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Abstract: Electrical capacitance tomography is a non-invasive imaging technique that
uses measured trans-capacitances outside a medium to recover the unknown
permittivity in the medium. We use Bayesian inference to solve the problem
of recovering the unknown shape of a constant permittivity inclusion in an
otherwise uniform background. Calculated statistics give accurate estimates of
inclusion area, and other properties, when using measured data.
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1. INTRODUCTION

Electrical capacitance tomography (ECT) is a
technique for recovering the spatially-varying per-
mittivity of an insulating medium from measure-
ment of capacitance outside the boundary of the
medium. ECT is primarily used for non-invasive
imaging within inaccessible domains in applica-
tions where differing materials show up as con-
trasting permittivities. Electrodes are set in an
insulating material at the outside of an insulating
pipe. By applying a predefined voltage pattern to
electrodes the capacitance between pairs of elec-
trodes can be directly related to measured electric
potentials, electric currents, and electric charges.

Measurements consist of all the capacitances be-
tween pairs of electrodes, making up the matrix of
trans-capacitances. The interior of the pipe con-
tains the material with unknown permittivity dis-
tribution that is being imaged. Measured capaci-
tances depend on the unknown permittivity. The
imaging problem is to ‘invert’ this relationship to
determine the unknown permittivity.

ECT has been proposed for a variety of target ap-
plications such as imaging dilute as well as bulky
multi-phase flows in oil refinement, in the food in-
dustry, and to observe pharmaceutical and chem-
ical processes [1, 2, 3, 4]. ECT systems can be
implemented with low cost, and due to their ro-
bustness and small probability of failure are suit-
able for operation under harsh conditions, such as
imaging in combustion chambers [5] or in the pres-
ence of strong external electromagnetic fields [6].

We present a solution to a problem in ECT, of

recovering the unknown shape of a single inclu-
sion with unknown constant permittivity in an
otherwise uniform background material [7]. This
problem arose in an application with the goal of
quantifying void fraction (water/air) in oil pipe
lines. We apply Bayesian inference to formulate
the inverse problem as an estimation problem over
the posterior distribution for unknown permittiv-
ity conditioned on measured data. Key compo-
nents of the formulation are a prior model re-
quiring a parametrization of the permittivity and
a normalizable prior density, the likelihood func-
tion that follows from a decomposition of measure-
ments into deterministic and random parts, and
numerical simulation of noise-free measurements.
We present the posterior distribution of inclusion
area as a check on accuracy of the method.

2. INSTRUMENTATION FOR ECT

Two measurement principles are used in ECT in-
strumentation [8]:

• charge or displacement-current based mea-
surements (a.c. voltage, low-impedance mea-
surement)

• potential based measurements (d.c. voltage,
high-impedance measurement)

For both methods each electrode is designated as
a ‘transmitting’ or as a ‘receiving’ electrode with
a prescribed voltage being applied to transmitting
electrodes. In the charge-based method the re-
ceiving electrodes are held at virtual earth with
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the displacement charge being measured, while
in the voltage-based approach the receiving elec-
trodes are floating with the potential being mea-
sured.

The measurements used in this paper were made
with the charge-based sensor built at Graz Univer-
sity of Technology [9]. Figure 1 shows the measure-
ment configuration. The front-end of the charge-
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Figure 1: Measurement configuration for ECT.
Electrodes are placed around the pipe in the imag-
ing plane. Each electrode features dedicated trans-
mitting and receiving hardware.

based ECT sensor consists of an input resonant
circuit, a low-noise current-to-voltage converter, a
bandpass filter, a logarithmic demodulator, and a
24 bit analog-to-digital converter controlled by a
microprocessor. The sensor has a carrier frequency
of 40MHz and comprises two tuneable filters ad-
justed by means of variable capacitances for stray
capacitance compensation.

2.1 Measurement Uncertainty

The sensor front-end and the subsequent instru-
mentation introduce noise sources to the measure-
ment process. Applied voltage also has error, but
this error is not significant and we don’t consider
that here (see [10] for an analysis that does). To in-
vestigate the robustness and repeatability of data
acquisition, the distribution of the measured dis-
placement currents was examined over multiple
measurement with a given a fixed permittivity dis-
tribution [7]. Figure 2 shows the normalized quan-
tile plot and the histogram for 2000 measurements
at one electrode. The measured electrode displace-
ment currents exhibit noise properties that can be
well modelled as additive zero mean Gaussian with
standard deviation σ ≈ 0.07µA. The matrix of
sample correlation coefficients for all electrodes is
shown in Figure 3. As can be seen, off-diagonal
elements are plausibly zero, so the measurement
error covariance matrix is modelled as Σ = σ2I

where I is the identity matrix. Accordingly, the
density for measuring d given permittivity defined
by θ is the multivariate Gaussian,

π(d|θ) ∝ exp

{

−
1

2
(qm − d)T Σ−1(qm − d)

}

(1)
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Figure 2: Distribution of 2000 measured displace-
ment currents on one electrode. The distribution
can be well modelled as Gaussian distribution ac-
cording to the normalized quantile plot (top) and
the histogram of the displacement currents (bot-
tom).
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Figure 3: Matrix of correlation coefficients. Off-
diagonal elements are almost zero.

where qm denotes the vector of simulated displace-
ment currents (or charges).

3. DATA SIMULATION

We denote the measurement region by Ω, being
the region bounded by the electrodes and outer
shield. Let Γi, i = 1, 2, . . . , Ne denote the bound-
ary of electrode i when there are Ne electrodes, and
let Γs be the inner boundary of the outer shield.
Then the boundary to Ω is ∂Ω = ∪Ne

i=1Γi ∪ Γs.
In the absence of internal charges, the electric po-
tential u satisfies the generalized Laplace equation
in which the permittivity ε appears as a coeffi-
cient, along with Dirichlet boundary value condi-
tions corresponding to the voltage asserted at elec-
trodes.

For the case when electrode i is held at potential v0

while all others are held at virtual earth, then the
potential ui satisfies the Dirichlet boundary value



problem (BVP),

∇ · (ε∇ui) = 0, in Ω,

ui|Γi
= v0, (2)

ui|Γj
= 0, j 6= i,

ui|Γe
= 0.

For brevity we have not written ε (r) and ui (r)
showing the functional dependence on position
r ∈ Ω, but take that spatial variation to be im-
plicit. The charge at the sensing electrode j can
be determined by integration of the electric dis-
placement over the electrode boundary,

qi,j = −

∮

Γj

ε
∂ui

∂n
dr (3)

where n is the inward normal vector.

Our computer solution of the BVP uses a coupled
finite element method (FEM) and boundary ele-
ment method (BEM) scheme [11, 7], with the re-
gion being imaged using a BEM formulation cou-
pled to a FEM discretization of the insulating pipe
and region outside the electrodes.

4. BAYESIAN INFERENCE

In the Bayesian formulation, inference about θ is
based on the posterior density

π(θ|d) =
π(d|θ)π(θ)

π(d)
. (4)

where π(d|θ) is the likelihood function (for fixed
d) in equation 1, and π(θ) denotes the prior den-
sity expressing the information of θ prior to the
measurement of d. The denominator π(d) =
∫

θ π(d|θ)π(θ)dθ is a finite normalizing constant,
since our formulation for ECT is fixed, that does
not need to be calculated as we can work with the
non-normalized posterior distribution.

4.1 Representation and Prior Modelling

Our solution uses a polygonal representation of the
boundary, so the permittivity is defined by the pa-
rameter θ = ((x1, y1), (x2, y2), . . . , (xn, yn)) giving
the vertexes of an n-gon for some fixed n typi-
cally in the range 8 to 32. We also include the
two permittivity values, but we will omit that con-
sideration here for clarity. A basic prior density
over this representation is to sample each vertex
(xk, yk) uniformly in area from the allowable do-
main Ω and restrict to simple polygons, i.e. not
self crossing. This prior density has the form

π(θ) ∝ I (θ) (5)

where I is the indicator function for θ represent-
ing a feasible polygon. That is, the prior density
is constant over allowable polygons. The change
of variables relation for probability distributions
shows that a uniform density in vertex position
gives a density over area that scales as (area)−1/2.
Hence for large polygons, and inclusions, where
most polygons are simple, this prior puts greater
weight on small areas resulting in estimated ar-
eas that will always be smaller than the true area.
The constraint that the polygon be simple compli-
cates this picture for small area inclusions, since a
greater proportion of small polygons are self cross-
ing. The overall effect is that the area of large
inclusions will be underestimated while the area
of small inclusions will be overestimated, with the
division between ‘small’ and ‘large’ depending on
the number of vertexes n. This effect necessar-
ily occurs in regularized or least-squares fitting
of contour-based models, since effectively the con-
stant prior model is used.

Since we are primarily interested in area of inclu-
sions, we explicitly specify a prior in terms of area,
given in equation (6) [12]. Denote the circumfer-
ence of the inclusion by c(θ) and the area of the
polygon by Γ(θ). The prior density is

π(θ) ∝ exp

{

−
1

2σ2
pr

(

c(θ)

2
√

Γ(θ)π
− 1

)}

I (θ) (6)

in which the variance σ2
pr is chosen to penalize

small and large areas.

4.2 Posterior Exploration

The product of equations 1 and 6 gives the non-
normalized posterior distribution distribution that
we explore to learn about the unknown permit-
tivity. Exploration of the posterior distribution
is performed using Markov chain Monte Carlo
(MCMC) sampling that generates a Markov chain
with equilibrium distribution π(·|d) by simulating
an appropriate transition kernel [13].

The standard Metropolis-Hastings (MH) algo-
rithm has been extended to deal with transitions
in state space with differing dimension [13], allow-
ing insertion and deletion of parameters. Even
though we do not use variable-dimension states in
the example we prefer this ‘reversible jump’, or
Metropolis-Hastings-Green (MHG), formalism as
it greatly simplifies calculation of acceptance prob-
abilities for the subspace moves that we employ.

The reversible jump formalism considers the com-
posite parameter (θ, γ) where θ is the usual state
vector, and γ is the vector of random numbers used
to compute the proposal θ′. Similarly, (θ′, γ′) is
the composite parameter for the reverse proposal.



Then the MCMC sampling algorithm with MH dy-
namics can be written as:
Let the chain be in state θn = θ, then θn+1 is de-
termined in the following way:

• Propose a new candidate state θ′ from θ with
some proposal density q(θ, θ′)

• Calculate the MH acceptance ratio

α(θ, θ′) = min

(

1,
π(θ′|d)q(γ′)

π(θ|d)q(γ)

∣

∣

∣

∣

∂(θ′, γ′)

∂(θ, γ)

∣

∣

∣

∣

)

(7)

• Set θn+1 = θ′ with probability α(θ, θ′)
, i.e. accept the proposed state, otherwise set
θn+1 = θ, i.e. reject.

• Repeat

The last factor in equation 7 denotes the Jacobian
determinant of the transformation from (θ, γ) to
(θ′, γ′).

We find a combination of M = 4 moves gives
a suitably efficient MCMC in this example [7].
These are translation, rotation, and scaling of the
polygon, and moving the position of one vertex of
the polygon. The vertex move ensures irreducibil-
ity but, by itself, would lead to a very slow algo-
rithm. The remaining moves are designed to give
an efficient algorithm. A new candidate θ′ is pro-
posed from θ by randomly choosing one of these
four moves and using a random step size λi tuned
for each move. The Jacobian term in the MHG
algorithm for the moves translation, rotation, and
vertex move is 1. For the scaling move the Jaco-
bian term is λ−2n+1 [7].

5. RESULTS

In the following different shaped material inclu-
sions are recovered from simulated and measured
data using MCMC sampling. For all experiments
inclusions with different shapes and a permittiv-
ity of εr = 3.5 in an air-filled pipe (εr = 1.0)
are considered. For the experiments using syn-
thetic data 2,000,000 samples were drawn from
the posterior distribution, using a simulated data
set corrupted by noise. The data was created
using 10,000 boundary elements in the forward
map. For the experiment using measured data
1,000,000 samples were drawn from a posterior dis-
tribution. Noise standard deviation in both cases
was σ = 6.7 × 10−4.

A burn-in period of 50000 samples was found suit-
able after testing the algorithm with different ini-
tial states and different ratios of moves. During
the burn-in-period, which strongly depends on the

initial state of the Markov chain, the sampling dis-
tribution is not the equilibrium distribution. Once
the chain is in equilibrium only every 100th sample
is stored. For the results presented, the four pro-
posal moves were chosen with equal probability,
giving an acceptance rate of about 2%.

5.1 Experiment 1 – elliptic and fancy-shaped con-
tour (simulated data)

Figure 4(a) and Figure 4(b) illustrate the resul-
tant posterior variability in inclusion shape for an
elliptical inclusion and a more fancy shape, respec-
tively. The figures show scatter plots, constructed
by plotting one point randomly from each state,
uniformly in boundary length, and gives a graphi-
cal display of the probability density that a bound-
ary passes through any element of area. Points in
the scatter plot are clustered around the true con-
tour plotted in dashed gray. Due to the decreased
sensitivity in the center of the pipe, the margin of
deviation of scattered points for the elliptic con-
tour is greater towards the center than in the re-
gion close to the electrodes. For the fancy contour

increased margin
of deviation

(a)

deviation

(b)

Figure 4: Scatter plots. (a) Entire domain Ω with
elliptic-shaped inclusion. (b) fancy-shaped con-
tour.

in Figure 4(b) deviations from the true contour in
regions of low sensor sensitivity are clearly visi-
ble. Furthermore, there are significant outliers in



the right part of the estimation result despite this
part of the contour being close to the boundary.
The reason is that the distinct corner in the true
boundary which is not well modelled by our prior,
which rejects candidate states with sharp angles
between two boundary elements. Note, however,
that this mis-modelling in the prior is evident from
the scatter plot in the region near the sharp corner,
and indicates the significant benefit of posterior er-
ror estimates available in a Bayesian analysis.

5.2 Experiment 2 – circular contour (measured
data)

Figure 5(a) shows the posterior variability in inclu-
sion shape and position for measured data. Sam-
ples from the posterior distribution are consistent
with the circular shape of the PVC rod. Due to
the lack of a reference measurement system, the
true shape is not depicted. However, knowing the
geometry of the rod allows validation of the re-
construction results by comparing estimates to the
true area and circumference. The centered gray
circle-shaped contour represents the initial state of
the Markov chain. MAP state and CM state esti-
mates are presented in Figure 5(b). In accordance
with the first example (same shape and proper-
ties but synthetic data) MAP and CM estimates
almost coincide indicating that the posterior dis-
tribution has a well-defined single mode. Table
1 summarizes the inference. Mean, standard de-
viation and the integrated auto-correlation time
(IACT) are evaluated for inclusion area Γ, circum-
ference c and center coordinates (x, y) of the cir-
cular inclusion. The integrated auto-correlation
time is, roughly, the number of correlated samples
with the same variance reducing power as one in-
dependent sample. Hence a small IACT indicates
a statistically efficient Markov chain.

6. DISCUSSION AND CONCLUSION

The predominant approach to inverse problems
in ECT is based on various deterministic itera-
tive (e.g. regularized least squares) or non-iterative
(e.g. linear back projection) approximations for
image reconstruction.

Inferential solutions to inverse problems provide
substantial advantages over deterministic meth-
ods, such as the ability to treat arbitrary forward
maps and error distributions, and to use a wide
range of representations of the unknown system
including parameter spaces that are discrete, dis-
continuous, or even variable dimension.

Markov chain Monte Carlo sampling (MCMC) has
revolutionized computational Bayesian inference
and is currently the best available technology for

(a)
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Figure 5: Reconstruction results. (a) Scatter plot.
Randomly chosen points of the posterior distri-
bution are plotted. (b) Detail plot of point es-
timates. MAP estimate (gray) and the CM esti-
mate (dashed black) calculated from the posterior
distribution.

a comprehensive analysis of inverse problems, al-
lowing quantitative estimates and exploration of
high-dimensional posterior distributions without
special mathematical structure. An impediment
to the application of Bayesian analyses to practical
inverse problems lies in the computational cost of
MCMC sampling. In recent years several promis-
ing algorithms and advances have been suggested
that give substantial speedup for computationally
intensive problems including capacitance tomog-
raphy. There is some hope that eventually the
computational cost of sampling will not be sub-
stantially greater than that of optimization.

We demonstrated sample-based recovery of a sin-
gle inclusion with unknown shape and unknown
constant permittivity from measured and simu-
lated electrical capacitance data. The accuracy
of results speak for themselves.

There is now a range of well-developed tools for
stochastic modelling and Bayesian inference for
inverse problems. Notwithstanding application-
specific modelling difficulties, applying those tools
is now a well-defined procedure. The interested



Table 1: Output statistics for circular inclusion estimated from measured data
Quantities true values mean standard deviation IACT
x-coordinate of center [m] – 3.71×10−2 2.32×10−5 5.89×102

y-coordinate of center [m] – -1.14×10−2 3.02×10−5 4.65×102

Area Γ [m2] 3.14×10−4 3.13×10−4 6.88×10−6 1.10×103

Circumference c [m] 6.28×10−2 6.24×10−2 1.57×10−4 1.88×103

Log-likelihood – -46.10 1.72×10−1 3.99×102

reader can learn more from two local sources: This
paper is a (very) abridged version of a tutorial
review that the authors recently completed [14].
The modelling and computational methods for
Bayesian inference that we apply in this paper
have been taught for more than a decade in the
graduate course ‘Physics 707 Inverse Problems’ at
Auckland University. In 2009 that course will be
taught both in Auckland and Otago (under the
moniker ELEC 404) with an on-line text available
via the latter course.
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