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CONVERGENCE IN VARIANCE OF CHEBYSHEV ACCELERATED
GIBBS SAMPLERS∗

COLIN FOX† AND ALBERT PARKER‡

Abstract. A stochastic version of a stationary linear iterative solver may be designed to converge
in distribution to a probability distribution with a specified mean μ and covariance matrix A−1.
A common example is Gibbs sampling applied to a multivariate Gaussian distribution which is a
stochastic version of the Gauss–Seidel linear solver. The iteration operator that acts on the error in
mean and covariance in the stochastic iteration is the same iteration operator that acts on the solution
error in the linear solver, and thus both the stationary sampler and the stationary solver have the
same error polynomial and geometric convergence rate. The polynomial acceleration techniques that
are well known in numerical analysis for accelerating the linear solver may also be used to accelerate
the stochastic iteration. We derive first-order and second-order Chebyshev polynomial acceleration
for the stochastic iteration to accelerate convergence in the mean and covariance by mimicking the
derivation for the linear solver. In particular, we show that the error polynomials are identical and
hence so are the convergence rates. Thus, optimality of the Chebyshev accelerated solver implies
optimality of the Chebyshev accelerated sampler. We give an algorithm for the stochastic version of
the second-order Chebyshev accelerated SSOR (symmetric successive overrelaxation) iteration and
provide numerical examples of sampling from multivariate Gaussian distributions to confirm that
the desired convergence properties are achieved in finite precision.
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1. Introduction. Iterations of the form

(1.1) xl+1 = Gxl + g, l = 1, 2, . . . ,

where G is a fixed iteration operator and g is a fixed vector, are commonplace in
numerical computation. For example, they occur in the stationary linear iterative
methods used to solve systems of linear equations [1, 10, 17, 23]. We often refer to the
associated algorithm as a solver. We consider these iterations, and also the related
stochastic iteration

(1.2) yl+1 = Gyl + gl, l = 1, 2, . . . ,

where now gl is a “noise” vector given by an independent draw from some fixed
probability distribution with finite variance. Just as the deterministic iteration (1.1)
can be designed to converge to the solution of a linear system that is too large or
complex to solve directly, the stochastic iteration (1.2) may be designed to converge
in distribution to a target distribution that is too high dimensional, or complex, to
sample from directly. Since the stochastic iteration may be used to generate samples

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section Decem-
ber 3, 2012; accepted for publication (in revised form) November 14, 2013; published electronically
February 4, 2014. This work was supported by the New Zealand Institute for Mathematics and its
Applications thematic programme on PDEs and Marsden contract UOO1015.

http://www.siam.org/journals/sisc/36-1/90094.html
†Department of Physics, University of Otago, Dunedin, New Zealand (fox@physics.otago.ac.nz).
‡Center for Biofilm Engineering and Department of Mathematical Sciences, Montana State Uni-

versity, Bozeman, MT 59715 (parker@math.montana.edu).

A124



CHEBYSHEV SAMPLING A125

from a desired target distribution, we often refer to the associated algorithm as a
sampler. An example is the conventional Gibbs sampling algorithm [21] applied to
sampling from a high-dimensional Gaussian distribution. In that case the iteration
operator G is identical to the iteration operator in the Gauss–Seidel iterative method
[5, 7].

Novel Gibbs samplers may be designed by considering matrix splittings other than
the Gauss–Seidel splitting [5]. Matrix splittings are considered further in section 2.
Interestingly, the deterministic and stochastic iterations converge under exactly the
same conditions, with a necessary and sufficient condition being that the spectral
radius of G be strictly less than 1, that is, ρ (G) < 1 [4, 26]. Convergence in both cases
is geometric, with the asymptotic average reduction factor given by ρ (G) (though this
is called the “convergence rate” in the statistics literature [19]).

A standard method of reducing the asymptotic average reduction factor is by
polynomial acceleration, particularly using Chebyshev polynomials [1, 6, 10, 23]. The
original formulation used a modified first-order iteration, as above, though the result-
ing algorithm is impractical due to numerical difficulties [1]. Practical implementa-
tions use a nonstationary second-order iteration that can give optimal reduction of
error at each iteration.

In this paper, we develop polynomial acceleration for the stochastic iteration.
In particular, we develop nonstationary first- and second-order iterations that give
optimal convergence in mean and variance to a desired target distribution. Since
convergence in mean is achieved by using exactly the linear iteration for solving a linear
system, polynomial acceleration of the mean is exactly as in the existing treatments.
Hence we focus on optimal convergence in variance that requires modification to the
noise term. Correspondingly, we focus throughout the development on sampling from
a target distribution that has zero mean and some finite covariance matrix, and hence
the noise distribution always has zero mean. Extension to target distributions with
nonzero mean is achieved simply by adding the deterministic iteration or, equivalently,
adding a fixed vector to the noise term.

We develop the sampling algorithms and demonstrate the equivalence to linear
solvers by investigating a sequence of linear iterative solvers, essentially following the
historical development in sophistication and speed, and show that exactly the same
ideas used to establish properties of the solver can be used to establish the equivalent
properties for a sampler. In particular, convergence of the solver implies convergence
of the sampler, and the convergence factors are identical, because they are given by
the same expression.

We follow the development and derivations of convergence, given in Axelsson [1],
for stationary and nonstationary (Chebyshev) first-order and second-order methods,
set out in sect. 5.2 (Stationary Iterative Methods) and sect. 5.3 (The Chebyshev It-
erative Method). We could have equally followed the excellent presentations of the
same methods in Golub and Van Loan [10] or Saad [23]. Our own work and compu-
tational implementation actually take a route that switches between the formalism
used in these three texts. By following here the route of a single exposition, we hope
to show how establishing convergence of the stochastic versions can be made very
straightforward.

The most straightforward application of the methods we develop is to sample from
a high-dimensional Gaussian distribution, defined by the mean vector μ and covariance
matrix A−1. We present an example which shows the convergence of the Chebyshev
sampler in finite precision applied to a Gaussian Markov random field (GMRF) with
a known sparse precision matrix corresponding to a Matérn-class covariance function
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[12, 15]. This example allows efficient numerical calculation since operation by A has
reduced numerical cost.

Although we focus on the Gaussian in our numerical example, the accelerated
algorithms we give are more generally applicable to any distribution where the focus
is on the mean as a “best” estimate and the covariance as a measure of uncertainties,
with higher moments not of primary concern. This is typical in inferential methods
applied to solving inverse problems or in the growing field of uncertainty quantifica-
tion, where the mean and variance of the distribution over parameters or predicted
quantities are the primary summary statistics of interest.

1.1. Some links between sampling from distributions and solving sys-
tems of equations. Consider a probability distribution with probability density
function π(x) and the two tasks of drawing x ∼ π (x distributed as π) and com-
puting x = argmax π (or solving −∇ log π = 0). We use the notation x−i =
(x1, x2, . . . , xi−1, xi+1, . . . , xn) to denote all n − 1 components of x other than xi,
and π (xi|x−i) to denote the univariate conditional distribution over xi conditioned
on the (fixed) value of all other components.

The classical Gibbs sampler or “stochastic relaxation” (also known as Glauber
dynamics and the local heat bath algorithm) for generating a sample from π is an
iterative algorithm in which one sweep consists of updating each component in se-
quence by drawing from the conditional distribution for the component with all other
components fixed at the most recent value, as in Algorithm 1. Repeating this sweep
indefinitely produces distributions over iterates that are guaranteed to converge (ge-
ometrically) to π under mild conditions [11, ref. 84], [19], though distributions with
nonconnected support for which Algorithm 1 fails are easy to find [19].

Algorithm 1: One sweep of the componentwise Gibbs sampler targeting π(x)

for i = 1, . . . , n do
sample z ∼ π (xi|x−i);
xi = z;

end

It is not hard to see a connection between the Gibbs sampler in Algorithm 1 and
the traditional Gauss–Seidel algorithm for maximizing π which consists of repeatedly
applying the sweep over componentwise solvers with all other components fixed at the
most recent value, as in Algorithm 2: Whereas the Gibbs sampler performs a compo-
nentwise conditional sampling, Gauss–Seidel performs componentwise optimization.

Algorithm 2: One sweep of Gauss–Seidel relaxation for maximizing π(x)

for i = 1, . . . , n do
set z = argmaxxi π (xi|x−i);
xi = z;

end

In statistical physics, distributions often arise with the form

π(x) = k(β)e−βH(x),
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where H(x) is an energy function (the Hamiltonian), β is inversely proportional to
temperature, and k is a normalizing constant. It is often noted that a sampling
algorithm may be used to minimize H(x) in the zero temperature limit, i.e., by taking
the limit β → ∞. Then sampling degenerates to optimization since the distribution
is localized at the mode. In particular, Algorithm 1 reduces to Algorithm 2.

In this paper, we exploit an equivalence that operates at finite β to show how the
minimizer (or solver) may be adapted to become a sampling algorithm. For example,
in the simplest case that β = 1 and H is quadratic, i.e.,

H(x) =
1

2
xTAx− bTx

for some symmetric positive definite (precision matrix) A, π is Gaussian and the
Gauss–Seidel minimizer of H becomes the Gibbs sampler for π when coordinatewise
minimization is replaced by coordinatewise conditional sampling. One sweep of the
Gibbs sampler may be written in the matrix form (1.2) with

G = M−1N and gl = M−1cl, where cl
iid∼ N(0, D).

Here M = L+D and N = −LT is a splitting of the (symmetric) precision matrix A in
which L is the strictly lower triangular part of A and D is the diagonal of A [11]. This
is the same splitting used to write the Gauss–Seidel algorithm for solving Ax = b in
matrix form (1.1), with g = M−1b. What makes this correspondence important is that
the convergence properties of the solver are inherited by the sampler (and vice versa),
which means that acceleration techniques developed for the solver may be applied
to the sampler. The main purpose of this paper is to establish the equivalence of
convergence in mean and covariance in the case of Chebyshev polynomial acceleration,
without the assumption of the target distribution being Gaussian.

2. Matrix splitting and iteration operators. Consider the splitting

(2.1) A = M −N,

where A is a symmetric positive definite (SPD) matrix and M is invertible. For
example, for the Gauss–Seidel iteration, M is set to the lower triangular part of
A (including the diagonal). We will often consider the case where the splitting is
symmetric, which means that M is symmetric, and hence so is N . We will utilize the
family of iteration operators

(2.2) Gτ =
(
I − τM−1A

)
parameterized by the relaxation parameter τ �= 0. The natural iteration operator
induced by the splitting (2.1) is the case τ = 1, which we denote by G. The nonsta-
tionary iterative methods that we consider use a sequence of iteration operators with
parameters τl, l = 0, 1, 2, . . . , where l denotes iteration number. We will abbreviate
Gτl by Gl, where possible, to avoid subscripts on subscripts.

The iteration operatorGτ may also be thought of as being induced by the splitting

A = Mτ −Nτ ,(2.3)

where

Mτ =
1

τ
M and Nτ = N +

(
1− τ

τ

)
M.
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In the remainder of this section we list some lemmas about iteration operators
that we will use. Throughout the rest of the paper, proofs to lemmas and some
theorems have been deferred to the appendix.

Lemma 2.1. The iteration operators Gτ and Gκ commute, that is, GτGκ = GκGτ

for all τ, κ.
Lemma 2.2. For a symmetric splitting, GτA

−1 is symmetric.
The following lemma determines the variance of noise terms in sampling algo-

rithms.
Lemma 2.3. A−1 −GτA

−1GT
τ = M−1

τ

(
MT

τ +Nτ

)
M−T

τ .

3. First-order iterative methods. We first consider iterative solvers of the
equation

Ax∗ = b,

where A is a given SPD matrix, b is a given vector, and the solution we seek is denoted
by x∗.

3.1. First-order stationary iterative solver. The first-order stationary iter-
ative solver uses the iteration

xl+1 = xl − τM−1rl = Gτx
l + gτ ,(3.1)

where rl = Axl − b for l = 1, 2, . . . , the iteration operator Gτ is given by (2.2)
and gτ = τM−1b. In the remainder of this section, we derive the fixed point, error
polynomial, and average reduction factor for this iteration.

Lemma 3.1. The iteration in (3.1) has x∗ as its unique fixed point, i.e.,

(3.2) x∗ = Gτx
∗ + gτ ⇔ Ax∗ = b.

Define the error at the lth iteration by

(3.3) el = xl − x∗.

Subtract (3.2) from (3.1) to get the iteration for error

el+1 = xl+1 − x∗ = Gτx
l + gτ −Gτx

∗ − gτ = Gτ

(
xl − x∗) = Gτe

l.

By recursion we prove the following theorem.
Theorem 3.2.

em = Gm
τ e0 =

(
I − τM−1A

)m
e0 = Pm

(
M−1A

)
e0,

where Pm is the (simple) mth-order polynomial Pm (λ) = (1− τλ)m .
Note that Pm (0) = 1 and Pm (1/τ) = 0. The convergence and convergence rate

of the stationary iterative solver follow from Theorem 3.2.
Axelsson [1, p. 176] gives the optimal relaxation parameter

τopt =
2

λ1 + λn
,

where λ1 < λn are the extreme (positive) eigenvalues of M−1A, giving the average
reduction factor

(3.4) ρ0 =
1− λ1 /λn

1 + λ1 /λn
.

Note that this implies that the iterative solver (3.1) converges for some value of τ . To
be more precise, as long as M−1A has all positive eigenvalues, then λ1 /λn ∈ (0, 1),
which means that ρ0 ∈ (0, 1) and the iteration is guaranteed to converge.
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3.2. First-order stationary iterative sampler. We will follow the same route
to derive a first-order stationary iterative sampler that converges in distribution to a
distribution with zero mean and (finite) covariance matrix A−1. Consider the iteration

(3.5) yl+1 = Gτy
l + gl

for l = 1, 2, . . . , where Gτ is the iteration operator defined in (2.2) and now gl is an
independent sample drawn from some density with zero mean, and covariance matrix
Cov(gl) is chosen so that A−1 is the unique invariant covariance of the iteration (3.5).
That is, we construct the covariance matrix of gl, Cov (gl), so that Cov

(
yl
)
= A−1

implies that Cov
(
yl+1

)
= A−1. This invariance property is analogous to the fixed

point we found for the first-order linear solver in Lemma 3.1.
Lemma 3.3.

(3.6) Cov
(
yl+1

)
= Gτ Cov

(
yl
)
GT

τ +Cov (gl) .

We require that A−1 be the fixed point variance, i.e.,

(3.7) A−1 = GτA
−1GT

τ + Cov (gl) .

Corollary 3.4. Cov (gl) = M−1
τ

(
MT

τ +Nτ

)
M−T

τ .
Remark 1.

1. M−1
τ

(
MT

τ +Nτ

)
M−T

τ is always symmetric since A is symmetric.
2. Lemma 2.3 gives an alternative representation for Cov(gl).
3. In [5] we use gl = M−1

τ bl, where bl is a random vector with Cov (bl) =
MT

τ +Nτ .
Now subtract (3.7) from (3.6) to get the iteration for variance error

Cov
(
yl+1

)−A−1 = Gτ

(
Cov

(
yl
)−A−1

)
GT

τ

or

E l+1 = GτE lGT
τ ,

where we have defined the error in variance as E l = Cov
(
yl
)−A−1 for l = 0, 1, 2, . . .

(cf. (3.3)). By recursion we prove the following theorem (cf. Theorem 3.2).
Theorem 3.5.

Em = Gm
τ E0 (Gm

τ )
T
= Pm

(
M−1

τ A
) E0

(
Pm

(
M−1

τ A
))T

,

where Pm is the (simple) mth-order polynomial Pm (λ) = (1− τλ)
m
.

Note that Pm (0) = 1 and Pm (1/τ) = 0. The convergence and convergence rate
for the variance of the stationary iterative sampler follow from Theorem 3.5. The
optimal relaxation parameter and the average reduction factor are the same as for the
stationary iterative solver in (3.4).

3.3. First-order nonstationary Chebyshev iterative solver. Equation
(3.1) gives a family of iterative methods, parameterized by the relaxation parame-
ter τ , that all have a unique fixed point x∗ given by (3.2). A natural idea is to not use
a single iteration operator as in the stationary method but to run through a sequence
of iteration operators. Perhaps this could give faster convergence. But how does one
pick the sequence of iteration operators?
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In this section we develop Chebyshev acceleration that makes an optimal choice of
iteration operators. The resulting first-order algorithm is impractical due to numerical
instability, though it does allow us to establish theoretical convergence results that
hold for the second-order iteration developed in following sections.

The first-order nonstationary iterative solver uses the iteration

xl+1 = xl − τlM
−1rl = Glx

l + gl,(3.8)

where l = 1, 2, . . . , rl = Axl − b, gl = τlM
−1b, and

Gl =
(
I − τlM

−1A
)
= M−1

l Nl.

The fixed point for this iteration is essentially given by Lemma 3.1.
Lemma 3.6. The iteration in (3.8) has x∗ as its unique fixed point, i.e.,

(3.9) x∗ = Glx
∗ + gl ⇔ Ax∗ = b.

Subtract (3.9) from (3.8) to get the iteration for error

el+1 = xl+1 − x∗ = Glx
l + gl −Glx

∗ − gl = Gl

(
xl − x∗) = Gle

l.

By recursion we prove the following theorem.
Theorem 3.7.

ep =

(
p−1∏
l=0

Gl

)
e0 =

(
p−1∏
l=0

(
I − τlM

−1A
))

e0 = Qp

(
M−1

l A
)
e0,

where Qp is the pth-order polynomial Qp (λ) = (
∏p−1

l=0 (1− τlλ)) (cf. [1, eq. 5.26]).
Note that Qp (0) = 1 and Qp (1/τl) = 0. That is, the relaxation parameters

determine the zeros of the polynomial Qp and hence the τl can be chosen to give any
desired error polynomial. We may think ofQp in Theorem 3.7 as representing a general
pth-order polynomial, and we now consider how to “best” select the polynomial.

The term
∥∥Qp

(
M−1

l A
)∥∥ may be chosen to have minimum maximum value over

the interval [λ1, λn] (where λ1 and λn are the extreme eigenvalues of M−1A) by
choosing the specific polynomial

(3.10) Qp (λ) =
Tp ((λ1 + λn − 2λ) / (λ1 − λn))

Tp ((λ1 + λn) (λ1 − λn))
,

where Tp is the Chebyshev polynomial of order p. The denominator ensures that
Qp (0) = 1. To make this choice we need to know the zeros of Qp, which are just the
zeros of Tp ((λ1 + λn − 2λ) / (λ1 − λn)). Hence the relaxation parameters are given
by (cf. [1, eq. 5.29], [14, Fig. 28.1.1])

(3.11)
1

τl
=

λn + λ1

2
+

λn − λ1

2
cos

(
π
2l + 1

2p

)

for l = 0, 1, 2, . . . , p − 1. Lemma 2.1 established commutativity of the operators Gl,
and hence one can run through the sequence of relaxation parameters in any order.

Does this iteration converge faster than the stationary case? The answer is “yes,”
in the sense that it will do no worse. An indicative result is given by evaluating the
norm of the error at step p in Theorem 3.7 to give

‖ep‖ ≤ max
λ∈[λ1,λn]

|Qp (λ)|
∥∥e0∥∥ ,
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and since the choice of the scaled Chebyshev minimizes maxλ∈[λ1,λn] |Qp (λ)| over
all pth-order polynomials, it seems it will do better than the pth-order polynomial
Pp (λ) = (1 − τλ)p. This is only an indicative result, as it does not guarantee that
maxi |Qp (λi)| is smaller than maxi |Pp (λi)|. An unequivocal result is given by the
explicit calculation [1, eq. 5.30] that for the scaled Chebyshev polynomial (3.10)

max
λ∈[λ1,λn]

|Qp (λ)| = 1

Tp

(
λ1 + λn

λ1 − λn

) = 2
σp

1 + σ2p
,

where

(3.12) σ =
1−√λ1 /λn

1 +
√
λ1 /λn

and hence the asymptotic average reduction factor is σ. In contrast, the smallest pos-
sible average reduction factor for the unaccelerated stationary linear solver iteration
(3.1), or the stochastic iteration (3.5) (over all possible τ), is given by (3.4). Fig-
ure 3.1 compares this reduction factor for the stationary case to the the Chebyshev
average reduction factor of (2 σp

1+σ2p )
1/p after p iterations as a function of the ratio

of eigenvalues λ1 /λn ∈ [0, 1]. The two convergence factors are identical for p = 1,
and the figure shows that for p > 1 and 0 < λ1 < λn the average reduction factor is
always smaller for the Chebyshev nonstationary iteration. Hence we have established
the following theorem.

Theorem 3.8. Let A = Mτ − Nτ be a symmetric splitting with the extreme
eigenvalues of M−1A satisfying 0 < λ1 < λn, and let p > 1 be a fixed integer. If
the first-order stationary iterative method converges for some relaxation parameter τ ,
then the first-order nonstationary Chebyshev iterative method also converges and has
a smaller average reduction factor at iteration p.

3.4. First-order nonstationary Chebyshev iterative sampler. The con-
vergence of the first-order Chebyshev sampler can be established in a straightforward
manner, for a symmetric splitting, just as we did for the solver. First we find a fixed
point for the covariance matrix, define the error, and then give the asymptotic re-
duction factor. Just as for the solver, the first-order sampler suffers from numerical
instability, but this section lays the theoretical groundwork for convergence results of
the second-order sampler introduced later.

The first-order nonstationary iterative sampler uses the iteration

yl+1 = Gly
l + gl

for l = 1, 2, . . . , where Gl =
(
I − τlM

−1A
)
= M−1

l Nl and gl is an independent
sample drawn from some density with zero mean, and covariance matrix Cov (gl) =
M−1

l

(
MT

l +Nl

)
M−T

l . As for the stationary sampler, the following two lemmas hold
(with proofs given by the stationary case that hold for any τ).

Lemma 3.9.

(3.13) Cov
(
yl+1

)
= Gl Cov

(
yl
)
GT

l +Cov (gl) .

Lemma 3.10. The unique fixed point variance is A−1, i.e.,

(3.14) A−1 = GlA
−1GT

l +Cov (gl) .
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Fig. 3.1. Comparison of the average reduction factor ρ0 =
1−λ1 /λn

1+λ1 /λn
for first-order stationary

iterations to the the average reduction factor for the Chebyshev accelerated iteration, (2 σp

1+σ2p )
1/p,

with σ defined in (3.12). Along the horizontal axis are values of the ratio of the extreme eigenvalues
of M−1A, λ1 /λn ∈ [0, 1].

As before, subtract (3.14) from (3.13) to get the iteration for error in the covari-
ance matrix

Cov
(
yl+1

)−A−1 = Gl

(
Cov

(
yl
)−A−1

)
GT

l

or

E l+1 = GlE lGT
l ,

where E l = Cov
(
yl
)−A−1 denotes the error in variance for l = 0, 1, 2, . . . . By recursion

we prove the following statement.
Theorem 3.11.

Em =

(
m−1∏
l=0

Gl

)
E0

(
m−1∏
l=0

Gl

)
= Qm

(
M−1

τ A
) E0

(
Qm

(
M−1

τ A
))T

,

where Qm is the mth-order polynomial Qm (λ) = (
∏m−1

l=0 (1− τlλ)) with properties as
established for the first-order stationary iterative solver.

As in the first-order iterative solver, the average reduction factor can be optimized
for a given iteration number p by choosing the sequence of relaxation parameters in
(3.11). The explicit calculation of the average reduction factor for the first-order
iterative solver establishes the following theorem.

Theorem 3.12. Let A = Mτ − Nτ be a symmetric splitting with the extreme
eigenvalues of M−1A satisfying 0 < λ1 < λn, and let p > 1 be a fixed integer. If the
splitting converges (as an iterative solver) for some relaxation parameter τ , then

1. the first-order stationary iterative sampler converges,
2. and the first-order nonstationary Chebyshev iterative sampler converges with

a smaller average reduction factor than the stationary sampler at iteration p.
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4. Second-order methods. Axelsson points out [1, Rem. 5.11] two deficiencies
of the first-order Chebyshev iterative method as a solver: First, the number of steps
p needs to be selected in advance, with the method not being optimal for any other
number of steps. Second, the first-order iteration is numerically unstable, so computer
implementation probably will not show the nice theoretical behavior that we have
established above. Both these deficiencies also hold for the first-order Chebyshev
iterative sampler. The solution for iterative solvers, and hence for iterative samplers,
is to develop the second-order methods, which have neither of these deficiencies.

First we establish a few theorems that can be stated with the definitions of first-
order iterative operators as previously defined.

4.1. Second-order Chebyshev iterative solver. This section expands (a lit-
tle) on [1, sect. 5.3.1] to put in place some tools needed for the sampler. We follow
Axelsson by considering the splitting with M = I, from which the general case follows
by considering the (preconditioned) equations with M−1A in place of A.

The second-order iteration is (M = I)

(4.1) x1 = x0 − 1

2
β0r

0 and xl+1 = αlx
l + (1− αl)x

l−1 − βlr
l

for l = 1, 2, . . . and rl = Axl − b.
Lemma 4.1. x∗ is invariant under the iteration (4.1); i.e., x0 = x∗ implies that

xl = x∗ for l = 1, 2, . . . .
Now subtract the (invariance) expression x∗ = αlx

∗ + (1− αl)x
∗ from (4.1) and

use Ael = rl to give

xl+1 − x∗ = αl

(
xl − x∗)+ (1− αl)

(
xl−1 − x∗)− βlAe

l,

which is the second-order iteration for error

el+1 = αle
l − βlAe

l + (1− αl) e
l−1.

Assume the inductive hypothesis that

(4.2) el = Ql (A) e
0,

which is true for l = 0, and is true for l = 1 since e1 = e0 − 1
2β0r

0 =
(
I − 1

2β0A
)
e0

(using Ael = rl), giving the result with Q1 (λ) =
(
1− 1

2β0λ
)
. The error recursion

then gives

Ql+1 (A) e
0 = (αlI − βlA)Ql (A) e

0 + (1− αl)Ql−1 (A) e
0,

and since this is true for any e0, we find the recursion

(4.3) Ql+1 (A) = (αlI − βlA)Ql (A) + (1− αl)Ql−1 (A)

[1, p. 182]. By choosing the coefficients so that this recursion is the recursion formula
for the scaled Chebyshev polynomials, we can ensure that Ql equals the scaled Cheby-
shev polynomial in (3.10) which gives optimal error reduction at every step. Axelsson
gives this result [1, p. 183], and it is interesting to note that a little good fortune
happens; the three equations can be satisfied with just two coefficients because the
recursion for the Chebyshev polynomials turns one equation into a second. That is
to say, the second-order iteration can be made to fit the Chebyshev polynomials but
not necessarily any other set of orthogonal polynomials!
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The convergence and reduction factor for the second-order Chebyshev solver are
given by the expression (4.2), with the analysis of the first-order Chebyshev solver in
section 3.3 giving the result that the second-order Chebyshev method is faster than the
stationary method. Unlike the first-order method for which acceleration is guaranteed
only at a fixed iteration p, (4.2) also shows that the second-order implementation
accelerates for any iteration p. These results are summarized in the following theorem.

Theorem 4.2. Let A = Mτ−Nτ be a symmetric splitting with the extreme eigen-
values of M−1A satisfying 0 < λ1 < λn. If the stationary iterative method converges
for some relaxation parameter τ , then the second-order nonstationary Chebyshev it-
erative method also converges and has a smaller average reduction factor (given by
(3.12)) for all p > 1.

Furthermore, for any 0 < ε < 1, (4.2) shows that to ensure a decrease in error

||el||Aν/||e0||Aν ≤ ε

for some real number ν, it suffices to perform

(4.4) p∗ =

⌈
ln(ε/2)

lnσ

⌉

iterations of the nonstationary second-order Chebyshev solver [1, eq. 5.32].

4.2. Second-order Chebyshev iterative sampler. Analysis of the second-
order nonstationary sampler follows the same route as the first-order nonstationary
sampler, with extensions as required in the analysis of the second-order iterative solver.
That is, we work out the sequence of variances of iterates, with the noise term chosen
so that A−1 is the invariant variance. We then subtract the iteration that states the
invariance of the variance A−1 to get an iteration in the variance error and determine
the polynomial in M−1A that acts on errors. An extension is required because the
iterates yl and yl+1 are correlated, and so the covariance term needs to be included
in the iteration. We do this by writing the second-order iteration as a (block matrix)
first-order iteration as Axelsson does [1, sect. 5.2.3] when analyzing the second-order
stationary iterative method. There follows a bit of algebra to give the recursion in
error polynomial that we got for the second-order iterative solver.

The second-order iterative solver can be written as

xl+1 =
(
αlI − βlM

−1A
)
xl + (1− αl)x

l−1 + βlM
−1b

= αl

(
Glx

l + gl
)
+ (1− αl)x

l−1,(4.5)

where l = 1, 2, . . . , βl = αlτl, and the iterative operator defined by Gl and gl is the
same as the first-order definition in (3.8) with relaxation parameter τl. Accordingly,
we write the second-order nonstationary iterative sampler as

yl+1 =
(
αlI − βlM

−1
l A

)
yl + (1− αl) y

l−1 + βlgl

= αl

(
Gly

l + gl
)
+ (1− αl) y

l−1(4.6)

for l = 1, 2, . . . with the first step using y1 = G0y
0 + g0 and α0 = 1, and now {gl}

are independent samples with Cov(gl) chosen so that Cov
(
y0
)
= A−1 ensures that

Cov
(
yl
)
= A−1 for l ≥ 1. For the moment we will assume that is done and work out

Cov (gl) in section 4.3.
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The iteration (4.6) can be written as a first-order iteration in the variables

Y 0 =

(
y0

0

)
, Y 1 =

(
y1

y0

)
, Y 2 =

(
y2

y1

)
, . . .

with the iteration being

(4.7) Y l+1 =

(
αlGl (1− αl) I
I 0

)
Y l + αl

(
gl
0

)
.

Denote

Gl =

(
αlGl (1− αl) I
I 0

)
and γl = αl

(
gl
0

)
.

Lemma 4.3.

Cov
(
Y 0
)
=

(
Cov

(
y0
)

0
0 0

)
,

Cov
(
Y l+1

)
= Gl Cov

(
Y l
)GT

l +Cov (γl)

= Gl Cov
(
Y l
)GT

l + (αl)
2

(
Cov (gl) 0

0 0

)
.(4.8)

Proof. The lemma follows from the iteration (4.7) and the independence of Y l

and γl.
For the second-order iteration we do not have an exact invariance (of variance)

as we did in the first-order case in (3.14). This is because the covariance between
iterations changes, and hence the off-diagonal blocks Kl and KT

l of Cov
(
Y l
)
, cannot

be made constant. It turns out this does not matter, and all we need is the sequence
of Cov

(
Y l
)
that is given by starting the iteration with Cov

(
y0
)
= A−1 and asserting

the requirement that Cov
(
yl
)
= A−1 for l = 1, 2, . . . with the off-diagonal terms

changing. This leads to the sequence of variances denoted by Cov(Y 0) = ( A−1 0
0 0

)

(so, by definition, K0 = 0) and then Cov(Y l) = ( A−1 Kl

KT
l A−1 ), where the (1,1) block

equals A−1 because Cov(gl) is chosen to make this true. The sequence of variances
then satisfies the recursion given in the following lemma.

Lemma 4.4. The requirement that Cov
(
y0
)
= A−1 implies that Cov

(
yl
)
= A−1

for l = 1, 2, . . . , and so

(4.9)

(
A−1 Kl+1

KT
l+1 A−1

)
= Gl

(
A−1 Kl

KT
l A−1

)
GT
l +

(
(αl)

2
Cov (gl) 0
0 0

)
,

where the (covariance) matrix Kl satisfies

Kl+1 = αlGlA
−1 + (1− αl)K

T
l

for l = 0, 1, 2, . . . , and K0 = 0.
The recursion for error on variance is then given by subtracting (4.9) from (4.8)

to give

(4.10) Cov
(
Y l+1

)− ( A−1 Kl+1

KT
l+1 A−1

)
= Gl

(
Cov

(
Y l
)− ( A−1 Kl

KT
l A−1

))
GT
l
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or

E l+1 = GlE lGT
l , l = 0, 1, 2, . . . ,

where we have defined the error in variance

E0 = Cov
(
Y 0
)− ( A−1 0

0 0

)
=

(
Cov

(
y0
)−A−1 0
0 0

)
,

E l = Cov
(
Y l
)− ( A−1 Kl

KT
l A−1

)
, l = 1, 2, . . . .

Hence, by recurrence, we prove the following theorem.
Theorem 4.5.

Em =

(
m−1∏
l=0

Gl

)
E0

(
m−1∏
l=0

Gl

)T

.

Denote the polynomial of the block matrix Hm+1 =
∏m

l=0 Gl that satisfies

H1 = G0 =

(
G0 0
I 0

)
,

Hl+1 = GlHl =

(
αlGlHl

11 + (1− αl)Hl
21 αlGlHl

12 + (1− αl)Hl
22

Hl
11 Hl

12

)
.

Hence, Hl
11 and Hl

21 satisfy the recursion

Hl+1
11 = αlGlHl

11 +Hl
12 and Hl+1

21 = Hl
11.

Eliminating Hl
21 from the first equation, we establish the following statement.

Theorem 4.6. The (1, 1) block of the error polynomial Hl satisfies the recursion

Hl+1
11 = αlGlHl

11 + (1− αl)Hl−1
11 = αl

(
I − τlM

−1A
)Hl

11 + (1− αl)Hl−1
11

with H1
11 = G0.

By setting βl = αlτl we see that this is the same as the recursion relation (4.3)
satisfied by the Ql that gave the error polynomial for the second-order nonstationary
iterative solver. Hence, by matching the coefficients to the terms in the recursion for
the Chebyshev polynomials (as for second-order iterative solver), we can ensure that

(4.11) Hm
11 (λ) =

Tm ((λ1 + λn − 2λ) / (λ1 − λn))

Tm ((λ1 + λn) / (λ1 − λn))

as for the other Chebyshev iterative methods. The final step is to show that this is
the polynomial that acts on the error in variance of the mth iterate ym, which is the
following theorem.

Theorem 4.7. The error in variance at the mth iteration is

(4.12) Cov (ym)−A−1 = Hm
11

(
Cov

(
y0
)−A−1

)
(Hm

11)
T
.

Proof. Read off the (1, 1) block in the expansion

Em =

( Hm
11 Hlm

12

Hm
21 Hlm

22

)(
Cov

(
y0
)−A−1 0
0 0

)( Hm
11 Hm

12

Hm
21 Hm

22

)T

.
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So now we have all the pieces that establish the following result.
Theorem 4.8. Let A = M−N be a symmetric splitting with M invertible. Then

the second-order Chebyshev iterative sampler converges, and the variance converges
with asymptotic average reduction factor

σ2 =

(
1−√λ1 /λn

1 +
√
λ1 /λn

)2

,

where 0 < λ1 < λn are the extreme eigenvalues of M−1A.
Proof. Each yl has a zero mean and a variance that differs from A−1 according

to (4.12). We have constructed the iteration parameters so that Hm
11 is the scaled

Chebyshev polynomial (4.11) that is bounded on the interval [λ1, λn] by

2
σp

1 + σ2p
,

where σ is the average asymptotic reduction factor in (3.12) [1, p. 181].
Axelsson’s result in (4.4) that specifies the required number of iterations to achieve

a desired error reduction in the solver suggests that, for any ε > 0, after

(4.13) p∗ =

⌈
ln(ε/2)

ln(σ2)

⌉

iterations, the variance error reduction is smaller than ε.

4.3. Noise variance in the second-order Chebyshev sampler. When es-
tablishing Theorem 4.8, we assumed that we knew how to set the variance of the noise
term to ensure that A−1 was the invariant variance of the stochastic iteration (4.6).
To determine Cov(gl) it is necessary to explicitly determine the blocks Kl in (4.10).
We need the following results.

Lemma 4.9. For a symmetric splitting, Kl = KT
l .

Theorem 4.10. For a symmetric splitting,

Kl = Gκl
A−1 for l = 1, 2, . . . ,

where the parameter κl satisfies κ1 = τ0 and the recursion

κl+1 = αlτl + (1− αl)κl for l = 1, 2, . . . .

We are now able to derive the noise variance for a symmetric splitting. For l = 0,
we have (cf. (3.7)) A−1 = G0A

−1GT
0 +Cov (g0), so

Cov (g0) = τ20M
−1

((
2− τ0
τ0

)
M +N

)
M−1

by Lemma 2.3. For l ≥ 1, we use the expression for the (1, 1) block in (4.9) to get

A−1 = α2
lGlA

−1GT
l + αl (1− αl)GlKl + αl (1− αl)K

T
l G

T
l

+ (1− αl)
2
A−1 + (αl)

2
Cov (gl) ,

so (αl)
2 Cov(gl) = (1 − (1 − αl)

2)A−1 − α2
lGlA

−1GT
l − αl(1 − αl)(GlKl + KT

l G
T
l ).

Now using Lemma 4.9 and Theorem 4.10, Cov (gl) can be rewritten as

(4.14)

M−1

[
τ2l

((
2− τl
τl

)
M +N

)
+ 2 (1/αl − 1) τlκl

((
1

τl
+

1

κl
− 1

)
M +N

)]
M−1.
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Thus, the variance of the noise term is Cov(gl) = M−1(clM +dlN)M−1 for some real
numbers cl and dl. We have the following theorem.

Theorem 4.11. Let A be SPD and A = M − N be a symmetric splitting. Set
the parameters {αl, τl} in the second-order Chebyshev sampler (4.6) by

τl =
2

λ1 + λn
, αl = βl/τl, βl =

(
τl − βl−1

(
λn − λ1

4

)2
)−1

,

where α0 = 1 and β0 = 4
λn+λ1

. Let the noise vectors {gl} have

E(gl) = 0 and Cov(gl) = M−1 (clM + dlN)M−1

such that cl :=
2−τl
τl

+(dl−1)( 1
τl
+ 1

κl
−1), dl :=

2(1−αl)
αl

(κl

τl
)+1, κl+1 := αlτl+(1−αl)κl,

and κ1 = τ0. Then for the Chebyshev samples {yl},
E(yl) → 0 and Cov(yl) → A−1

with asymptotic average reduction factors given by σ (defined in (3.12)) and σ2,
respectively.

Proof. The specifications for {αl, τl} are the same as for the second-order Cheby-
shev accelerated linear solver (4.5) [1, Theorem 5.12], (4.14) confirms the choices for
cl and dl, and Theorem 4.10 provides κl. The reduction factors follow from Theorem
4.8.

4.4. Second-order Chebyshev SSOR sampler. We now have all of the
pieces necessary to present a second-order Chebyshev accelerated sampler algorithm.
Since a symmetric splitting is required, Chebyshev acceleration in a linear solver is
commonly implemented with a symmetric successive overrelaxation (SSOR) splitting
A = MSSOR−NSSOR, with algorithms to be found, for example, in [10, 23]. This split-
ting depends on the SSOR parameter ω, 0 < ω < 2. The choice ω = 1 corresponds to
forward and backward sweeps of the Gauss–Seidel stationary solver. Implementations
of SSOR for other choices of ω correspond to forward and backward sweeps of succes-
sive overrelaxation (SOR); that is, the SSOR splitting is never explicitly calculated.
Starting with a Chebyshev SSOR solver, Theorem 4.11 shows how to construct a
Chebyshev accelerated SSOR sampler that generates random vectors from any distri-
bution with first moments that converge to zero and second moments that converge
to A−1. The simplest such sampler is from a multivariate Gaussian since a Gaussian
is specified only by its mean and covariance matrix [5]. We present a Chebyshev
accelerated Gibbs sampler from a Gaussian as Algorithm 3.

For arbitrary non-Gaussian distributions, Algorithm 3 still generates samples with
the correct first and second moments, but the higher moments will be incorrect. One
could conceivably apply Chebyshev acceleration to the higher moments as well, but
we do not pursue that here.

The estimates of the extreme eigenvalues λ1 and λn of M−1
SSORA required by

Algorithm 3 can be found inexpensively using a conjugate gradient (CG) algorithm

[16]. In addition to generating the eigenvalue estimates λ̂1 and λ̂n, one can also use
CG to generate an approximate sample to N(0, A−1) [18]. We investigate the effect
of seeding Algorithm 3 with a CG sample elsewhere. In practice, the convergence of
Chebyshev solvers and samplers is maintained, with modified reduction factors, as
long as λ1 < λ̂1 < λ̂n < λn [23, p. 383]. The CG-Lanczos estimates λ̂1 and λ̂n satisfy
this requirement [2, p. 61], [16, p. 18].



CHEBYSHEV SAMPLING A139

Algorithm 3: Chebyshev accelerated SSOR sampler from N(0, A−1)

input : SSOR parameter ω : 0 < ω < 2; SOR splitting A = Mω −Nω;
extreme eigenvalues 0 < λ1 < λn of M−1

SSORA; initial state y0;
maximum iteration lmax

output: ylmax+1 approximately distributed as N(0, A−1)

Set D
1/2
ω =

((
2
ω − 1

)
diag(A)

)1/2
, δ =

(
λn−λ1

4

)2
, τ = 2

λn+λ1
;

β = 2τ ;
α = 1;

d = 2
α − 1;

c =
(
2
τ − 1

)
d;

κ = τ ;
for l = 0, . . . , lmax do

sample z ∼ N(0, I);

b = d1/2D
1/2
ω z;

x = yl +M−1
ω (b−Ayl);

sample z ∼ N(0, I);

b = c1/2D
1/2
ω z;

w = x− yl +M−T
ω (b −Ax);

if l = 0 then
yl+1 = α(yl + τw);

else
yl+1 = α(yl − yl−1 + τw) + yl−1;

end

β = (1/τ − βδ)−1;
α = β/τ ;
d = 2κ(1− α)/β + 1;

c =
(
2
τ − 1

)
+ (d− 1) (1/τ + 1/κ− 1);

κ = β + (1− α)κ;

end

Analogous to the SSOR solver algorithms in [10, 23], the Chebyshev sampler
implements sequential forward and backward sweeps of an SOR sampler [7, 20] (i.e.,
the SSOR splitting is never calculated, and the SOR splitting is explicitly used). The
feasibility of drawing a noise vector gl with the correct variance for other splittings
A = M −N depends on how easy it is to solve the system Mu = r for some vector u
given a residual vector r (solvers must deal with this same issue), but it also depends
on how easy it is to factor clM + dlN [5]. A simplifying aspect of using SSOR is that
this factorization need never be explicitly computed.

By Theorem 4.11, the Chebyshev SSOR samples generated by Algorithm 3 have
a mean which converges to zero as fast as the Chebyshev linear solver converges to
A−1b (i.e., with the asymptotic average reduction factor σ); and the covariance matrix
of the samples converges to A−1 with asymptotic average reduction factor σ2.

5. Numerical examples sampling from Gaussians at different resolu-
tions. The development we have given of polynomial accelerated samplers requires
that the mean and inverse covariance of the target distribution be known, or at least
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that operations required within the splitting of the precision matrix may be performed.
The simplest such case is where the target distribution is a multivariate Gaussian dis-
tribution with a specified mean vector and precision matrix. We now give an example
of accelerated sampling from a GMRF in three dimensions that has a sparse precision
matrix defined via a partial differential equation (PDE) and boundary conditions.

Our example uses the relationship between stationary GMRFs and stochastic
PDEs that was noted by Whittle [25] for the Matérn (or Whittle–Matérn; see [12])
class of covariance functions and that was also exploited in [3, 15]. Rather than stating
the PDE, we find it more convenient to work with the equivalent variational form, in
this case

Q (φ) =

∫
Ω

(
R

4
|∇φ|2 + 1

4R
φ2

)
dx+

∫
∂Ω

φ2

2
ds,

which has Euler–Lagrange equations being the Helmholtz operator with (local) Robin
boundary conditions φ+R ∂φ

∂n = 0 on ∂Ω. In our example we apply this operator twice,
which can be thought of as squaring the Helmholtz operator. We compute with a
finite-dimensional FEM (finite element method) discretization. When the resulting
discrete quadratic form is Q̄ (φ̄) = φ̄THφ̄, where φ̄ is a vector of nodal values and H
is the Hessian, the resulting GMRF has density

π
(
φ̄
) ∝ exp

{−φ̄TH2φ̄
}
.

We chose this operator because the precision matrix is sparse, while the covariance
function (after suitable scaling) is close to the Matérn-class covariance exp {−r/R}
with length-scale R. Note that it is not quite the case that we have available a square
root of the precision matrix H2, as the notation suggests, since we have omitted the
linear function-to-element operator for brevity of exposition.

The following examples both use a cubic-element discretization of the cubic do-
main [0, 1]3, with trilinear interpolation from nodal values within each element. The
examples also both use R = 1/4, though they differ in the number of nodes (or
elements) in each coordinate direction.

5.1. A 5 × 5 × 5 example (n = 125). We first present a small example for
which we were able to monitor convergence of the iterates generated by the second-
order Chebyshev accelerated SSOR sampler (Algorithm 3 with ω = 1). Convergence
was assessed by the relative error ||A−1 − Sl||2/||A−1||2, where the precision matrix
A is the square of the Helmholtz operator described above, and Sl ≈ Cov(yl) is the
empirical covariance matrix calculated over 103 sampler runs. Figure 5.1 illustrates
the convergence of the Chebyshev sampler iterates and compares the results to a
Gibbs SSOR sampler and to sampling via Cholesky factorization. The initial state
imputed into both the Chebyshev and SSOR Gibbs samplers for all runs was y0 = 0.
In addition, the Chebyshev sampler requires estimates of the extreme eigenvalues
of M−1

SSORA for the SSOR splitting A = MSSOR − NSSOR. A preconditioned CG

algorithm with preconditioner MSSOR provided λ̂1 = 1.268× 10−3 and λ̂n = 0.9999.
Each of the 103 chains, for both the Chebyshev and Gibbs samplers, ran to iteration
l = 500.

The benchmarks for the iterative samplers in finite precision are the results gener-
ated by sampling via the Cholesky factorization of A. The relative error in covariance
estimation using 103 Cholesky samples was 4.99/||A−1||2 = 0.0525 and is depicted
by the green horizontal line in Figure 5.1. Using this criterion, the second-order
Chebyshev accelerated sampler converged in finite precision after 60 iterations.
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Fig. 5.1. Iterative SSOR sampler convergence to N(0, A−1) for a 125 × 125 precision
matrix A. The vertical axis is the relative error ||A−1−Sl||2/||A−1||2. On the horizontal axis
is the number of iterations. Both SSOR and Chebyshev accelerated SSOR were implemented
with relaxation parameter ω = 1.

The average asymptotic reduction factor was σ = 0.9312 for the Chebyshev linear
solver and also for the first moment of a Chebyshev sampler (calculated via (3.12)).
This suggests that p∗ = 269 iterations are required to reduce the linear solver error
to ε = 10−8 (see (4.4)). In fact, when solving Ax = b for a randomly generated b,
the Chebyshev SSOR solver reduced the 2-norm of the residual to 10−8 after 296
iterations. The average reduction factor was σ2 = 0.8671 for the error in covariance
(Theorems 4.8 and 4.11), and so the number of iterations required by the linear
solver is an upper bound of the number of iterations required for the mean and
variance of the sampler to converge. Furthermore, (4.13) suggests that the error in
the Chebyshev covariance should be reduced to a fraction of about ε = 10−4 of the
original error after about 70 iterations. For the unaccelerated SSOR sampler, the
asymptotic reduction factors for the mean and covariance are ρ(G) ≈ 1− λ̂1 = 0.9987
and ρ(G)2 = 0.9974, respectively. This suggests that a Gibbs SSOR sampler must
perform about 3500 iterations to attain the same error reduction in covariance (since

(1− λ̂1)
2·3500 ≈ 10−4). Since y0 = 0, convergence in mean is not shown.

5.2. A 30 × 30 × 30 example (n = 27,000). This example illustrates the
feasibility of Chebyshev accelerated sampling for large problems for which sampling
by a Cholesky factorization of the precision matrix is computationally and memory in-
tensive and hence not possible on a standard laptop or desktop computer. A problem
like this on a three-dimensional domain is not amenable to bandwidth reducing per-
mutations which sometimes can reduce the computational and memory requirements
of the Cholesky factorization. Figure 5.2 shows a Chebyshev sample after l = 5n
iterations with a precision matrix A that is the square of the Helmholtz operator
described above. The initial state for this run was y0 = 0, and the extreme eigenval-
ues of M−1

SSORA were estimated to be λ̂1 = 1.366 × 10−6 and λ̂n = 1 − 1.56 × 10−8

using a preconditioned CG algorithm. Thus, the average asymptotic reduction factor
was σ = 0.9977 for the error in the first moment (calculated via (3.12)) and was σ2 =
0.9953 for the error in covariance. After 5n = 1.35 × 105 iterations, (4.13) suggests
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Fig. 5.2. A draw from an n = (2.7 × 104)-dimensional Gaussian using a Chebyshev
accelerated SSOR sampler after 5n iterations.

that, in infinite precision, the error in the Chebyshev covariance should be reduced to
a fraction of about ε = 10−50 of the original error. Contrast this with the reduction
factors ρ(G) ≈ 1− λ̂1 = 1− 1.366× 10−6 and ρ(G)2 = 1− 2.73× 10−6 for the Gibbs
SSOR sampler. These average reduction factors suggest that after running the Gibbs
sampler 5n iterations, the covariance error will be reduced to ρ(G)2·5n ≈ 0.69 of the
original error, with 250n = 6.75× 106 iterations required for a 10−8 reduction.

6. Discussion. We have shown how matrix splitting (of the precision matrix),
which is the standard route to understanding linear iterative solvers, is also useful
for constructing stochastic iterations that converge to a distribution having a desired
covariance matrix. Equivalence of convergence properties then allowed us to develop
polynomial acceleration of the sampling algorithm to accelerate convergence in mean
and covariance. Accordingly, we see that the value of this work lies in accelerating dis-
tributional convergence in those settings where the mean and covariance are statistics
of primary interest.

We established the connection between stationary linear iterative solvers (1.1) and
samplers (1.2) in section 1.1 by considering componentwise sweep Gibbs sampling from
a Gaussian distribution with known mean μ and covariance A−1 and observed that
the sampler derives from the same splitting that gives the Gauss–Seidel solver. When
the noise term in (1.2) is Gaussian and when the initial state y0 is also Gaussian,
each of the l-step distributions (over yl) is Gaussian, and so the limiting (target)
distribution is necessarily Gaussian. However, when the noise terms are not Gaussian
the limit is not Gaussian, and so the equivalence holds more generally than just for
Gaussian distributions.

We are only able to offer some intuition on what defines the broader class of
distributions that are potentially targeted by iterations of form (1.2). As we men-
tioned, convergence in distribution of iterates in (1.2) occurs iff ρ(G) < 1, i.e., G is a
contraction. Since the addition of the independent random variable gl has the effect
of convolving the distribution over Gyl by the noise distribution, the distributional
effect of each iteration is to contract and then smear out through convolution. This



CHEBYSHEV SAMPLING A143

procedure seems well suited to convergence to (a subset of) unimodal distributions,
though it seems unlikely to us that strongly multimodal distributions can be targeted
under this procedure. However, strongly multimodal distributions are not usefully
summarized by a mean and covariance and therefore are not the target of this paper.

Equivalence of convergence properties in the stationary case means that poly-
nomial acceleration of linear solvers may then be applied to accelerate convergence
in the mean and covariance of the stochastic iteration. Since the mean term in the
stochastic iteration is exactly the deterministic iteration used as a linear solver, our
contribution is to show how polynomial acceleration may be applied to the covariance
matrix in the stochastic iteration. In principle, the analysis we have given can be ex-
tended to also design the noise distribution to correctly accelerate convergence to the
third, and higher, moments of the target distribution. However, we have not pursued
that analysis, as it is more difficult and of unclear worth.

The analysis we have given requires that the (global) mean and precision matrix
of the target distribution be known in advance, or at least that the matrix vector
operations required in the iteration may be performed. That is most commonly
the case when the target distribution is Gaussian, as in the numerical examples in
section 5. The recent advent of adaptive Monte Carlo methods [13, 20] does offer
the possibility of adapting to the mean and covariance within the iteration, as in the
adaptive Metropolis (AM) algorithm. We have implemented such an algorithm and
found positive results in cases we have tried, but we have no convergence theory for
the resulting algorithm.

One of the motivations for undertaking this work was to understand the rela-
tionship between stochastic relaxation, as Geman and Geman labeled Gibbs sampling
[8], and (classical) relaxation, which is the term Southwell used for early stationary
iterative solvers [24]. In particular, we were curious whether these two relaxations
were related in a formal mathematical sense or just a colloquial sense. As we have
shown, the two are mathematically equivalent in the setting of sampling from Gaus-
sian distributions in that the iteration operator, error polynomial, and convergence
rates are identical. This provides a formal basis for adapting more efficient solv-
ing algorithms to produce more efficient sampling algorithms. This correspondence
has been noted before, e.g., by Goodman and Sokal [11], who applied the (classical)
multigrid algorithm to Gibbs sampling.

We have a wider intention in writing this paper, which is to attract the numerical
analysis community into developing sampling algorithms. By presenting the sampling
algorithms in the language that is familiar to numerical analysts, we hope that we
have shown how natural, even obvious, the application of polynomial acceleration
to Gibbs sampling of normal distributions is. It may therefore come as a surprise
to some that this is a very recent result (due to the authors) and that this paper
presents the first ever analysis of convergence for first- and second-order Chebyshev
accelerated sampling. By finding an equivalence between sampling algorithms and
computational linear algebra we have revealed something about the current state
of technology used in sampling, which indicates that the state of sophistication of
sampling algorithms is presently akin to the state of linear solvers in the 1960’s and
that potentially great advances can be made in sampling by applying well-developed
ideas from computational linear algebra and optimization.

It would be remiss, however, to leave the impression that computational meth-
ods for sampling are in need of advances because those developing them are less
capable than those developing computational linear algebra. In general, establish-
ing the convergence of sampling algorithms is a more delicate issue than establishing
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the convergence of an optimization algorithm since the entire path taken must be
considered if a sampler is to have the desired ergodic properties. Furthermore, con-
vergence occurs in the space of distributions, not the space of the state vector, meaning
that even calculating residuals is not directly feasible. Typically one must resort to
sample-based estimates which are computationally expensive and subject to errors.
Nevertheless, sophisticated ideas that have been hard-earned by the computational
science community can constructively be applied to sampling, as we hope this paper
demonstrates. For example, Chebyshev polynomial accelerated samplers are guaran-
teed to have a smaller average reduction factor than their unaccelerated stationary
counterparts. Furthermore, equivalence of convergence factors means that the con-
vergence rate of the accelerated sampler may be estimated by numerically estimating
the convergence rate of the accelerated linear solver, rather than resorting to time
consuming sample-based estimates using many runs of the sampler.

While performing this research we have recognized the debt we owe to (the late)
Gene Golub, who pioneered first- and second-order Chebyshev acceleration for linear
solvers [9], which we have built upon. We are pleased to demonstrate the connection
between Gene’s work and the sampling algorithms from statistics by publishing in this
journal that Gene had wanted to remain titled the Journal on Scientific and Statistical
Computing [22].

7. Appendix. This appendix contains lemmas that are not directly used in the
main body of the paper and also proofs to lemmas and theorems in the paper.

The following lemma writes the iteration operator in (2.2) directly in terms of the
splitting in (2.3).

Lemma 7.1. Gτ = M−1
τ Nτ = τG + (1− τ) I.

Proof. Substitute the splitting (2.3) into the definition for Gτ .
Lemma 2.1. The iteration operators Gτ and Gκ commute, that is, GτGκ = GκGτ

for all τ, κ.
Proof. Expand using (2.2) to give GτGκ = I−(τ + κ)M−1A+τκM−1AM−1A =

GκGτ .
Lemma 2.2. For a symmetric splitting, GτA

−1 is symmetric.
Proof. GτA

−1 =
(
I − τM−1A

)
A−1 = A−1 − τM−1 is symmetric.

The following lemmas are needed when we come to calculate the variance of noise
terms used in sampling algorithms.

Lemma 7.2. A−1 −GτA
−1GT

κ = τκM−1
(
1
τM + 1

κM
T −A

)
M−T.

Proof. A−1 −GτA
−1GT

κ = M−1
τ

(
MτA

−1MT
κ

)
M−T

κ −M−1
τ NτA

−1
(
M−1

κ Nκ

)T
=

M−1
τ

(
Mτ +MT

κ −A
)
M−T

κ . Then use Mτ = M/τ , etc.

Lemma 2.3. A−1 −GτA
−1GT

τ = M−1
τ

(
MT

τ +Nτ

)
M−T

τ .
Proof. Set Nτ = Mτ −A in the proof to Lemma 7.2.
Lemma 7.3. For a symmetric splitting,

A−1 −GτA
−1GT

κ = τκM−1

((
1

τ
+

1

κ
− 1

)
M +N

)
M−1.

Proof. Substitute MT = M and A = M −N into Lemma 7.2.
Lemma 7.4. For a symmetric splitting,

A−1 −GτA
−1GT

τ = M−1
τ (Mτ +Nτ )M

−1
τ .

Proof. Put κ = τ in Lemma 7.3, and use MT
τ = Mτ in Lemma 2.3.
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Lemma 3.1. The iteration in (3.1) has x∗ as its unique fixed point, i.e.,

x∗ = Gτx
∗ + gτ ⇔ Ax∗ = b.

Proof. IfAx∗ = b, thenGτx
∗+gτ =

(
I − τM−1A

)
x∗+τM−1b = x∗−τM−1Ax∗+

τM−1b = x∗, so x∗ is a fixed point of the iteration. Conversely, any fixed point x∗

satisfies Ax∗ = b and is unique by invertibility of A.
Lemma 3.3. Cov

(
yl+1

)
= Gτ Cov

(
yl
)
GT

τ +Cov (gl) .
Proof. It follows since yland gl are independent.
Corollary 3.4. Cov (gl) = M−1

τ

(
MT

τ +Nτ

)
M−T

τ .
Proof. The expression for the fixed point variance is A−1 = GτA

−1GT
τ +Cov (gl),

and hence Cov (gl) = A−1 − GτA
−1GT

τ , with the result following from Lemma
2.3.

Lemma 4.1. x∗ is invariant under the iteration (4.1); i.e., x0 = x∗ implies that
xl = x∗ for l = 1, 2, . . . .

Proof. If x0 = x∗, then r0 = 0, in which case x1 = x∗. If xl = xl−1 = x∗, then
rl = 0, so xl+1 = αlx

∗ + (1− αl)x
∗ = x∗.

Lemma 4.4. The requirement that Cov
(
y0
)
= A−1 implies that Cov

(
yl
)
= A−1

for l = 1, 2, . . . , and so(
A−1 Kl+1

KT
l+1 A−1

)
= Gl

(
A−1 Kl

KT
l A−1

)
GT
l +

(
(αl)

2 Cov (gl) 0
0 0

)
,

where the (covariance) matrix Kl satisfies Kl+1 = αlGlA
−1 + (1− αl)K

T
l for l =

0, 1, 2, . . . , and K0 = 0.
Proof. By definition, K0 = 0. For l = 0, we have α0 = 1, and the result may be

checked directly by setting Cov
(
y0
)
= A−1, which gives Cov(Y 0) = ( A−1 0

0 0
), and

hence Lemma 4.3 gives

Cov
(
Y 1
)
= G0

(
A−1 0
0 0

)
GT
0 +

(
Cov (g0) 0

0 0

)
=

(
A−1 G0A

−1

A−1GT
0 A−1

)
,

which shows that K1 = G0A
−1. To complete the proof for l = 1, 2, . . . , the recursion

relation follows by expansion of the iteration (4.9) and writing the recurrence for the
off-diagonal blocks(

A−1 Kl+1

KT
l+1 A−1

)
=

(
αlGl (1− αl) I
I 0

)(
A−1 Kl

KT
l A−1

)(
αlG

T
l I

(1− αl) I 0

)

+

(
(αl)

2
Cov (gl) 0
0 0

)

=

(
A−1 αlGlA

−1 + (1− αl)K
T
l

αlA
−1GT

l + (1− αl)Kl A−1

)

+

(
(αl)

2
Cov (gl) 0
0 0

)
.

Lemma 4.9. For a symmetric splitting, Kl = KT
l .

Proof. The result is true for l = 0, trivially. The result follows by induction since
the expression Kl+1 = αlGlA

−1 + (1− αl)K
T
l for l = 0, 1, 2, . . . shows that Kl+1 is

symmetric when Kl is symmetric because GlA
−1 is symmetric by Lemma 2.2.
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Theorem 4.10. For a symmetric splitting, Kl = Gκl
A−1 for l = 1, 2, . . . , where

the parameter κl satisfies κ1 = τ0 and κl+1 = αlτl + (1− αl)κl for l = 1, 2, . . . .
Proof. Since K1 = G0A

−1, the expansion holds for l = 1 with κ1 = τ0. Assuming
the result holds for l, then by Lemmas 4.4 and 4.9, the recursion in Kl gives

Kl+1 = αlGlA
−1 + (1− αl)Kl

= αl

(
I − τlM

−1A
)
A−1 + (1− αl)

(
I − κlM

−1A
)
A−1

=
(
I − [αlτl + (1− αl)κl]M

−1A
)
A−1,

so the expansion and recursion hold for l + 1, and hence the result follows by induc-
tion.
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