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1. INTRODUCTION

Millman and Grabel noted in their 1987 textbook
[1], that the diverse activities encompassed by the
term ‘electronics’ share the common property of
processing information. In fact, a definition of
modern electronics could be ‘the processing of in-
formation represented as electrical signals’.

A central part of information processing is the
analysis of measurements. We often interpret
measurements in terms of physical models as a
means of probing the world around us. The ques-
tion we address in this paper is: what frame-
work should guide us in doing that analysis? We
present four examples that display the features,
and foibles, of three common frameworks. We use
the term ‘imaging’ to refer to data analysis be-
cause the primary unknown in our work is usually
a spatially-varying quantity that is usefully dis-
played as an image.

The three frameworks we compare in this paper
are direct inversion, optimizing an objective func-

tion, and model-based inference. The tools used
in ‘signal processing’ largely come from the first
two of these, and have become essential knowl-
edge in electrical and electronic engineering. The
third framework is now seen as the ‘gold standard’
in imaging, and we are starting to see the first
measurement equipment built around inferential
methods.

It might come as a surprise to practitioners in elec-
tronics that statisticians have played a key role in
developing these frameworks, and are largely re-
sponsible for the framework of signal processing as
practised in electrical engineering. For example, it
was the statistician John Tukey who brought us

the Cooley-Tukey FFT algorithm, and also the
word ‘bit’.

The connection between imaging, and statistics
arises because every measurement is corrupted to
some degree by noise. Hence any measurement
process is naturally described using probability,
and the task of estimating the unknown true im-
age is naturally one of statistical inference. In fact
the discipline of statistics has its origins in such
problems, with Laplace’s work in astronomy, and
the later work by Jeffreys in geophysics [2].

2. INVERSION

2.1 Example 1: Image deblurring

Figure 1 shows a test image, with 200×200
8-bit gray scale pixels, and the result af-

Figure 1: A gray scale test image (left) and a
blurred version (right).

ter blurring using the Matlab command
blurred = conv2(test,ones(5,5)/25,’same’);

Most students of electronics will have taken some
courses in mathematics, and so have been exposed
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to the idea of inversion of a function. This is by
far the most often suggested framework for imag-
ing by those who have little or no experience in
practical data analysis. In this section we look at
using direct inversion to perform deblurring, and
see why it will (always) fail for practical problems.

In this case the blurring, or forward map, is given
by a convolution, so the image f and data d are
related by

d = f ∗ h

when h is the ‘point spread function’. A standard
result is then that the Fourier transforms F , D,
and H of f , d, and h, respectively, are related
simply by

D = F ×H, or F = D/H.

In Matlab this deblurring by Fourier division looks
like f = real(ifft2(D./H)); and the result is
shown in the left-hand panel of Figure 2. As you
can see, the result is not good.

Figure 2: Left: image evaluated by direct inver-
sion. Right: image evaluated by Tikhonov regu-
larized least-squares inversion, using λ = 0.14.

2.2 What went wrong with the inverse?

In this case the forward map is invertible, so the
route of direct inversion should work. The magni-
tude of the components of H (which are also the
singular values of the forward map) are plotted
in Figure 3, and though some singular values are
small, none are actually zero or even near machine
precision. We can’t blame the failure of direct in-
version on noise in the data since we added no
noise (apart from round-off error) to the blurred
image, so everything should work, right? Well, no.
The problem is that the forward map is not ex-

actly a convolution, because we trimmed the data
to have the same size as the image. More than
5 pixels from the edge of the picture the forward
map is exactly a convolution, but it is not quite
for a band near the edges. That small model error

is enough to make direct inversion near useless,
with the effect that mis-modelling at the edges
propagates catastrophically through the image.
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Figure 3: The singular values of the forward map,
sorted in descending order.

When the data does contain noise, direct inversion
will also fail because the small singular values en-
sure that the reconstructed image is dominated by
noise.

3. OPTIMIZATION OF AN

OBJECTIVE FUNCTION

A common route around the problems of direct
inversion is to apply a regular approximation to
the inverse of the forward map A. The usual way
to do that is to minimize an objective function
such as

Q(f) = ‖Af − d‖2 + λ2 ‖f‖2

that balances the data misfit ‖Af − d‖2 against
a measure of image quality – in this case the
Tikhonov regularizing functional ‖f‖2. The bal-
ance is controlled by the regularizing parameter
λ. When λ = 0 we get usual least-squares fitting
to data, which reduces to direct inversion when A
is invertible. More generally the minimum is the
solution of the generalized deconvolution equation

(

ATA + λI
)

f = ATd.

In signal processing this linear equation is known
as the Wiener filter.

The usefulness of this approach can be seen in the
right panel of Figure 2 that shows the deblurred
image evaluated with λ = 0.14, using the Matlab
F = D.*conj(H)./(abs(H).^2+lambda.^2);

f = real(ifft2(F));

3.1 Stochastic bias in regularized inverses

For non-linear problems, least-squares estimates
and regularized estimates suffer from stochastic

bias, i.e. a systematic offset in estimated values
resulting from errors on measurements. Stochas-
tic bias may be displayed in a simple form, as fol-
lows: If x is a (scalar) random variable from any
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distribution with mean E (x) = µ and variance
σ2, then E

(

x2
)

= µ2 + σ2. That is, in the pres-
ence of noise on variable x, the mean of the square
equals the square of the mean plus the variance of

the noise. The bigger the noise, the bigger the
offset. Stochastic bias is a very real effect that,
for example, is one of the mechanisms that allows
profit to be made in volatile markets, whether in-
creasing or decreasing [3]. The following example
shows that stochastic bias occurs in (regularized)
least-squares estimation.

3.2 Example 2: Estimating heat capacity from

impulsive heating

Consider the problem of determining the heat ca-
pacity c in a 3-dimensional homogeneous medium
of large extent for which the thermal conductiv-
ity k is known. We consider the stylized problem
where the medium is subject to unit impulsive
heating at r = 0 and time t = 0, and the tem-
perature at the point of heating is subsequently
measured. For this problem the forward map is
available analytically, with the noise-free temper-
ature at time t

T (t) =
c1/2

(4πkt)
3/2

. (1)

If measurement di is made at time t = its, i =
1, 2, . . .K, and is subject to additive noise with
zero mean and variance σ2

n, then the least-squares
estimate of c is

ĉ = argmin
c

K
∑

i=1

(

di − b

√
c

i3/2

)

where b = (4πkts)
−3/2. The normal equations are

solvable in this case, and give

ĉ =

[

∑K
i=1 di/i3/2

b
∑K

i=1 1/i3

]2

= w2.

The term in the square brackets, denoted w, is
the sum of many random variables and hence w
is a random variable with mean

√
c and variance

σ2
n/

(

b2
∑K

i=1 1/i3
)

→ σ2
n/

(

b2ζ (3)
)

as K → ∞.

Here ζ (3) ≈ 1. 202 1 is the Riemann zeta function
evaluated at 3. Using the result quoted above,
for a large (infinite) number of measurements,
the least-squares estimate of c has expected value
ĉ = c + σ2

n/
(

1.2021× b2
)

. That is, in the pres-
ence of measurement error the least squares esti-
mate is systematically biased, for all K. Note that
reducing the measurement error gives less bias.
However, increasing the number of measurements
makes the estimate worse (not better as is often
claimed) by increasing bias.

In this case the bias may be easily removed (by
subtracting σ2

n/
(

1.2021× b2
)

) since we were able
to calculate the bias analytically. The result is
a better estimator, having the same variance but
lower bias, and is explicitly not the least-squares
estimator. Unfortunately the obvious conclusion,
that best-fit to data is not the same as best-fit
to parameters, is not commonly observed in the
imaging literature. In most imaging problems we
are not able to determine the bias analytically,
making the least squares estimate both biased and
difficult to fix. The application of regularization
actually compounds this problem. For example,
for this stylised example the Tikhonov-regularised
estimate may be calculated analytically, and has
bias that is dependent on the unknown value of c,
leaving an implicit problem to remove bias.

It is instructive to note that the quantity w is an
unbiased estimator for

√
c, since the data is a lin-

ear function of
√

c. Hence the least squares esti-
mate of

√
c makes a good estimate, but its square

is not a good estimate of c. This apparently para-
doxical behaviour is an example of how the al-
gebra of (random) variables with uncertainty is
quite different to the algebra of deterministic vari-
ables (see e.g. [4]). For this reason it is necessary
to track the distribution of possible values that
a variable can take, not just the single ‘best’ esti-
mate. Maintaining and summarizing distributions
over variables is the basis of Bayesian inference.

Anticipating section 4., we briefly describe how a
Bayesian approach could solve this example. The
likelihood function combines the forward map in
equation 1 and the distribution over measurement
noise. As is typical in inverse problems, the range
of the forward map is a small fraction of data
space, and so the noise statistics may be deter-
mined from the measurements. In this case, at
large times when T (t) ≈ 0 the data solely con-
sists of measurements of the noise. Hence the
noise distribution can be determined. The form
of the likelihood function depends on the noise
statistics, and in this way the Bayesian approach
can deal with any noise distribution. For this sim-
ple single parameter estimation problem, an ‘ob-
jective Bayesian’ analysis is feasible, by choosing
the Jeffreys type [2] prior distribution that is in-
variant to choice of units for heat capacity, giving
πp (c) ∝ c−1/2. This is an ‘improper’ prior dis-
tribution and would require modification if only
a few measurements were available, though then
the data so poorly constrains c that no approach
would give good results. When the data is ade-
quate, the posterior mean gives a suitable point
estimate for c. In the ideal case where the noise
is independent identically distributed (iid) zero-
mean Gaussian, and measurements are very ac-
curate, there is little to choose between the least
squares estimate and the posterior mean, except in
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computational cost. In most other circumstances
the posterior mean does a much better job of es-
timating the unknown true heat capacity.

3.3 Example 3: Uncertainty in estimates with

uniform noise: a counter example to estima-

tors

The ability to calculate data-dependent or poste-
rior variance is a distinct advantage of a Bayesian
approach to inverse problems. In contrast, meth-
ods such as least squares are justified on the basis
of the variance of the estimator, i.e. the average
variance over all possible measurements. Yet, in
many practical inverse problems the variance of
the estimator has nothing to do with the uncer-
tainty in parameters estimated from the data set
at hand. This example demonstrates that issue in
a very simple setting, where the forward map is
the identity function with uniform measurement
errors.

Consider the simple case where a scalar quantity
µ is measured directly, subject to uniform noise,
with mean zero and width 2. Then the ith mea-
surement is

di = µ + ni

where each ni ∼ U (−1, 1), i.e. is uniformly dis-
tributed over the interval [−1, 1]. Since µ − 1 ≤
di ≤ µ + 1 for all i, it follows that max {di} − 1 ≤
µ ≤ min {di} + 1. In fact these bounds are ex-
actly what the data tell us about µ. We note that
the likelihood function precisely expresses these
bounds, and so they are automatically included
in a Bayesian analysis.

The least squares estimate of µ from K measure-
ments is easily seen to be

µ̂ls =
1

K

K
∑

i=1

di.

It is instructive to note that this estimate can lie
outside the interval [max {di} − 1, min {di}+ 1],
in which case it is not even consistent with the
measured data. For K = 10, this happens a lit-
tle more that 30% of the time, so in 1 out ev-
ery 3 experiments the least squares estimate is
not even a possible value. More troublesome,
in practice, is that the error often quoted for
the least-squares estimate has little to do with
the actual uncertainty in the value of µ as de-
termined by the data. From the considerations
above, we see that µ ∈ 1

2
(max {di}+ min {di})±

1
2

(2 + min {di} −max {di}) so the uncertainty is
(certainly) 1 + 1

2
(min {di} −max {di}). The

mean-square-error for the least squares estima-
tor of 1/

√
3K is often quoted as the error in

the least-squares estimate. Note that it is inde-
pendent of the data. Three simulations for the

case µ = 0 and K = 2, returned the values
(d1, d2) = (−0.7477, 0.6688), (−0.6112,−0.6136),
and (0.6278,−0.0376) giving estimates with pos-
terior error ±0.2918, ±0.9988, and ±0.6673. This
is sometimes larger, and sometimes smaller than
the least-squares error of ±0.4082.

Posterior error estimates are particularly informa-
tive when recovering spatially-varying parameters
such as the conductivity of an inhomogeneous ma-
terial. It is clear on physical grounds that the spa-
tial dependence of uncertainty in a reconstruction
must be data dependent. For example, when a re-
gion of low conductivity is surrounded by a region
of high conductivity, the outer region shields the
inner region from external sources. Hence the con-
ductivity of the inner region cannot be accurately
determined from measurements based on external
sources. However, if the whole medium has sim-
ilar conductivity, then energy can flow through
all regions, resulting in more accurate estimation.
Since the data reflects the distribution of conduc-
tivity, the spatially-varying error must be depen-
dent on the data. As mentioned above, the mean
square error of the least-squares estimate, or of
any other fixed estimator, gives no clue to this
effect.

4. BAYESIAN INFERENCE

4.1 Example 4: Aquifer Parameters from Pump

Test Data

In this example, we consider the analysis of ‘pump
test’ data used to determine the groundwater
availability at a site, and to predict the effects
of drawing water from a bore at that site. A
pump test consists of pumping groundwater from
a borehole and monitoring the groundwater level,
or drawdown, at a second borehole at some dis-
tance. Estimation of aquifer parameters from
pump test data is traditionally based on a graph-
ical approach: pump test data is plotted and pa-
rameters from a hydraulic model are varied to
achieve a ‘best’ fit to the data. With the advent
of the personal computer this process is commonly
automated using a least-squares fit.

In practice pump test data is corrupted by noise
which means that even under ideal conditions two
pump tests from the same site will result in the dif-
ferent drawdown traces, and hence different least
square parameter estimates. In this example we
concentrate on measurement error, in contrast to
the model error that dominated in the Example
1. We assume then that we observe noise per-
turbed measurements d of the ‘true’ drawdown s
in a monitoring bore:

d = s + noise. (2)
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Figure 5: T-walk sampling for the Theis model, after burn-in. Left: output traces of transmissivity T
(top) and storage S (bottom). Right: posterior histograms for transmissivity T (top) and storage S
(bottom).
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Figure 4: Synthetic pump test data for the Theis
model

For simplicity we take the noise to be iid Gaussian
distributed with mean 0 and standard deviation σ.

We simulated data using the classical Theis hy-
draulic model [5], parametrized by transmissivity
and storage parameters. Let s = s(r, t) be draw-
down at a distance r from the pumping well at
time t. Then s solves the Theis equation

S
∂s

∂t
= T∇2s + Qδ(x)δ(y),

where∇2 is the Laplacian, S is storage, T is trans-
missivity, Q is a constant pumping rate and δ(·)

is the Dirac δ-function. The Theis model has the
analytic solution

s(r, t)|(T, S) = − Q

4πT
Ei

(

−Sr2

4T t

)

(3)

where Ei(·) is the exponential integral. The no-
tation s(r, t)|(T, S) is read ‘s of r and t given T
and S’ and indicates that the true drawdown is
parametrized by transmissivity and storage pa-
rameters.

Equation 3 defines the forward map from the
parameters (T, S) to noise-free measurements
of drawdown. We assume that measurements
are made at times t1, t2, . . . , tN that we denote
d1, d2, . . . , dN . Under the assumption of Gaussian
noise, above, the probability density over measure-
ments has the form

π ({di} |T, S) =

1

(2πσ2)
exp

{

−
∑N

i=1 (di − s(r, ti)|(T, S))
2

2σ2

}

(4)

For a numerical example we suppose that we
measure noise perturbed measurements of draw-
down in an observation well 50 m from a well
pumped over three days with a pump rate of
Q = 1, 000 m3/day. The true transmissivity is
T = 1, 000m2/ day and storage is S = 1 × 10−4.
Figure 4 shows one set of measurements simulated
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tion of parameters

by evaluating the forward map and then adding
zero mean Gaussian noise with a standard devia-
tion of 0.005 m.

The posterior distribution over unknown parame-
ters is easily explored using Markov chain Monte
Carlo (MCMC) algorithms [6]. Even as recently
as five years ago, implementing an MCMC for
any problem, including this simple two parame-
ter case, would require learning how to write an
MCMC algorithm, and then tuning the proposal
densities to give reasonable performance. Fortu-
nately now there are a few black-box sampling al-
gorithms available where the user simple provides
the (log) target density and the black-box does the
rest. Here we use the t-walk [7], which is not the
fastest algorithm in terms of computation, but is
easily the fastest in terms of time between form-
ing the posterior distribution and having results
that solve the problem. Figure 5 shows output
traces from the t-walk sampling, and posterior his-
tograms for T and S.

More importantly than finding ‘best’ estimates for
the unknown parameters, the sampler output can
be used to determine joint distribution over pa-
rameters that is implied by the data and model.
Figure 6 shows a scatter plot of the joint distribu-
tion over S and T , showing that the data asserts
a negative correlation.

The purpose of performing pump tests is, ulti-
mately, to predict the effect on the water table
of drawing water from the borehole. Since the
data and model define a (posterior) distribution
over parameters, accordingly the data implies a
distribution over possible drawdowns. Figure 7
shows the drawdown prediction in the monitoring
well after 50 days of pumping. The variability of
prediction could be quantified in terms of a mean
and standard deviation. This will give the actual
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Figure 7: Histogram over drawdown predictions
in the monitoring well after 50 days of pumping

degree of certainty in drawdown. In contrast, the
drawdown predicted by the least-squares estimate,
as noted earlier, will exhibit a stochastic bias with
no indication of accuracy.

5. CONCLUSION

The frameworks compared for imaging of direct

inversion, optimizing an objective function, and
model-based inference each have advantages and
drawbacks. At present the gold standard are the
Bayesian inferential methods. These methods are
now straightforward to apply, but remain costly
in terms of computer time.
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