually unchanged for
ω < 0.7 regardless of varying spring constants. Fig. 4 shows that the vertical
and the rotational springs are equally influential to the reflection of the waves.
However, the vertical spring induces more rapid variation to the reflection.



CONCLUSIONS

This paper gives an initial attempt at modelling the transition conditions in an
ice sheet. The conditions are reduced to the vertical and the rotational springs.
Further studies and field measurements must be conducted to find the correla-
tion between the theoretical model here and the real transition in an ice sheet.
The fact that the solution by the W-H technique has explicit formulae (invari-
ant to the transition conditions) for the coefficients of d0, d1, d2, d3 is exploited
here to study exclusively the transition conditions. The wave propagation is
highly dependent on the transition conditions. It is shown that a small change
in the spring constants results in a large fluctuation in the reflection of the
waves.

REFERENCES

N.J. Balmforth, and R.V. Craster, (1999). Ocean Waves and Ice Sheets, J.
Fluid Mech., 395, pp. 89–124.
G.F. Carrier, M. Krook and C.E. Pearson, (1966). Functions of a Complex
Variable, Theory and Technique, McGrawHill, New York.
H. Chung and C.M. Linton, (2003). Interaction between water waves and elas-
tic plates: Using the residue calculus technique. 18th International Workshop
On Water Waves and Floating Bodies, Le Croisic, France, April.
H. Chung and C. Fox, (2002). Propagation of Flexural Waves at the Inter-
face Between Floating Plates. International Journal of Offshore and Polar
Engineering, 12, pp. 163–170.
D.V. Evans and T.V. Davies, (1968). Wave-Ice Interaction Report 1313. Hobo-
ken: Davidson Laboratory, Stevens Institute of Technology.
D.V. Evans and R. Porter, (2003). Wave Scattering by Narrow Cracks in Ice
Sheets Floating on Water of Finite Depth. J. Fluid Mech., 484, pp. 143–166.
C. Fox and H. Chung, (2002). Harmonic Deflections of an Infinite Floating
Plate. Department of Mathematics, University of Auckland, Report Series,
485.
L.A. Tkacheva, (2002). Diffraction of surface waves at floating elastic plate.
17th International Workshop On Water Waves and Floating Bodies, Peter-
house, Cambridge, UK, April.


