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Summary

This paper shows how to use a mathematical model to predict the vibration of lightweight timber-framed
floor/ceiling systems (LTFSs) caused by mechanical excitation. The LTFS considered here is made up of an
upper layer (including the floor), cavity space with timber joists and the ceiling. These components are joined by
timber battens, ceiling furring channels and ceiling clips, which are also included in the model. The vibration in
the structure is caused by a localized excitation on the top surface and the resulting vibration level of the ceiling
surface will be analysed. The cavity space is filled with fibre infill for damping the sound transmitting through
the cavity. A unique feature of the design and the model is the sand-sawdust mixture in the upper layer. The
theoretical model and the experimental measurements show that the sand-sawdust dampens the vibration in the
frequency range between 10 and 200 Hz. The model uses the classical theories of elastic plates, beams and room
acoustics together with the Fourier expansion method for solving the system of partial differential equations. The
damping by the sand-sawdust and the fibre infill are found by comparing the numerical simulations against the
experimental measurements. This paper will show that the simple linear frequency dependent loss factors can be

used in the model to predict the low-frequency vibrations of LTFSs.

PACS no. 43.40.At, 43.40.Dx, 43.40.Tm, 43.55.Ev, 43.55.Vj

1. Introduction

Most residential buildings can be classified as either con-
crete-based or lightweight timber-framed systems. The
concrete-based systems primarily use concrete slabs for
walls and floors, and the lightweight systems use tim-
ber-framed composite structures. In this paper we study
the sound insulation performances of lightweight timber-
framed floor/ceiling systems (LTFSs) depicted in Figure 1.
Such LTFSs have become popular due to their ease of
construction and environmentally friendly use of timber.
As the popularity of the systems grows, their weakness
in sound insulation in the low-frequency range has also
become apparent. In addition to experimental studies, a
theoretical model capable of predicting the performance
of many design variations is needed. Such a model re-
quires mechanical and material parameters of all compo-~
nents. Those parameters are usually frequency dependent
and may not be measured easily.

In this paper we quantify the vibration-damping ability
of a sand-sawdust mixture. According to the listening tests
performed on a group of people in [1], the LTFS based on
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Figure 1 has better sound insulation than a solid concrete
slab of 150 mm with carpet and a suspended ceiling. The
sand-sawdust in the upper layer of the system improves the
acoustic performance. In order to put the theoretical model
to real use, the mechanical properties of the components,
the sand-sawdust layer in particular, need to be quantified.
The effects of the sand-sawdust layer is included in the
model as a damping coefficient or an imaginary part of the
stiffness of the upper layer. We use the experimental data
and the theoretical model to show that the damping can be
modelled as a linear function of frequency. It is commonly
believed that LTFSs cannot perform as well as concrete
counterparts. Blazier and DuPree [2] claimed that it was
impossible to build a practical LTFS, which could satisfy
an average resident. However, the prediction model used
in that paper was unsuited for LTFSs.

We use the classical theories of elastic plates and beams
to represent the panels, joists and battens (see [3] and
[4]). Furthermore the theory of room acoustics is used
to include the sound transmitted via the cavity, using the
Helmholtz equation. The displacement of individual com-
ponents and the acoustic pressure are expressed using the
Fourier series over the two dimensional rectangular shape
of the structure. Our method of using the Fourier series is
an extension of the methods in [5, 6, 7, 8, 9], which deal
with ribbed plates with simpler designs. We note that the
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representation of the vibration field using the Fourier se-
ries is different from more often used modal analysis with
FEM or SEA. We are not directly computing the eigen-
functions or eigenvalues of the system, rather we compute
the displacement of the structure (floor and ceiling sur-
faces) at each frequency. As a result we are able to com-
pute the details of the mode shapes at every frequency, and
thus able to compare the theoretical model and the experi-
mental measurements precisely.

The performance of the model is evaluated by its abil-
ity to predict particularly the first few resonant frequencies
and amplitudes. We have found that our model can predict
the first three resonant frequencies within 1.0 Hz and their
amplitudes within 3.0 dB. The resonances of the structure
are not distinct after the third resonance. Although the
model can predict the decaying rate of the vibration at the
frequencies above 80 Hz, it cannot exactly determine the
amplitude at a given frequency. We suspect that inhomo-
geneity and the uncertainties in the structure begin to affect
the behaviour. Thus, it may not be possible to completely
determine the vibration level at this frequency range. The
effects of the sand-sawdust in the upper layer is included
in the mode] as the loss factor, which is the imaginary part
of the rigidity of the upper layer. The loss factor here is de-
pendent on the frequency, so that the sand-sawdust damp-
ens the vibration more as the frequency increases. The ef-
fects of the fibre-infill in the cavity is similarly included
as the imaginary part of the mass density and the speed of
sound in the Helmholtz equation.

We start with two examples of LTFSs in section 2. Brief
descriptions of the designs and the construction methods
are given. In section 3, we introduce the differential equa-
tions for the vibration of the individual components. Sec-
tion 4 gives the procedure to determine the parameters for
sand-sawdust, glassfibre fill, and rubber clips. A brief dis-
cussion on advantages of using the sand-sawdust mixture
is given in section 5. We conclude the paper with some
summarizing remarks in section 6.

2. Examples of LTFSs

This section shows two designs of LTFSs in Figures 2 and
3. The upper layer is modified from a single plywood to a
sand-sawdust filled-layer in order to evaluate the damping
effects of the sand-sawdust layers. The design of Figure 3
with a sand-sawdust layer has given the best sound insu-
lation performances in both physical vibration measure-
ments and subjective listening tests.

During the experimental programme in [1], altogether
26 LTFSs were built and tested. Each of those designs had
small variations from the designs shown in either Figures 2
or 3. The experimental designs were determined based on
the numerical simulations (see [10]) and the building prac-
ticality. For example, the simulations prior to the experi-
ments had shown that increasing the cavity depth would
have had little effects on the vibration level of the ceil-
ing. Thus the cavity depth was not changed for the designs
studied here. The theoretical simulations also showed that

Figure 1. Depiction of an LTFS. The upper layer has a sand-
sawdust mixture enclosed by plywood panels and timber battens.
The joists are laminated timber beams. The ceiling panels are at-
tached to the joists by furring channels and resilient rubber clips.
The coordinate system later used in mathematical modelling is
shown with the x and y axes.

300mm x 45mm LVL joists (Tm long)
at 400mm centres
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centres at 90" to the LVL joists

Figure 2. Cutaway schematics of an LTFS with a single plywood
upper layer. The joists span 7.0 m, and the width is 3.2 m.

the rubber clips and the furring channels on the ceiling re-
duced the vibration levels of the ceiling considerably, and
thus they were always included in the designs. The de-
scriptions of the commercial products used in these LTFSs
are given in Appendix Al.

2.1. Single plywood upper layer

Figure 2 shows the basic design of a common joist floor,
which has a plywood upper layer, supporting timber joists
and a ceiling. This design has been used to determine the
parameters for the resilient clips, the furring channels and
the glassfibre wool in the cavity. The modelling procedure
for these three components will be given in subsections 3.2
and 4.2.

2.2. Sand-sawdust upper layer

The design in Figure 3 gives the lowest average vibration
level. Furthermore it has been found to be the best per-
forming design in terms of the sound insulation perceived
by a group of listeners in the room below the structure.
This LTES has 90 mm deep battens screwed to the upper
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plywood of the floor (at right angles to the joists) with an-
other layer of plywood on the battens.

3. Theoretical Modelling

The model is constructed using the partial differential
equations for elastic plates (Kirchhoff plates) and beams
(Euler beams). These are the equations for the vertical dis-
placement of the components (see Table I). In addition to
elastic compornents, the model included the acoustic pres-
sure in the cavity, which satisfies the Helmholtz equation.
The equations are then coupled by the forces acting on
each component that are dependent on the designs. Sub-
section 3.1 give the differential equations for the displace-
ment of a thin elastic plate and Euler beams. In section 3.2
the equations are coupled using the contact conditions,
spring connections and slippage displacement. Subsection
3.3 shows the method of solution using the Fourier series
expansion of the displacement of each component. The
modelling method for more generalized layered structures
is shown in [10] in detail, which however did not specifi-
cally explain how to model the sand-sawdust layer.

3.1. Equations for the components

Our model is made up of the following components (see
Figure 3):
1. Upper layer with two plywood boards, timber battens

and sand-sawdust.
. Timber joists.
. Cavity filled with glassfibre wool.
. Resilient rubber clips.
. Furring channels attached to the ceiling.
. Ceiling panel.
The origin of the coordinate system is placed at a corner
of the upper layer. The joists are spanned along the x-axis.
The z-axis points downward so that the upper layer is at
z = 0 and the ceiling is at z = d, where d is the depth
of the cavity. The top layer is excited by time-harmonic
forcing with radial frequency @ = 2z f at (xg, yg), where
f is the frequency inHz, and thus the whole system is
driven at the same frequency f. The displacement of a
plate for example is then given by Re [wu (x,y) e ] for
(x,y) € [0, A] x [0, B] where A and B are the width and
length of the LTFS. Note that the velocity of the top sur-
face is given by Re [j owy (X, y) ej“”]. Table 1 gives the
summary of the notations (displacement, mass density,
thickness and Young’s modulus) for the elastic compon
ents. Note that the mass density of the upper layer includes
all components, for example, the sand-sawdust, plywood
panels and timber battens.

The displacement of the two plates wy and we satisfies
the following thin plate equation (see [4]).

[N I SN VLI S

(DuV* = mya?®) wu (x, ) = F8 (x0, ¥0) — Pu (x.y)

—-p(x,,0) €5
(DeV* = mew®) we (x,y) = Pe(x,y)
+p(x,y.d), )
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Figure 3. Cutaway schematics of an LTFS with a sand-sawdust
upper layer. The length of the structure is changed to 5.5 meters.

Table I. Notations for the elastic plates and beams.

disp. dens. thick. Mod.
upper layer wy(x, ¥) my hy Ey
timber battens wi(x;, ) 0 hy E;
joists wi(x, ;) my hy Ei
furring channels wi(x;, ¥) 0 h¢ E;
ceiling we(x, ¥) ng he E.

where F is the external force amplitude, Py and p de-
note the force from the attached joists and the acoustic
pressure from the cavity, respectively. The localized forc-
ing is expressed by the Dirac delta function 6(xg, yo) =
8(x—xp, y—yp). We note that ten forcing points are chosen
randomly to compute the mean value of wy in the numeri-
cal simulations. The derivation of the above equations can
be found in structural acoustics text books such as [3, 11].
In equation (2), Pe and p(x, y, d) denote the force from the
battens and the acoustic pressure, respectively. The ceiling
is made up of two layers of plasterboard in this case. We
again simplify the model by assuming that the ceiling is a
single plate with two layers of varying stiffness. The dif-
ferential operator is defined by

a* * a*

V4 = Z .2
ox?ay? = oyt

o oxt
The flexural rigidity, Dy, for the upper layer is computed
by Euhy /12 (1 — v?), where Ey, hy and v are the Young’s
modulus, thickness and the Poisson ratio, respectively. The
Young’s modulus of the upper layer has to be adjusted be-
cause of the additional sand-sawdust layer. Thus we model
the upper layer as one plate with stiffening beams (repre-
senting battens). This upper layer plate has a bending stiff-
ness equivalent to two plates separated by a gap. Damping
by the sand-sawdust is included as the imaginary part of
the stiffness, denoted by 5. We have the adjusted stiffness

E(my—-h)
Du—m(l'ﬂfss), 3)
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where A4 is the thickness of the timber battens. The neutral
plane of deformation is assumed to be at the middle of the
upper layer. The mass of the timber battens in the upper
layer is neglected because they are much lighter than the
rest of the upper layer. Thus we have the following equa-
tion for the timber battens in the upper layer.

4

Bl (si,9) = RO, (=125 @)
where Iy is the moment of inertia of the battens. The loca-
tions of the timber battens are given by x;,i = 1,2, ..., St,
where St is the number of battens. The force P (i, y)
comes from the two plywood layers. This is a simplifica-
tion of the actual design which has the ribbed double-leaf
plate configuration. We have made this compromise be-
cause the upper layer is thin and light compared to the rest
of the structure.

We set the number of joists Sj and located at y = yj, j =

1,2, ... ;. Then the displacement of jth joist, wj (x, y;)
satisfies the Euler beam equation

d4
lEiﬁa;z - miwz] wj (x, ;) = B(x, J) (5)

forj=12,..., Sj. The moment of inertia Ij is computed
by h; dj/12, where dj is the width of the beams. On the
right hand side, B denotes the total force applied on the
joists from the upper layer ad the ceiling attachments.

The furring channels are light and thin, and thus we as-
sume that they only give additional stiffness to the ceiling.
The elasticity of the rubber clips determines the coupling
force P, which is given in detail in subsection 3.2. The
equations for the furring channels are

d4
Etli—wi(xi, y) = B(, y) (6)

dy
fori = 1,2,..., St. The locations of the furring chan-

nels (and the rubber clips) are given by x;, i = 1,2, ..., 5%,
where St is the number of furring channels. Note that the
same notation x; is used for the timber battens in the upper
layer, however the indices are distinguished by the nota-
tions Sy and St.

The cavity air acts as primary path of sound at low-
frequencies, and thus it must be included in the model.
The acoustic pressure, p (x, y, z), in the cavity satisfies the
Helmbholtz equation (see {12]).

(V2 +42) p(x,y.2) =0, @)

where u = @/c, and ¢ is the speed of sound of the cavity
air. The cavity walls are assumed to be acoustically hard,
that is the normal derivatives on the walls are zero. Thus
we have the following boundary conditions for the normal
derivatives of p on the side-walls of the cavity.

p:(0.y.2)=0, px(4,y.2) =0, )
py(x.0,2)=0, py(x,B,2)=0

upper
layer

joist
cavity

resilient
clips
furring
chanpells
ceiling

Figure 4. Depiction of the modelling regime of the junctions be-
tween components.

We have not considered the effects of sub-diving the cavity
by the joists, because the wavelengths at low-frequency
vibration are long compared to the spacing of the joists
(600 mm centres). The coupling conditions between the
plates (upper and ceiling) and the air are given by

P(X,7,2) = @’ pwy,  po(x,y.d) = @’ pwe,  (9)

where p is the mass density of the air. The mass density
and  in the cavity are modified to account for the sound
damping by the glassfibre fill.

3.2. Conditions for the junctions and the cavity

The equations derived in the previous subsection need to
be coupled using the physical conditions at the junctions.
The coupling conditions will be expressed using the condi-
tions for the displacement and the force. For example, the
displacement of the upper layer and the joists at their junc-
tions will be the same, and the force acting on the ceiling
will be the same reaction of the force on the furring chan-
nels.

There are various methods of modelling the junctions.
However, it is common to model the junction either com-
pletely loose (see [3, 6, 7, 13]) or continuous elastic mate-
rial (see {14, 15]). We here add some resistance between
the upper plate and the joist to model the condition that
is neither loose nor rigid. A detailed study of slippage is
given in [10].

The force Py in equation (1) includes the direct vertical
force and the resistance force due to the slippage depicted
in Figure 4. The force acting on the upper plate due to the
slippage between the upper layer and jth joist is

chy (hy + hy) d?
Paipuy(x, ) = ——4—-35%(3@ v, (10)

where ¢ is the slippage rigidity constant. Then we have

S5
Pu(x,y) = = 3 {PCx, y)) + Paipwy (x. ) }

j=1
5 (y=y). (1n

where P(x,y;) is the direct vertical force acting on the
upper layer.
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The rubber connectors give
by = T(Wu(xi, Vi) — wel(xi, }’j)) (12)

fori=1,2,..., S, j=1,2,..., Sj where 7 is the spring
constant, which is assumed to be same for all i/ and j. In
section 4, a frequency dependent r is tested, though we
have settled with a constant value in the end. Thus the
force terms on the right hand side of equation (6) is given
by

S
Pi, y) = —Po(xi, y) + Y, Pyo(y = vp).

j=1

The above force is coupled to the ceiling on the right hand
side of equation (2). The force acting on jth joist is

B(x, j) = P(x, y;) — Paipgy (. J)
St
- ZRJ'(S(X—X,‘) (13)

i=1

where the force on the joist Pyipy due to the slippage is
given by

. Ghi (hu-l-hj) 42
Pyipy(x. J) = e (x.95)

The force acting on the ceiling in equation (2) comes from
the furring channels. Hence we have

St
Po(x,y) = ) Pi(i,y)8(x = x).

i=1
3.3. Fourier series expansion

We use the Fourier expansion method to compute the so-
lution of the system of equations given in the previous sec-
tion. The orthogonal sine-basis functions are given by

Gm(x) = \/2/Asink,x, (14)
W (¥) = \/2/Bsink,y

formn = 1,2,..., , where the wavenumbers are k,, =
zm/A and k, = zn/B. These modes satisfy the simply-
supported conditions, that is, there is zero displacement
and zero bending moment at the boundary of the structure.

The displacement of the upper plate and the ceiling can
be expressed by

N

wu (6, y) = Y (W), (15)
mn=1
N

We (X,9) = ) chadn(Wn(»), (16)
m,n=1

where {c4.} and {c5,} are complex valued coefficients
and N is the truncated number of modes we use to com-
pute the solutions. Substituting equations (15) and (16) to
the equations of the individual components and using the

632

orthogonality will lead to a system of algebraic equations
for {cp,.. cS,}, in other words we will have an equation
for the vectors, €y ames and c¢ of {4, } and {cS,,}, respec-
tively. We have assumed that the upper layer and the joists
are always in contact. Then we have wy(x, y;) = wi(x, j).
Similarly the furring channels and the ceiling are as-
sumed be always in contact, and thus we have we(x;, y) =
wi(i, y). We then need to find the coefficients {ck,. ¢S, }
to find the displacement everywhere in the structure. Note
that the series solutions are truncated to N terms for com-
putation. It was found that N = 20 to be sufficient for the
frequency range studied here.

The acoustic pressure in the cavity space is also ex-
pressed using the Fourier expansion, which uses cosine

basis function,

/2 /2
(X)) = 'Z cos kyx, ﬂn(X) = E COSKpy

formn=0,1,.... These modes satisfy the acoustically-
hard wall conditions at the cavity walls. The acoustics
pressure is

N
n 2y .
p(x.y.2) = Z {F,(,I,)z efm? 4 ]f‘)('z'z e /mnz}

m,n=0

. am(x)ﬁn(y): (17)

where {l"f,f,z, F,(,%,z } are the coefficients to be determined and
the wavenumbers are defined by y,u, = V k%, + K‘,% — k2.
Finally, substituting the expansions given by equations
(15), (16) and (17) into the partial differential equations
derived in the previous section will give us a system of
linear equations for {c4,, ¢S, ol W }. The matrices cor-
responding to the above formulations are given in Ap-
pendix AZ2.

The root-mean-square velocity of the ceiling surface,
which will be compared against the experimental results,
is computed by the integration of the square of the velocity
given by equation 18. The integral was computed numer-
ically once the values of v(x,y) = jowe(x, y) over the
ceiling surface had been computed.

B rA
Ve =] | e P axay (s)

4. Determining the parameters for the cav-
ity, ceiling attachments and the sand-
sawdust layer

This section shows how the parameters for the cavity and
the sand-sawdust mixture are determined. For the cavity
we need the flow resistivity of the glassfibre filling. For
the sand-sawdust, we need the damping coefficient. Once a
parameter is determined, no further adjustments are made
when another component is added to the model and the
real structure. This is to avoid arbitrary parameter-fitting
whenever the design is changed. We start with a brief de-
scription of the experimental setup for measuring the ceil-
ing vibration. More details can be found in {1, 10].



Chung et al.: Sand-Sawdust damping

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 100 (2014)

4.1. Experimental setup

On each floor an electrodynamic shaker was used to pro-
vide a vertical force on the upper floor surface. The shaker
was connected to the floor through a wire stinger and a ref-
erence force transducer. The stinger is there to ensure that
only vertical forces are transmitted in the floor, while the
force transducer lets us know how much force is sent into
the floor. The shaker body was mounted on a beam which
straddled the floor and rested on supports which sat on the
concrete collar surrounding the floor. Vibration isolation
of the beam from the concrete collar was provided by very
resilient pads made of polyester fibre infill. The shaker was
driven with pseudo-random signal with a bandwidth from
10 Hz to 500 Hz, for a duration of 2 seconds (to achieve a
frequency resolution of 0.5 Hz). The position on the floor
was selected so that the low-frequency modes would be
excited. Only one position on each floor was chosen. It is
often useful to select two or more positions on a structure
to ensure a sufficient number of modes are excited, and to
act as a check for results. However, in this case, it would
have taken too long to do two complete vibration response
scans of each floor.

A scanning laser vibrometer (Polytec PSV 300) was
used to measure the velocity of the floor upper surface vi-
bration and the ceiling vibration in a direction which is
normal to the surfaces. A grid with a spatial resolution of
10-14 cm was used to obtain a map of the surface veloc-
ity of the floor and ceiling relative to the input force; both
amplitude and phase information was recorded at each fre-
quency. The laser vibrometer measurement equipment was
connected to the force transducer so that the recorded sur-
face vibration is normalised with respect to the force ap-
plied. Therefore the results shown in the following sec-
tions are the transfer function between the velocity and the
input force. This enables direct comparison to the theo-
retical modelling which also uses a unit amplitude input
force. The signal sent to the shaker was matched with the
sampling time of the laser vibrometer software. This en-
sured minimal spectral leakage and a frequency resolution
of 0.5 Hz. The measurement results shown in the graphs
in this paper were generated by taking a root mean square
average of the measured surface velocity across the whole
ceiling of the floor systems.

4.2. Cavity fibre infill

Here we explain briefly how the flow resistivity of the
glassfibre (see Figure 5) is determined using the simula-
tions of the system in Figure 2. This design was chosen
because the system only includes the joists and the panel
components, whose theoretical model has already been
determined in [10]. Thus the effects of the cavity should
show clearly in the modelling.

The effect of the fibrous infill in the cavity is modelled
using a complex propagation constant y in equation (7).
This complex propagation constant consists of a real phase
constant and an imaginary attenuation constant, and can be
determined from existing models of sound propagation in

Figure 5. Photograph of the ceiling attachment system showing
the steel furring channel and the resilient rubber clips. The fibre-
glass infill between joists is also shown here.

porous media. An overview and application of such mod-
els is given in a number of recent text books, in particular
[16] and [17]. Most porous media models assume that the
porous media forms a rigid frame, within which the air
moves. This rigid-frame assumption is valid for high fre-
quencies. In our case, however, we consider low frequen-
cies, where the wavelength may be larger than the porous
media thickness, and thus we cannot necessarily assume
that the porous media is not in motion. The Biot theory
describing wave motion in an elastic porous media can be
used in this more complex case, where the frame is not as-
sumed to be rigid (see [16]). However, for the purposes of
this paper and our model, we did not go to the complexity
of using the Biot theory, but based our cavity model on the
empirical model and results presented in Appendix C of
[17].

When the wavelength of sound in the fibrous infill is
less than the thickness of the infill we can assume that the
fibrous infill is rigid and unmoving, and g in the cavity is
modified to

_2zf [1=(1-7)
p=2L T

, 19
co l+o 19

where cg is the speed of sound in air, y is the ratio of spe-
cific heats for the gas (=1.4 for air), and

n=0592a(X)+jb(X1). 20)
o =a(X) +]jb(X),

where X = pof/Ry and X7 = 0.856p0f/R;. Ry is the
flow resistivity, and pg is the air density. The formulas for
a and b are given in Appendix A3.

When the wavelength of sound in the fibrous infill is
greater than the thickness of the infill, the fibrous infill
can no longer be regarded as rigid and unmoving. As a
consequence the absorption is reduced compared to the
short wavelength case. Appendix C of [17] gives results
of expected transmission loss for porous layers in the low-
frequency range when the porous material can no longer
be regarded as rigid. These results suggest that the trans-
mission loss (in dB) tends to zero as the frequency tends
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Figure 6. The root-mean-square velocity of the ceiling of the sys-
tem shown in Figure 2. (a) the flow resistivity is constant 7200
Rayls m™, (b) the flow resistivity is modelled by equation (22).
The theoretical modelling results are shown by the dashed line,
and the measurements are shown by the solid line.

to zero. Thus there is a smooth transition to the high-
frequency range for transmission loss against the log of the
frequency. We also note that the flow resistivity of a porous
medium is related to the pressure drop across the porous
medium, which does not only apply to static flow but also
to oscillations at low frequencies (see [11]). Therefore, at
low frequencies the transmission loss across the porous
material AL, is approximately related to the flow resis-
tivity Ry by

1025/20 o R;. (21)

As aresult of these cgpsiderations, we may define a mod-
ified flow resistivity R; for low-frequencies, which is re-
lated to the otherwise determined transmission loss across
a thickness of porous material. R is then inserted into
equation (19) to produce u. We use the results in Appendix
C of [17] for the transmission losi in porous materials at
low frequencies and assume that R, is zero at f = 0 and
linearly increasing until the wavelength of sound in the
cavity 4, is equal to the thiNCkness of the fibrous infill in
the cavity d at which point R; = R;,

R = Rif/fx for f< fx,
b Ry for f2 fk.

where fx is the frequency at which A,, = d and is numer-
ically determined using equation (19). For the flow resis-
tivity of 7200 Rayls/m and thickness of 300 mm, we have
fx =980 Hz.

The floor shown in Figure 2 has a ceiling consisting of
two layers of 13 mm plasterboard screwed to furring chan-
nels at 600 mm centres, which are attached to every other

(22)
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joist (i.e. at 800 mm centres) through resilient clips (see
appendix A1 for material properties). Our model assumes
that there is a ceiling clip on every joist, which is compen-
sated for by reducing the stiffness of each clip by a suitable
amount. The cavity is 358 mm deep and is filled with two
layers of 150 mm sound control type fibreglass. The exper-
imental test version of this floor had ceiling furring chan-
nels 35 mm deep and a calculated stiffness of 11000 Nm?2.
The ceiling furring resilient clips have a measured stiff-
ness of 220000Nm~! with a 130N constant load, and a
loss factor of about 0.1. The cavity infill has a flow resis-
tivity of 7227 Raylm™! and a density of 12 kgm™>. Figures
6a,b show the difference between the constant and linear
modelling of the flow resistivity. Setting the flow resistiv-
ity constant gives poor agreement at low-frequencies with
the experiment as shown in Figure 6a. Figure 6b shows
that the linear model gives better agreement at the low-
frequencies, though the behaviour at higher frequencies
changes little. The theoretical modelling results are ob-
tained by simulating ten random excitation locations on
the top layer.

4.3. Sand-sawdust layer

Measurements were made on a floor with a sand and saw-
dust layer in the upper floor (Figure 3). 90 mm deep bat-
tens separate two layers of 15 mm plywood, and in-filled
between the battens is an 85 mm layer of paving sand com-
bined with sawdust with an 80/20 mix ratio by volume.
Mixing sawdust in with the sand gives better damping than
using sand alone, and helps prevent the sand compacting
over time.

We compare experimental measurements on this floor
with the model results to see the effect of having a large
amount of mass, stiffness and damping on the upper sur-
face of the floor. The model is not able to represent the up-
per surface exactly as built, but is able to model an equiv-
alent single upper surface plate with rib stiffeners running
perpendicular to the joists. Experimental results (namely
the position of the second resonance peak) tell us about
the stiffness of this plate. We estimated the loss factor of
the upper surface of the floor for frequencies above 100 Hz
by measuring the amplitudes of the surface vibrations of
the floor and the rate of decay as the vibrations propa-
gated from the shaker excitation point. We averaged the
decay measurements performed in directions parallel and
perpendicular to the joist directions to produce a single
value of the loss factor estimate. For frequencies 100 Hz
and above we therefore determined the loss factor to be
between 0.4 and 0.8. This seems to be a large value for
loss factor, but such values are reported by Richards and
Lenzi [18] for pure sand on plates, and by Yanagida ef al.
[19] for binary powder mixtures (including sand and rub-
ber powder). At the fundamental bending frequency of the
system we determined the loss factor to be 0.1 by measur-
ing the width of the fundamental peak.

Sun et al. [20] and Lin et al. [21] showed that the damp-
ing due to the sand layer on a plate is frequency dependent.
Thus we expect the same for the mixture and try several
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Experiment
70 — — — Theory - Eq (23)

10 50 100 150 200
Frequency (Hz)

- EYpSUM
— 85 mm sand-sawdust

10 50 100 150 200
Frequency (Hz)

Figure 7. Comparison of the theoretical (dashed) and measured
(solid) root-mean-square velocity of the ceiling when é is con-
stant as in equation (23).

Experiment
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Figure 8. Comparison of the theoretical (dashed) and measured
(solid) root-mean-square velocity of the ceiling when §é is given
by equation (24).
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Figure 9. Comparison of the theoretical (dashed) and measured
(solid) root-mean-square velocity of the ceiling when 6 is given
by equation (25).

functions of frequency to model the damping.

8 = 04, (23)
0.8

b = 555/ (24)
0.4

8 = 5557 (25)

Figure 10. Comparison of the experimental measurements of
the root-mean-square velocity of the ceilings of the LTFSs with
sand-sawdust (85 mm thick) and a floating gypsum concrete up-
per layer with equivalent mass and significantly less bending
stiffness.

These functions are simplifications of a not very well un-
derstood phenomenon. Figures 7, 8 and 9 show the com-
parison between the models with the constant damping
and the frequency dependent damping given by equations
(23), (24) and (25), respectively. The modelling resulis in
Figures 8 and 9 show that the frequency dependent damp-
ing for the sand-sawdust layer gives better agreement with
the measurements, around the first two resonant peaks (be-
tween 10 and 30 Hz). There are, however, significant de-
viations from the measurement results for some of the res-
onances between 30 and S0 Hz. This is probably due to
inaccuracies of the estimated loss factor of the sand and
sawdust fill.

5. Discussion: Advantages of using sand-
sawdust

We emphasize the effectiveness of the sand-sawdust layer
in damping vibration in Figure 10 by comparing the per-
formance of a system with a layer of floating gypsum
concrete (see Figure 12) as the upper layer. The gyp-
sum concrete upper layer system has comparable mass
(81 kgm™?) to the sand-sawdust upper layer system (mass
113 kgm™2), but rather less bending stiffness (3.4x 10* Nm
¢f. 1.2x10° Nm). Figure 11 shows the comparison be-
tween the gypsum concrete and sand-sawdust systems
when the upper layer of the sand-sawdust system is thin-
ner (45mm gap between plywood layers, and 40 mm of
sand-sawdust mix in the gap). The weight of the upper
layer of this thinner sand-sawdust system is 56 kgm™~2. The
comparison in Figures 10 and 11 shows that the damp-
ing contribution by the sand-sawdust cannot be replicated
by simply adding equivalent mass and stiffness. The sand-
sawdust layer dampens the vibration above 60 Hz more ef-
fectively than the concrete upper layer when the weight of
the upper layer is similar. One should also note that we ob-
tained good results with the sand-sawdust upper floor sys-
tem when compared to the gypsum concrete even though
the gypsum concrete is a floating raft (on a resilient layer),
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Figure 11. Comparison of the experimental measurements of
the root-mean-square velocity of the ceilings of the LTFSs with
sand-sawdust (40mm thick) and a floating gypsum concrete
upper layer with equivalent bending stiffness and significantly
greater mass.
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Figure 12. Cutaway schematics of the LTFS with a floating gyp-
sum concrete upper layer. This has timber I-beams for the joists,
which are lighter than LVL.

and the sand-sawdust floor is not — the top plywood layer
is screw-fixed to the bottom plywood layer via battens.
Although this paper is about low-frequency vibrations,
standard ISO tapping-machine impact sound insulation
tests were conducted during the experimental programme
in [1]. We found that the concrete and sand-sawdust sys-
tems had the same L,, value of 52dB when they had
similar upper layer stiffness, whereas the thicker (similar
weight) sand-sawdust system had an L, ,, value of 48 dB.
Figures 13 and 14 show numerical simulations of var-
ious stiffness and mass densities of the upper layer. The
mass density and the stiffness are varied in order to con-
firm that the damping by the sand-sawdust cannot be
achieved by replacing it with simple mass. This fact is
consistent with the comparison of the experimental results
shown in Figure 10. Both simulations in Figures 13 and 14
show that the increase in mass and stiffness certainly low-
ers the vibration level above 80 Hz. Furthermore, it takes
an impractical amount of mass and stiffness to achieve
performance comparable to that of sand-sawdust. For ex-
ample, the gypsum concrete upper layer (81 kgm™2) used
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Figure 13. Numerical simulations of the root-mean-square veloc-
ity of the ceiling with various upper layer bending stiffness.

10 50 100 150 200
Frequency (Hz)

Figure 14. Numerical simulations of the root-mean-square veloc-
ity of the ceiling with various upper layer mass densities.

in Figure 10 would be nowhere heavy or stiff enough to
achieve the dotted curves in Figures 13 and 14. When ob-
serving the vibrations of the floor upper surface, flexural
standing waves could be seen in the gypsum concrete top-
ping, whereas the flexural waves in the sand-sawdust floor
upper did not propagate far enough to form standing waves
[1]. Measurements by others on gypsum board show the
loss factor to be approximately 0.02 (see [22]).

6. Summary

This paper has demonstrated the potential of the vibra-
tion damping ability of the sand-sawdust layer in LTFSs.
The sand-sawdust layer achieved greater performance than
an equivalently massive concrete layer. Thus the benefit
of using the sand-sawdust in LTFSs has been confirmed.
In order to quantify the damping, a mathematical model
is used to determine the loss factor of the sand-sawdust
layer. It has been found that using a loss factor as a lin-
ear function of frequency gives us a good agreement be-
tween theoretical predictions and experimental measure-
ments. In addition, a modelling regime for the fibre-infill
in the cavity space has been studied. The flow-resistivity
of the infill as a linear function of frequency has given us a
good agreement between the theory and the experiments.
Although the theories of fibrous media and granular me-
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dia tell us that there is a complex interaction between the
damping and the frequency, simple linear functions have
been chosen so that the mathematical model is kept simple
and practical.

Appendix

Al. Material parameters

1. Panel products

e 15mm 5-ply Ecoply F11 plywood: Manufacturer’s
nominal Density = 560 kgm‘3, nominal static bend-
ing stiffness 2360 Nm? along face grain, 684 Nm?
perpendicular to face grain assuming 10.5GPa
along-grain wood stiffness. Dynamic measurements
from one sample showed that along-grain wood stiff-
ness was 13 GPa. Apparent measured dynamic bend-
ing stiffness along face grain (from floor measure-
ments) is equivalent to homogeneous material with
Young’s modulus from 12 to 14 GPa. Vibration loss
factor of material assumed to be 0.03.

e 13 mm GIB Noiseline (gypsum) plasterboard: Man-
ufacturer’s nominal density = 962 kgm™3. Dynamic
Young’s modulus = 3.7 GPa. Measured vibration
loss factor = 0.013. Supplied by Winstone Wall-
boards Ltd.

e Gypsum top layer: USG Levelrock 3500 PS, pre-
sanded gypsum concrete. Manufacturers nominal
density = 1920 kgm™>. Nominal Young’s modulus =
6.6 GPa.

2. Joists

o Carter-Holt-Harvey (CHH) Hyspan LVL (laminated
veneer lumber): Manufacturer’s nominal density
= 620kgm™3, nominal static Young’s modulus =
13.2 GPa. Apparent dynamic Young’s modulus from
measurements = 14.5 GPa to 15.5 GPa. Assumed vi-
bration loss factor = 0.03.

¢ 300mm CHH Hybeam I-beam (HJ300-63): Manu-
facturer’s nominal linear density = 4.4 kgm™!, nom-
inal static bending stiffness = 1111000 Nm?. As-
sumed vibration loss factor = 0.03.

3. Infill materials

e 150 mm Tasman Insulation Mid-floor Silencer: Mea-
sured sample flow resistivity = 7227 Rayls m™!.
Density = 12kgm™3.

e Sand/sawdust mix (80/20): Density = 1210kgm™.

4. Ceiling fixtures

e RSIC clip: Dynamic Stiffness at 20 Hz under 130 N
load (approx equiv to 25 kgm™ ceiling surface den-
sity) = 220000 Nm~!. Loss factor = 0.1.

e Gib Rondo Batten: Estimated (from measurements)
bending stiffness when attached to plasterboard =
11000 Nm?.

A2. Formulation of the matrices

This section shows the formulation of the linear system of
equations for the coefficients of the Fourier expansion of
the displacement of the floor, the ceiling and the acoustic
pressure. Although most of the derivation here has been

presented in [10], the reader may find these formulas use-
ful when implementing our model.

The equations for the coefficients are formulated as ma-
trix and vector equations using the vector representation of
the coefficients, that is, the coefficients are denoted by the
following column vectors

u (o]
cal Cél
27 ‘12
Cy = . ,Cec = .
U. C'
CNN NN
and
(1 (2)
B 3
Lo Fén
= . Dy = .
M @
Uyn Iyn

The assembled equation of the vector (cy, ¢e, I'1, I'z) is

M) My Mz My, Cy S
Mip My My My cc | _[ O
My 0 Ms M || Ty ]= 1 0
0 Myp Myz My I 0

For example, the elements of M, are given by equation
(Al).

0 0
0 Do (k2 + K,%)z ~ mpw?* 0

| 0 0

K ijj &1 (<) (v;) o1 (<) w (v5)
+ :

M, =

T Zf;zs{ dn ) wn (v;) dn ) ww (v))

(Elllkf;, - mla)z) Zjll 5] (.Vj) Yy ()’j)
+ :
0

- (ErLik}, = ma?) Zfil wn (v) wa (7))

HIE Tt v () i (1)
+ :

0

) : (Al)
- Hk;, Zf.i-_l wn () ww (35)
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The first matrix of equation (Al) represents the bending
of the upper layer, the second does the rubber connectors,
the third does the bending of the attached joists, and the
fourth does the slippage rigidity, in which H is given by

o (hu—hy) (he + By)
H = .
2
The sub-matrix M, represents the spring connection by
the rubber clips, and is same as the second matrix in the
above equation with an opposite sign.

The other off-diagonal sub-matrices M3, M4, Mss,
and M>4 represent the interaction between the cavity air
and the top/bottom surfaces given by equations (1) and
(2). For example, M3 is due to the pressure at z = 0 and
given by equation (A2).

[ 2 aprgiyndxdy [1[2 aifoprydxdy

oI5 asprryadxdy [ [ a1 podpryadxdy e

L? ff a1 frpnyndxdy
f(f L;} a1fndryidxdy

f(? f(f anPn PNy dxdy

Note that M3 = Mj4. Similarly, the matrices M»3 and
M4 can be derived from equation (9) at z = d. The matri-
ces M4 and My, are diagonal matrices of w?p from equa-
tion (9), and the matrices M3, M34, Mys, and My are due
to the left hand side of equation (9).

The vector f due to the forcing is given by

Foy (xo) w1 (yo)
Fa (x0) w1 (yo)

Fon (xo) wn (yo)

There may be more efficient way of assembling the matri-
ces. We have not considered it, because the largest matrix
is4N? by 4N2, N = 20, which can be computed using an
average personal computer.

A3. Flow resistivity

The functions a(X) and b(X) in equation (20) are defined
by

T5(T) - T3) T - T 17
= 272 22
T2T2 + T2T:
T T,
T4+ T

a(X)

b(X)

where

T
T;

1l

1+9.66X, Th =X +0.0966 X2,
2.537 +9.66X, Ty = 0.1591 (1 + 0.7024X) .
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