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Abstract—We present an assignment example that asks the
students to perform a blind deconvolution task using sample-
based Bayesian inference, as well as some extensions to the
structuring of the sampling task that provide substantial compu-
tational speed up. This example has the role of providing a direct
comparison with the regularized solution that students have previ-
ously evaluated; for this example the resulting mean deconvolved
image has the same visual quality as achieved by regularization
methods while demonstrating that the (effective) regularizing pa-
rameter can determined within the inferential framework, unlike
regularization where an extra ad hoc procedure is required. The
extension we present restructures the probabilistic calculation by
integrating over the latent field (unknown image) to give exactly
the same inference result, but reduces computational cost to less

than that required for regularized inversion, when selection of
the regularizing parameter is accounted for.

I. INTRODUCTION

Bayesian inference generalizes the traditional signal pro-
cessing methods to allow quantification of uncertainties in
estimates, as well as providing a framework in which data
processing may be informed by physical models. Historically,
these advantages have been offset by greater computational
cost of implementing inference compared to signal processing,
since the latter has been developed around highly efficient
algorithms, such as the fast Fourier transform. However, ever
since the remarkable four-volume treatise on Detection, Esti-
mation and Modulation Theory by Harry Van Trees [1]–[4],
dating from 1968 (!), it has been evident that Bayesian statis-
tics provides a comprehensive and principled framework that
generalizes traditional ‘estimator-based’ methods for signal
processing, allowing for model-based inference with quantified
uncertainties. Over the past 20 years there has been intensive
research into developing new computational tools for Bayesian
inference, so that now there are examples of inference that
are actually more computationally efficient than the traditional
estimator-based approaches, including the example presented
here.

Inference has been taught in the Electronics 4th-year at
Otago since 2009, is now a component of just about every
research project undertaken within the group, whether student
graduate project or one of the funded research projects, and
compliments the more traditional ’circuits and systems’ topics
in the undergraduate electronics syllabus. Collectively, these
topics facilitate the style of measurement devices that we build
at Otago, that one could characterize as “small front-end,
large back-end”. Inference provides the means of constructing
the large back-end that analyses measurements (made by the

small front-end) whereby outputs can be informed by physical
models of the world. A good example is our ‘fast fix’ GPS
unit that requires just 2 milli-seconds of radio signal to
make a GPS fix, precisely because the fix is performed by
inference, in contrast to signal processing methods that require
around 30 seconds to make a fix. That reduction in radio-on
time translates into smaller battery requirements and longer
operational lifetime.

Examples in class and assignments are often taken from
image recovery, such as image deblurring, to take advantage
of the intuitive notion of ‘quality’ of a reconstructed image
that most people have, as well as the inherent interest that
an image can provide. Small images, such as a 256 × 256

pixel image, present a manageable computational task for the
non-specialist, while being large enough that computational
efficiency does need to be considered if computation time is
to not be annoying.

Techniques covered for image deblurring include the reg-
ularization methods, that are robust versions of the estimators
used in classical signal processing, and also Bayesian inference
that provides quantified errors in solutions in the (ubiquitous)
presence of noise or other uncertainties. A university-mandated
change to 400-level paper structure in 2013 motivated us to
split the original paper titled ‘Inverse Problems and Infer-
ence’ into two collectively larger modules, one focusing on
inverse problems while the other expanded on the theme of
computational Bayesian inference. In this paper we present an
assignment example that asks the students to perform a blind
deconvolution task using sample-based Bayesian inference, as
well as some extensions to the structuring of the sampling task
that provide substantial computational speed up for large-scale
linear inverse problems.

In this paper we present that assignment example to demon-
strate that teaching Bayesian inference is quite feasible, and
that the computing required is quite manageable. Of course
this example comes after the required theory of probability
has been covered, though we find that graduate students in
electronics have little difficulty with the operational aspects of
Bayesian probability and statistics.

II. AN EXAMPLE REQUIRING BLIND DECONVOLUTION

Figure 1 contains a photograph of Jupiter taken in the
methane band (780nm) on a grid of size 256 × 256 pixels,
each takes an integer value from 0 to 255. As can be seen, the
image is somewhat blurry, so the task is to recover a deblurred
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Fig. 1. A blurry photograph of Jupiter taken in the methane band (780nm).

version of this image. Since we are presented with just the
blurry image and not the point-spread function, this problem
is often called blind deconvolution.

The upper right-hand portion of the photograph shows one
of the Galilean satellites. This satellite is small enough to be
considered close to a point source, and so we can use that
region of the photograph as an approximation to the point-
spread function. For this reason the title calls this semi-blind
deconvolution; a challenge question in the assignment asks
student to instead model and infer the point-spread function
to implement true blind deconvolution, though we do not
consider that here. We would note, however, that in all case of
successful blind deconvolution that we know of, the blurred
photograph contains some feature that is close to the point
spread function and so the semi-blind method we use here is
actually implemented, though perhaps more automatically.

III. A HIERARCHICAL MODEL FOR LINEAR INVERSE

PROBLEMS

A hierarchical stochastic model that occurs in many set-
tings [6] is

y|x, θ ∼ N (Ax,Σ (θ)) (1)

x|θ ∼ N
(

µ,Q−1 (θ)
)

(2)

θ ∼ π (θ) (3)

Here y is the observed data, x is a latent field, and θ is a
vector of hyperparameters that model uncertainty in the two
covariance (inverse of precision) matrices Σ and Q−1 of the
normal (Gaussian) distributions, N

(

µ,Q−1
)

denotes a normal
(aka Gaussian) distribution with mean µ and precision matrix
Q or covariance Q−1, while π denotes a general probability
distribution.

For example, consider the linear inverse problem where
data y is a blurred and noisy version of a true unknown image
x. When x and y are n × n gray-scale pixel images, we
represent x and y vectors of pixel values, in this case having
length n2. When the blurring may be modeled by convolution
with a (fixed) point-spread function h and the noise is additive
zero mean Gaussian, we write

y = h ∗ x+ n

= Ax + n (4)

where A is the linear operator representing convolution by the
point spread function, and n is a noise vector from a zero
mean Gaussian with some covariance Σ, i.e., n ∼ N (0,Σ).
Often the noise covariance is unknown up to some scale δ.
For example, we may know that the noise of measurements
is independent and identically distributed (iid) with average
power λ−1 so that Σ = 1

λ
I , where I is the identity matrix.

Since n is a random variable then so is y, with a transformation
of variables giving Eqn. 1 showing dependence on λ that is
one component of the vector θ. In the language of Bayesian
analysis, this defines the likelihood function for unknown x
and θ once data y is observed.

A common low-level model for the unknown image x is to
allow pixel values to be arbitrary, though prefer smooth images
in which each pixel takes similar values to its neighbours. Thus
we need to define a neighbourhood structure, which for the
usual pixel lattice may be taken to be the nearest neighbours.
We write j ∼ i when pixel j is a neighbour of pixel i, and ∂i
for the set of neighbours of pixel i, i.e.

∂i = {j 6= i|j ∼ i} .

For the usual pixel lattice ∂i consists of the pixel locations
that are above, below, to the left, and to the right of pixel
location i. Denote by |∂i| the number of neighbours of pixel
i, which will equal 4 for pixels in the interior of the image, 3
for pixels within an edge of the image, and 2 for the corner
pixels. Then a suitable stochastic model is given by the locally
linear Gaussian Markov random field (GMRF) defined by the
conditional distributions

xi|x∂i
∼ N

(

1

|∂i|
Σj∈∂i

xj ,
1

δ |∂i|

)

in which δ is an unknown lumping constant. This, each pixel
value is modeled as a Gaussian random variable with mean
equal to the average of neighbouring pixel values, and with
variance that decreases with the number of neighbours and
with increasing lumping constant. The joint density for x may
be written as [RH] the Gaussian in Eqn. 2 where the precision
matrix Q = δL in which

Lij =







(∂i| i = j

−1 j ∈ ∂i

0 otherwise

and δ is a component of the vector θ. This is the prior
distribution in a Bayesian analysis.

Students of electronics will recognize L as the admittance
matrix for a square lattice of 1Ω resistors, while graph theorists
will recognize L as the graph Laplacian on the graph of pixel
neighbours; in both cases the pixels lie at nodes of the graph
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while the neighbourhood structure defines which nodes are
connected. L also appears in Laplacian regularized inversion,
in similar mathematical expressions to the stochastic model.

The hierarchical model is completed by specifying hyper-
priors over the hyperparameters θ, that we have denoted π (θ)
in Eqn. 3.

IV. OPTIONS FOR SAMPLE-BASED INFERENCE

A. MCMC sampling from the posterior distribution

In order to perform inference on the system 123 it is typical
to utilize Bayes’ rule to form the posterior distribution over
unknowns x and θ conditioned on measured y,

π (x, θ|y) =
π (y|x, θ)π (x, θ)

π (y)
,

and then perform MCMC. The numerator is simply the
product of the distributions in the stochastic model, i.e.
π (y|x, θ) π (x, θ) = π (y|x, θ)π (x|θ) π (θ), and since each
has a density that may be evaluated, the posterior may be
evaluated up to the normalizing constant, which is all that
is required for implementing the Metropolis-Hastings MCMC
algorithm.

Commonly a random-walk proposal is employed for com-
ponents of the image x and hyperparameters θ, which can
result in very slow algorithms due to high correlations in the
distribution over images, and between the image and hyperpa-
rameters. Fortunately there are other sampling strategies that
take advantage of the special structure of the stochastic model,
that we now discuss.

B. Gibbs sampling with blocking of the image

A distinct speed up can be achieved by recognizing that
the conditional distribution over the image x, given everything
else, is Gaussian and that samples may be drawn from that
distribution using efficient methods from linear algebra. This
is often referred to as blocking the latent field x, since all
components of (the vector) x are updated in a single step.

The joint distribution over images, given hyperparameters
θ, can be easily determined by manipulating the Gaussian
distributions [6]

(

x
y

)

|θ ∼ N

((

µ
Aµ

)

, Q−1

xy

)

(5)

with the joint precision matrix

Qxy =

(

Q+ATΣA −ATΣ
−ΣA Σ

)

.

We have omitted the dependence of matrices on θ for brevity.
Since conditional Gaussian distributions are easy to write
once the precision matrix is known, we see thatπ (x|y, θ) (the
distribution over x conditioned on everything else) is easily
determined as the Gaussian distribution

x|y, θ ∼ N
(

µx|y, Q
−1

x|y

)

(6)

where

µx|y,θ = µ+
(

Q+ATΣA
)−1

ATΣ (y −Aµ)

Qx|y,θ = Q+ ATΣA.

Bardsley [7]utilized this structure, along with conjugate
prior distributions over the hyperameters δ and λ that allow the
conditional distributions over these parameters to be formed,
and hence evaluated. Those distributions are:

λ|x, δ, y ∼ Γ

(

n/2 + αλ,
1

2
‖Ax− y‖

2
+ βyλ

)

(7)

δ|x, λ, y ∼ Γ

(

n/2 + αδ,
1

2
‖Ax− y‖

2
+ βδ

)

(8)

where Γ denotes a Gamma distribution, and αλ, βλ, αδ, βδ are
constants chosen to make the hyperprior distributions relatively
uninformative [7].

A block Gibbs sampler may then be implemented by
cycling through drawing samples form the conditional distribu-
tions in Eqns 6, 7 and 8. The computational cost is contained
in the draw from the large Gaussian latent field, though this
may be performed efficiently using methods from numerical
linear algebra that exploit sparsity, or even more rapidly by
Fourier techniques that utilize the circulant structure of the
various matrices.

The assignment question asked the students to implement
this sampling strategy, and is the method used to generate the
example solution, presented later. However one may further
block this sampling structure to gain further speed ups, and
also remove the need for conjugate prior distributions.

C. One block algorithm

The Gibbs sampler just presented is typically limited in
efficiency by the strong correlations between hyperparameters
that parameterize the covariance matrices, and the image fields,
particularly the latent field x. This means that many (small)
steps in each of the θ and x directions are required to
explore the joint posterior distribution. Hence greater statistical
efficiency may be achieved by devising schemes that can
update both θ and x in an effective manner within a single
step.

The one block algorithm is so called because the hyper-
parameter θ and latent field x are blocked together within a
single Metropolis-Hastings accept/reject step. In this scheme a
proposal hyperparameter θ′ is drawn according to a random-
walk distribution, then Eqn. 6 used to draw x′ conditioned
on θ′ and y, with the composite proposal (x′, θ′) accepted
with probability given by the usual Metropolis-Hastings rule.
A simple calculation shows that the resulting chain in the
hyperparameter θ is then ergodic with respect to the marginal
distribution for θ|y as if we have been able to integrate out the
(nuisance) latent field.

V. MEAN DEBLURRED IMAGE AND DISCUSSION

Figure 2 shows the posterior mean deblurred image calcu-
lated using the Gibbs sampling scheme in section IV-B. For
reasons of brevity we have not shown measures of posterior
uncertainty, such as posterior pixel-wise variance; however, it
should be appreciated that, just as for the mean statistic, it
is possible to calculate any other (predictive) property of the
reconstruction along with quantified uncertainties.

The parameters in the hyperpriors supplied in [7] turned
out to work well, i.e. were sufficiently non-informative so that
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Fig. 2. Posterior mean over deblurred image from a run of 1000 samples
with the first 500 removed as burn-in.

Fig. 3. Posterior histograms over prior lumping hyperparameter δ (left) and
measurement noise hyperparameter λ (right).

results do depend on the choice of these parameters. This
meant that students were able to use suggested values without
modification, which makes the assignment quite manageable.

Marginal posterior histograms over hyperparameters δ and
λ are shown in figure 3. The posterior histogram over effective
regularizing parameter δ/λ is shown in 4. Note that the
regularizing parameter is never explicitly used within the
algorithm, but the effective value can be calculated on the basis
of inferred lumping constant and measurement noise level. It is
very reassuring for students to see that the marginal posterior
distribution is exactly centered on values that one would select
by eye, or that are selected (for this problem) by the ‘L-
curve’ method. This demonstrates that the inference framework
includes automatic selection of the regularizing parameter, so
does not need the ad hoc procedure that they had to implement

Fig. 4. Posterior histogram over effective regularizing parameter δ/λ.

for regularization.

We have not shown details of the computing required for
direct sampling over the marginal posterior distributions for
hyperparameters presented in section IV-C. That calculation
requires evaluation of determinants that is feasible and cheap
in this example, though somewhat outside the scope of this
paper.

As it turned out, the main obstacle to the students com-
pleting this assignment on time had nothing to do with
computational or model complexity, but everything to do with
ENZCon2014; all students were fully occupied writing their
ENZCon papers!
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