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RECENT ADVANCES IN INFERENTIAL
SOLUTIONS TO INVERSE PROBLEMS

ABSTRACT

Inferential solutions to inverse problems provide sub-
stantial advantages over over deterministic methods, such
as: quantitative estimates with posterior (data-dependent)
error estimates, predictive densities, model comparison, and
direct support for optimal decisions. The ability to include
arbitrary forward maps, and hence use high-level represen-
tations of the unknowns, allows structure-preserving model
reduction and also allows ’classification’ to be performed
within the “imaging’ step. Since inferential methods make
.(provably) optimal use of data, the ability to reduce data to
a minimal set gives cost savings in applications where col-
lecting data is expensive.

The price of these advantages is presently the relatively
high computational cost of sampling algorithms for com-
puting estimates. Hence the most significant advances are
in computational methods for sample-based inference in in-
verse problems. In this paper we review the inferential for-
mulation of inverse problems, some reasons why it is nec-
essary to take on the extra machinery of inferential solu-
tions, the ‘basement level’ methods for computing inferen-
tial solutions, and summarize some recent advances in com-
putational methods for inferential solutions to inverse prob-
lems.

INTRODUCTION

Inverse problems occur when observed data d depend
on unknowns x via a measurement process, and we want to
recover x from d, or at least answer quantitative questions
about x given 4. Simulation of the measurement process for
given x defines the forward map A : x — d giving data in the
absence of errors. '

Typical examples are the various modalities of imaging
from wave scattering used in non-invasive medical diagnos-
tics, geophysical prospecting, and industrial process moni-
toring. Tn these problems the forward map can be modelled
using ideas from theoretical Physics, and simulation usually
requires solution of a partial differential equation. Inverse
problems also occur in a myriad of other settings such as
inverse spectral problems (determining internal structure or
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shape from resonance frequencies), interferometric imag-
ing, and mapping of flows subject to physical laws, to name
just a few.

The classical, or deterministic, inverse problem is to
invert the the function A to obtain unknowns x in terms of
data 4. Practical inverse problems are usually ill-posed by
failing to have solutions or unique solutions, while ideal-
ized inverse problems in which all possible measurements
are made are usually unstable, i.e., small changes in data 4
cause large or unbounded changes in recovered vatue(s) x.
This latter property is routinely displayed by least-squares
or maximum likelihood solutions to inverse problems, even
when the number of data exceed the number of unknowns.
For many inverse problems this behavior can be understood
mathematically when the forward map is compact, imply-
ing that the inverse is discontinuous. Regularized inversion
consists of applying a regular approximation to the inverse
of A to give a single estimate of unknowns x — presenting
a “take it or leave it’ solution. In contrast, inferential meth-
ods, as we will see, can make estimates and predictions by
summarizing all feasible solutions.

Inferential Formulation of Inverse Problems

The ubiquitous presence of measurement errors, or
noise, means that a practical measurement process is prob-
abilistic, and the inverse problemn is naturally a problem in
statistical inference. To fix ideas, consider additive noise n
with probability density function mty(n). The measurement
process can then be written

d=Ax)+n (D
and we see that the data is now a random variable that is
dependent on x. The {conditional) probability density for
measuring d given that x is the true set of parameters is

n(dlx) =my (d-Alx), )

since the Jacobian determinant for the change of variables
from nto d is 1. In this formulation, making a set of mea-
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surements corresponds to drawing a sample 4 from n{d|x)
which is a probability distribution parameterized by the un-
knowns x via the forward map A. Given a set of measure-
ments d, the job in inverse problems is to work out what
we can say about the parameter x. Statisticians have devel-
oped a beautiful and principled set of tools for exactly this
problem! making the field of ’statistical inference’. That
toolbox is applied here, so solution methods presented are
structurally just sample-based inference as formulated in
Bayesian statistics. However, inferential methods applied
to inverse problems have a particular structure arising from
the ill-posed nature of the inverse problem, and because the
forward map can be modelled using Physics and simulated
by intensive computation.

As a funetion of d, n{d|x) is a probability density func-
tion with all the vsual properties: it integrates to I and (rans-
forms as a distribution. As a function of x, n{d|x) is a func-
tion but not a probability density: its integral equals 1 only
by coincidence and it does not transform as a distribution.
Hence we write I(d|x) for ®(d|x) and refer to the likelihood
SJunction.

Most commonly the measurement error has an expo-
nential family or Gibbs distribution [Kaipio and Somersalo,
2005], so the likelihood function takes the form

l{d|x) < exp{—x (d—A(x})}

where %(-) is an ‘energy’ function. For example %(y) =
¥'B~!y/2 when the noise comes from a Gaussian process
with known covariance mafrix B.

In a Bayesian formulation, inference about x is based
on the posterior density

1(d]x)m(x)

n(x|d) = d)

®

where ®(x) denotes the prior density modelling beliefs
about the unknown x independent of the data d. -For our
purposes it is sufficient to take 7(d} to be a finite constant?,
thus ensuring that the posterior density is normalizable.

Exploratory analyses typically employ a low-level (e.g.
pixel or voxel) representation of the unknowns with a Gibbs
or Markov random field (MRF) prior distribution [Geman
and Geman, 1984]. This is the typical case in regularized
inversion, which may be viewed as a special case of infer-
ential methods. This follows since regularized inverses are
the same as maximum a posteriori (MAP) estimates with
regularization functionals that almost always correspond to
a proper (or Improper) Gibbs prior distribution written as
the exponential of mimas a norm (or semi-norm) of the un-
known x. Ther the posterior density has the form

n(dld) = exp A (d~AE) —p(x)} @

Parameter estimation problems in astronomy led Laplace to a formu-
lation of probability, that is seen as one of the starting points of Statistics.

2This number plays a central role in problems where mode! selection is
at issue.
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where 9 and p are relatively simple functions.

Despite that similarity of mathematical form of many
regularization functionals to the log GMRF, the formula-
tion of a statistically-sensible prior distribution is 2 major
practical difference between regularization and inferential
methods. As remarked above, the prior density ®{x} mod-

els beliefs about the unknowns in the absence of data, and
hence typical states in the support of the prior distribution -

should look like reasonable values of the unknown x. In a

Bayesian analysis it is typical to test modelling assumptions
by drawing several samples from the prior distribution and

ensuring that they look reasonable. In contrast, typical reg-

ularization functionals would fail this test.

Also, since the prior distribution must be normalizable, -
the space X of allowable reconstruction must have finite (ac- #
tually unit) volume. This is not only a philosophical issue, '
but alse a practical issue that enables sampling algorithms -
to be provably convergent. In contrast, typical regulariza- <
tion functionals correspond to improper prior distributions, *
i.e. that are not normalizable. Attempts to naively apply *
sampling algorithms to (the exponential of minus) a regu- °
larization functional lead to ill-defined results depending ofi

numerical happenstance.

A strong practical advantage of inferential methods is

that any bias introduced by the prior may be calculated and .-

wH AT

corrected. This is easily done by drawing samples from

the prior distribution and applying the solution/estimation” *
procedure to obtain the density of estimates independent of

measured data. Bias in estimates may be removed by suit-

ably adjusting the prior distribution, usually by scaling the ~

metric in some direction. A nice example of this procedure
is given by Watzenig [2006] when estimating the area of an
inclusion using electrical capacitance tomography.

For this reason, there is no single ‘Bayesian analysis’

since there is no single prior distribution, rather the prior

distribution that should be used depends on the purpose of .
performing the inverse problem. For example, the prior dis-
tribution for estimating a ‘best’ reconstruction would be dif: -

ferent to that for estimating some feature of the reconstrucs
tion, or from making a decision based on the reconstruction,
etc.

As in the field of image analysis, geometric informa-
tion about the unknowns may be included using a prior dis-
tribution based on an intermediate-level representation of
the unknowns, such as Nicholls [1998] coatinuum trian-
gulation of the plane (see e.g. Andersen et al. {2003]), or
using a high-level representation of the type infroduced by
Grenander and Miller [1994]. These represent substantial
difficulues for regularization methods since state spaces are
typically not Euclidean, nsually not equipped with a norm,
and hence regulanization functionals are not applicable. The
ability to use these more informative representations is a
substantial advantage of inferential (or model fitting) meth-
ods since there is the potential of dimensionality reduction.

Before looking into the details of how we may per-
form statistical inference for inverse problems, we examine
a simple problem that demonstrates some of the reasons why
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we should use inferential methods.

Meode and Mean in a Binary Imaging Problem

The first ‘recent result’ we visit is actually a ‘recent
understanding’ that has been made possible by new algo-
rithms. For some decades computational limitations have
restricted the summeary statistics that can be calculated to
the mode of the posterior distribution — by using efficient
optimization algorithms. However, in any inverse problem
where the forward map is non-linear, or when measurement
error is not Gaussian, or when using general prior distribu-
tions, or where image space is discrete, (so just about all in-
verse problems) there Is no reason that the mode should be
representative of the bulk of feasible reconstructions. We
find, instead, that summary statistics based on the bulk of
probability in the posterior distribution are required.

We consider a problem of recovering a binary (black
and white) image after pixel-wise addition of zero-mean
Gaussian noise. Recovery of binary images occurs in the
practical setting of ‘image segmentation’ problems (see e.g.
Kumar and Hebert [2006]). As we will see, this problem has
a posterior distribution for which the mode is very different
to the mean. We follow the analysis of Fox and Nicholls
[2000] who calculated the mode exactly and estimated the
mean using a provably convergent sampling algorithm.

Figure 1 shows the true image (left) and the pixel-wise
degraded version (right).

noisy

Figure 1. True binary image (left) and gray-scale image showing
the image after pixel-wise addition of Gaussian noise {right).

The N x N binary image is x = (x1,%2...%y2) where
each x; € {0,1}. The pixel-wise corrupted version, g =
(81,82---8n2), is given by

8i =X+

2.

with each €; ~ Nomnal(0, %) with known varjance

In terms of the model for inverse problems in equa-
tion 1, it appears that the forward map is the idemtity (at
least to the untrained eye). A common procedure in conven-
tional imaging of binary images of is to treat the unknowns
as gray-scale pixels and attempt inversion of the forward
map. In this case it is certainly easy to invert the forward

map, but it makes no improvement at all!
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The likelihood function for image x given measure-

ments g, may be written
(i 8)*
262 )

In this form, it Tooks reasonable to perform inversion by
requiring that each recovered pixels be binary valued, i.e.
black or white, and finding the best-fit image in the least-
squares sense. Since the noise is iid Gaussian, this equals
the maximuom likelihood solution

a2
I{glx) = HEXP (—

= I X
ML = ArgImax {glx)

That solution is shown in figure 2. As can be seen, XmLp

Figure 2. Least-squares or maximum likelihood solution.

does not make a good estimate of the true image. Failure
of the least-squares solution should present no surprise io
practitioners in inverse problems where it is commonplace.
In this case the failure is perhaps more expected when con-
sidering the equivalent form of the likelihood as a function
of x, i.e. once data g is measured and hence fixed,

N?
I{glx) o< exp (2 lixi)
i=1

where

21
Ai= 262

It is prudent to remember that the likelihood as a function
of the unknowns x is an object of quite a different nature to
a probability distribution, hence the tempting interpretation
that “most likely’ is related to quality of reconstruction is
actually misleading.

‘We specify a prior distribution by modelling x on the
pixel Iattice as an Ising Markov random field, with distribu-
tion

N2
T (x) < exp (BZ ZSXi,xj)

=1 jovi
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where the sum over j ~ { is a sum over pixel neighbors, 8
is a smoothing parameter, and &, 4 is the indicator function
for the event 2 = b, For the binary images defined here, the
prior is explicitly

N
T(x) oc exp (—BZ Y (2 —1)(2x;-1)

i=1 jroi

which is a Gaussian distribution on the binary variables.

The joint posterior distribution for an image x given.

measurements g is given by Bayes’ rule as

7 (x|g) o< I (xlg) m(x)
NE Nt
scexpl Y Ax—0Y Y (2 —-1)(2x;—1) | (5)
=1 i=1 jri

which is also Gaussian. Tt is this distribution that we need
to explore to learn about the unknown image.

Figure 3 shows four statistics that can be used to sum-
marize the posterior distribution, for a range of smoothing
parameters 8. The first column shows the MAP state, which
maximizes the posterior distribution

AMap = argrgsa%n(ﬂg).

Inspection of equation 5 shows that MAP state is also the
solution found by total-variation regularized inversion, or
since the image is binary also by gradient regularization.
Note that as the smoothing parameter 8 increases, xyap
becomes smoother, providing possible reconstructions at
0 == 0.25, first loosing the center of the A, then the “legs”
and finally, for all B greater than some critical value in the
range (0.5,0.675), xmap = 1, i.e. the all-white state.

The second colurnn shows the (posterior) mean image

5= Exi] = Y wn(rlg)

xeX

While the mean image is gray-scale and not a feasible re-
construction for binary images, it does give a good indica-
tion of the position of the bulk of posterior probability mass.
As can be seen, the posterior clusters increasingly around
better reconstructions as € increases, with good reconstruc-
tions for 6 = 0.3.

The third column shows a sample drawn from the pos-
terior, and confirms that the the mean is representative of
‘typical’ states in the posterior distribution.

The fourth column is the marginal posterior mode
(MPM), which shows each pixel as the mode of the marginal
distribution of that pixel, and hence takes the value that the
pixel most frequently took in the samples drawn from the
posterior. For the case of binary images, the MPM is just

the thresholded mean, xppm = (%]
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0.125

g=

0.25

B =

0.375

9=

0.5

8=

0.675

]

MAP

Figure 3. Tableau of maximum a posteriori (MAP) state, mean;
a single sample from the posterior, and the marginal posterior mode
{MPM) for a range of smoothing parameters 9.

This simple, yet instructive, example shows that the
MADP state is not a robust estimate of the true image, and
does a poor job of summarizing the posterior distribution at
ail values of 0. At larger smoothing parameters, 6 2 0.5 for
this example, when the prior distribution is doing an excel-
lenit job of shaping the posterior so that the bulk of posterior
probability mass contains smooth images that fit the data
well and themselves make good reconstructions, the MAP
state is a hopeless reconstruction precisely because it is en-
tirely unrepresentative of typical samples. For 8 = 0.675 the
MAP state is an extreme outlier while the posterior is dom-
inated by states from which a good recovered image could
be formed.

In this example, even a single sample drawn from the
posterior distribution would be a better estimate of the true
image than given by the MAP state (or regularized iriver-
sion). This is a typical situation in many inverse problems,
and shows that improvement over current methods does not
require extensive sampling. Single samples can provide
good reconstructions. A few samples, say 2-4, can estab-
lish a scale and nature of ambiguity in the reconstructions
(see e.g.McKeague et al. [2005]), while extensive sampling
allows accurate estimates of posterior variability in applica-
tions where that is needed.

Our attention now moves to how inferential solutions
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are computed, and some recent advances in sampling algo-
rithms for inverse problems.

COMPUTATIONAL INFERENCE: MCRMC
Answers to questions about the true image may be cal-
culated as posterior expectations of some function f

E[f ()] =) n(xld) f (x). (6)

xeX

For example, if f is an indicator function for an image show-
ing that the patient has cancer, then equation 6 gives the
probability of cancer based on the measurements and the
prior information. ' ‘

The expectation in equation 6 may be calculated us-
ing Monte Carlo integration as follows. If {X(t),t =
1,2,...,N} are distributed according to the posterior dis-
tribution, 7t (-|d), then

1 N
B Ol 5 L F(X@)- Q)

The task then is to draw samples from the given posterior
7t (+|d). The Markov chain Monte Carlo (MCMC) algorithim
achieves sampling by generating {X(£)}i2, as a Markov
chain of random variables X(t) € X, with a #-step distribu-
tion P(X(¢) = x[Xp = x9) that tends to n{x|d), as t — oo.
Thus the algorithm produces a random walk through the
space of feasible images with the long-term probability that
the walk will visit a particular image x tending to the desired
posterior distribution.

The Metropolis-Hastings Algorithm

In the following we write the abbreviated w(x) for
7{x|d). We construct a Markov chain that evolves on X that
bas 7i(-) as its limiting distibution by repeatedly applying
the transition law P defined by

P{X(t+1)=x[X(#) =y} =Pxy), ¥xyeX

To ensure that 7 is the equilibrium distribution it is neces-
sary to satisfy the linear invariance equation:

P =Tx,
where T is seen as a row vector, P as a matrix. Hence

Y mx)P(ny) =n), Wy eX.
xEX

In practice it is easier to assert the stronger detailed balance
condition:

a(x)P{x,y) = Ty)P(yx) VryeX,

which implies the invariance equation as can be seen by
sumnming over x, and using X ox P(x,y) = 1, ¥y € X.

Detailed balance can be achieved by simulating the
transition law using the Metropolis-Hastings algorithm,
given in algorithm 1. Note that this algorithm depends only
on the ratio of densities, and hence the normalization con-
stant is not required (but it is important that it exists). The
stochastic update is then: if the chain is in state x at step ¢
we set X (r+ 1) = MH[x). '

y=MH{x)

Draw x' from proposat distrbution 7 (x,x')
Draw u from Uniform[Q, 1]

, ] ()T {x',x
o(x,x'}) +- min (1, ———n(x))T((x,x’)))
if u < afx,x)

y=x
else
y=x

Algorithm 1: Metropolis-Hastings algorithm simuolating op-
eration by the transition kernel P{x,y). The proposal distri-
bution T{x,x’} may be any distribution that guarantees the
chain is aperiodic and itreducible.

A beautiful feature of the MH (or MH-type) algorithm
is that it is easy to implement, and the conditions on the
proposal distribution are straightforward to achieve. It also
turns out to be robust to numerical roundoff error.

Efficiency of this algorithm is strongly dependent on
the proposal distribution. The simplest proposal distri-
butions are given by random walks centered at the cur-
rent state x. However, these lead to very inefficient algo-
rithms in high-dimensional inverse problems. While im-
proved generic proposal distributions are available, such as
the Langevin proposal and the hybrid Monte Carlo schemes,
the most efficient algorithms result from proposals designed
with specific knowledge of the structure of the forward map.
These are typically designed using multiple ‘moves’, where
each move explores a known uncertainty in solutions. An
example of such a proposal distribution, tailored to a spe-
cific inverse problem, is given by Nicholls and Fox [1998].

Computing Inferential Solutions to Inverse Prob-
lems ' :

In principle, the posterior density in equation 3 or 4 can
be evaluated and hence sampled using Metropolis-Hastings
dynamics allowing summary statistics to be evalvated, ef-
fectively solving the inverse problem. However, the need
to calculate the posterior density at each step in a standard
Metropolis-Hastings algorithm, with typically many thou-
sands or millions of steps required to give sufficiently small
variance in estimates, appears to be computationally pro-
hibitive for realistic inverse problems. In this aspect, com-
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putational MCMC for inverse problems shares many of the
goals and problems of numerical optimization.

Nevertheless, there are a growing number of demon-
strations of comprehensive posterior sampling, conditioned
on measured data, for inverse problems implementing a
physically-based forward simulator. Recent examples in-

" clude the work by McKeague et al. [2005]) mapping ocean
circulation, Haario et al. [2004] recovering atmospheric gas
density, Cornford et al. [2004] who retrieve fields of wind
vectors, and Cui [2005] calibrating numerical models of
geothermal fields.

The massive scale of computation in each of these
examples indicates that considerable improvement in effi-
ciency of MCMC algorithms for inverse problems is re-
quired if the method is to be widely applied. Indeed, each
of the works cited ernploys an enhanced MCMC to improve
computational efficiency. For example Haario et al. [2004]
used a novel adaptive Metropolis algorithm in which the co-
variance matrix in a d-dimensional Gaussian proposal dis-
tribution is calculated from the history of the output chain.
Another interesting development is the Metropolis coupled
MCMC of Higdon et al. [2003] that simwultanecusly runs
chains with the spatial parameters coarsened to variouns de-
grees. Information from the faster running, though approx-
imate, coarse formulations speeds up mixing in the finest
scale chain, from which samples are taken.

Simulated Tempering

Consider the case where the Metropolis-Hastings al-
gorithm is used to sample from posterior distribution 7{-)
using proposal distribution 7'{x,y) and it is found that the
resulting chain is evolving slowly, or worse still is getting
stuck. This can happen because of multi-modality of =(-), or
because of strong correlations as is typical in inverse prob-
lems where the support of (-) can be effectively a low-
dimensional subspace of X. Simulated tempering (with the
pame and idea adapted from simulated annealing for opti-
mization) is a general method that can overcome some of
these difficulties, while using the existing proposal distribu-
tion T'(x,y).

The methods angmenis the state space to X X
{0,1,...,N} and defines a set of distributions {m( ¥,
where Ty = 7 and 7y (), 72(-),..., Ty () are a sequence of
distributions that are increasingly easy to sample from. The
distribution over the augmented space is taken as

(x, k) o< T (x)

with transitions for a fixed & being derived fiom the proposal
T(x,y) and are interspersed with proposals that change &
(perhaps by a random walk in k) with both accepted/rejected
by a standard Metropolis-Hastings algorithm. The random
walk then occurs in {x,k) space. Samples that have £ =0,
i.e. from the conditional density T(x,k|k = 0), are samples
from the desired distribution.

A simple example of such a sequence is the scheme
due to Marinari and Parisi [1992] who introduced simulated
tempering. Define the positive numbers (inverse ternpera-
tures) I = Pg < Py < --- < Pw and pseudo prior constants
Ao, A, e+ Ay with ¥, 4 = 1. The sequence of distribu-
tions is then given by '

T x) = heRPe (x)

which are increasingly unimodal.

Other schemes for generating sequences of distribu-
tions have found greater success in inverse problem apphi-
cations. The simple idea of increasing the variance ased to
calculate the likelihood function was used by Palm [1999] to
overcome sampling difficulties arising in electrical conduc-
tance imaging where high-accuracy data leads to posterior
distributions that are too narrow to easily sample. Sampling
difficulties due to a very narrow posterior distributions also
arises when the data consists of a long time series, such as
is measured in ultrasound imaging or from observations of
a dynamical system. Then an effective tempering scheme
can be to simply reduce the length of data considered. So if

{d} = {do} > {di} > --- 2 {dn}
is a sequence of decreasing data sets, we define
Ty (x) =T (xld)

Parallel tempering is similar to simulated tempering
except that the N chains (one for each value of k) are
maintained simultaneously. An example is the Metropo-
lis coupled MCMC of Higdon et al. [2003], mentioned
above, that simultaneously runs chains with the spatial pa-
rameters coarsened to varions degrees. The recent ‘evo-
lutionary Monte Carlo’ algorithms introduced by Liang
and Wong [2001] are examples of parallel tempering with
moves that are inspired by the genetic optimization algo-
rithms, amongst other ideas.

Parallel Rejection Algorithm

We now consider an algorithm to decrease the CPU
time per MCMC update by utilizing multiple compute pro-
cessors using a straightforward parallelizing of the serial
Metropolis-Hastings algorithm?,

Consider the serial Markov chain {X(¢)},_ that is at

- state X (¢) = x(z) for some ¢. Suppose that z processors are
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available, that we take to be independent for computing pur-
poses. We run on each processor an independent instance of
the Metropolis-Hastings algorithm initialized at state x(t)
to give the n independent Markov chains {¥(r,k)};_, for
r=1,2,...,n with ¥(r,0) = x(t). We enumerate the result-
ing states by s(rk) = r+n(k—1) for r=1,2,...,n and

37This idea is due to Geoff Nicholls.
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k=1,2,... giving the total ordering s == 1,2,.... Note that
s is an invertible function so we may refer to states on the
parallel computer by the total ordering s, i.e. as {¥ (s)}7_o.
We run the n parallel chains until the first non-trivial ac-
ceptance (in the order s) occurring at Smin, i.e. the mini-
mum s for which ¥ {s) # x(¢). Then set X(j) = x(t) for
j=t4+ Lt 42,0t S — 1 and X (£ + Smin) =Y (Smin)s
and reinitialize the n parallel chains.

The block stochastic update given by parallel rejection
is shown in algorithm 2. The update refurns a variable num-
ber of states that are appended to the existing chain.

y(l)Ly(Z) L ay(smin) = PR(JC)
Initiate z parallel chains {Y{r,k)} ..o forr=1,2,...,n

with Y0 =
Run unil there is some Spip With ¥ (smin) 7 x AND

Y (s} = x Vs < Spin in the ordering s(rk) =r+n{k—1)
Set y(1),¥(2)s-.»¥ (Smin — 1) = x
Set y(Smin) =¥ (Smin}

Algorithm 2: Parallel rejection algorithm for updating a
variable-length block. In practice each of the parallel chains
can be halted after it has an acceptance, or when it is per-
forming an iteration with index s greater than an acceptance
in another chain.

In the simplest case where time per MCMC step.is con-
stant, the speedup is achieved because the serial chain is ad-
vanced m steps in time proportional to |m/n| + 1 rather than
time proportional to m. A more accurate calculation tak-
ing into account the acceptance rate & and time for transac-
tions relative to the forward map 3 shows that the expected
speedup is

(1-Q-eh 1
a 140

In practice the transaction time limits the speedup achieved,
and is therefore critical in implementations. Parallel rejec-
tion was first used to speed up calibration of numerical mod-
els of geothermal fields by Cui [2005].

Using Approximations

The simulated- and parallel-tempering algorithms men-
iioned above may be thought of as using approximations
to the posterior distribution as a means of improving sam-
pling efficiency. Two quite different algorithms have been
recently introduced that explicitly use approximations to the
forward map, with both achieving substantial reductions in
time required to compute inferential solutions to imverse
problems.

As a means of model reduction (and counteracting in-
verse crimes) Kaipio and Somersalo [2005] introduced the

enhanced error model io correct for model errors introduced
by coarse numerical approximations. For the case of Gaus-
sian prior and noise distributions, they considered the accu-
rate linear model

d=Ax+n
and the coarse approximation
d = AX+T

where ¥ = Px is a coarse approximation to the unknowns x
resulting from a projection by P, and A is the (cheap) ap-
proximation to A on coarse variables. Then

fi=(A—-AP)x+n

defines the enhanced error model by assuming the two
terms on the right hand side are uncorrelated. Use of the
coarse approximation necessarily increases the uncertainty
of recovered values, since model error has been introduced,
However, Kaipio and Somersalo [2003] give examples in
which a tolerably small increase in posterior uncertainty is
traded for a huge reduction in compute time without intro-
ducing bias in estimates, and demonstrate that accurate real-
time inversion is possible.

A second use of approximations was introduced
by Christen and Fox [2005] who considered the stale-
dependent approximation 7;(-) to the posterior distribution
calculated using a cheap approximation to the forward map,
to give a modified Metropolis-Hastings MCMC. Once a
proposal is generated from the proposal distribution T(x,y),
to avoid calculating m(y) for proposals that are rejected, they
first evaluate the proposal using the approximation 7y{y} to
create a second proposal distribution T*(x,y) that is then
used in a standard Metropolis-Hastings algorithm, The full
definition is given in algorithm 3. An appealing feature
of algorithm 3 is that computer implementation can make
use of the same problem-specific functions required for
a gradient-based optimization, when the approximation is
based on a local linearization of the forward map. Christen
and Fox [2005] present an example using a local lineariza-
tion, and demonstrate an order of magnitude speedup in a
stylized version of electrical impedance imaging.

CONCLUSIONS
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Computational inference for inverse problems is cur-
rently a rapidly developing area — as can be seen by the re-
cent advances occurring in the past few years. These ad-
vances have allowed the computation of inferential solu-
tions to substantial inverse problems, including examples
with many thousands of unknowns recovered from mea-
sured data and using complex physical simulations of the
forward map.
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y=DAMH(x)

Draw %' from proposal distribution T'(x,x")

Draw 1y from Uniform|0, 1]

R
0% %)« min (1’ DT () )
ifu < (I(x,xl)

Promote x and go on
else

y = x, Le. reject ¥’ and exit
Define T*(x,y) = a(x,»)T{x,¥)
Draw uy from Uniform[0, 1]

. a(xT*(x',x)
B(x,lx’) + min (1, DT (e )
if ug < Blx, ")
y=x
else
y=x

Algorithm 3: Modified Metropolis-Hastings algorithm that
makes use of an approximation,

Tt is notable that all the advances reported here are
enhancements of the basic Metropolis-Hastings algorithrn.
Since that algorithm implements a random-walk (or a dif-
fusion when averaged) over state space, it is necessarily
slow to explore all feasible solutions. It is likely that the
future will see new algorithms that circomvent the need for
detailed balance, and hence need much reduced sampling
times. Such algorithms could potentially reduce the compa-
tational cost of sampling to the current cost of optimization,
and thereby make inferential solations the method of choice
across the field of inverse problems,
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