Polynomial accelerated MCMC, and other
sampling algorithmsinspired by computational
optimization

Colin Fox

Abstract Polynomial acceleration methods from computational ojzéion can
be applied to accelerating MCMC. For example, a geomelyicahvergent MCMC
may be accelerated to be a perfect sampler in special citances. An equivalence
between Gibbs sampling of Gaussian distributions and icklsserative methods
can be established using matrix splittings, allowing diegaplication of Chebyshev
acceleration. The conjugate gradient method can also heteatito give an acceler-
ated sampler for Gaussian distributions, that is perfeekact arithmetic.
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1 Introduction

Standard Markov chain Monte Carlo (MCMC) algorithms sinbelahomogeneous
Markov chain by performing a stationary linear iterationtba space of probability
distributions. The repeated application dbedkernel results in geometric conver-
gence of the Markov chain, just as it does for #tationarylinear iterative solvers
used to solve systems of linear equations. Stationaryriselaers were state-of-
the-art in the 1950’s, but are now considered very slow pedgibecause they are
geometrically convergent.

In this paper, methods for accelerating stationary lineaations developed in
the field of numerical computation are applied to accelegalCMC, both in the
general setting of a Markov chain designed to target anrarigidistributionrt (sec-
tion 2), and also in the specific setting of Gibbs samplingrfrine multivariate
Gaussian distribution %D,A*l) with known precision matriXA (sections 4 and 5).
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We will see that polynomial acceleration of a geometricatipvergent MCMC can,
in certain cases, generate perfect samples in finite time.

The special case of Gibbs sampling applied to Gaussiarikdistns is precisely
equivalent to classical iterative methods for solving déingystems understood in
terms of matrix splittings, as shown in section 3. Chebysh@eleration, which
is optimal in a certain sense for matrix-splitting methook therefore be used to
optimally accelerate the Gibbs sampler, as demonstrattiion 4. The conjugate
gradient optimization algorithm may also be viewed as apatyial acceleration in
which the eigenvalues of the iteration operator are es@chafithin the iteration. A
‘conjugate gradient sampler’ for Gaussian distributiangriesented in section 5.

This work takes place within our ongoing efforts in compiataal (Bayesian)
inference that utilizes sampling methods, specifically MCMn these problems
one wishes to evaluate expectations with respect to a gp@stdrior) target distri-
bution T over a typically high-dimensional state space. Since thgssts overrn
are analytically intractable, the best current technoliggylonte Carlo integration
with importance sampling using samples drawn frowia a random-walk MCMC.
That can be very slow. By identifying sampling with optintipa, at mathematical
and algorithmic levels, we look to adapt the sophisticatethomds developed for
accelerating computational optimization to computatisaapling.

We were also curious about Gibbs sampling being referred tstachastic re-
laxation” in [11], and whether this was related to the “reli@n” methods of nu-
merical analysis in an intuitive sense or in a more formalheatatical sense.

Throughout this paper it is taken as understood that thes taSkomputational
optimization and solution of systems of equations are edent; the normal equa-
tions for the optimization form the system to be solved. Emmssolveandoptimize
are used interchangeably.

2 Polynomial acceleration of MCMC

This section provides a cartoon of polynomial acceleratiodistributional conver-

gence in standard MCMC, to convey the ideas behind polynanaeleration that

can get hidden in a more formal presentation. The weightiksdampling scheme
in section 2.2 does not necessarily lead to a practical tguknbut does show the
remarkable speedup possible.

2.1 Errorsand convergence in standard MCMC

The algorithmic mainstay of MCMC methods is the simulatidradomogeneous
Markov chain{Xp, X1, ...} that tends to some desired target distributioithe chain

is homogeneous because the Markov chain is constructekgtetly simulating
afixedtransition kernel?” constructed so thatis invariant, i.e.,
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typically using Metropolis-Hastings (MH) dynamics thaseres that”? andm are
in detailed balance.
When the chain is initialized with ~ 79, then-step distribution (oveX,) is

n = 70D g = 70 pn.
The difference between this distribution and the targetibistion r,

= (n<°> - n) A (1)

is called then-step distribution error. Note how the magnitude of the regaes to
zero according to the initial distribution error multiglidoy the polynomial?" of
the transition kernel.

All iteration schemes lead torastep distribution error of this form, i.e. the initial
error multiplied by am-th order polynomiaP, of the transition kernel. In numerical
analysis it is usual to write thisrror polynomialas a polynomial i — £2. Hence
the error polynomial in this case is

P(l—2)=P"=(1—(1-2))" or PyA)=(1-A)" )

All error polynomials satisfyP,(0) = 1, sinceZ” = | leaves the iterate (and error)
unchanged. This error polynomial has only one (repeated)atadd = 1.

The second form in Eq. (2) emphasizes that the error polyalamay be evalu-
ated over the eigenvalueslof- &2. SinceZ is a stochastic kernel, all eigenvalues
of | — &7 are contained iff0, 2]. The error tends to zero when the eigenvalues of
| — & in directions other tham are bounded away from 0 and 2, as is guaranteed
by standard results for@nvergenMCMC.

Thus, a homogeneous MCMC produces a sample correctlyldistd agt either
after one step (when all eigenvalued of &2 in directions other tham equal 1), or
in the limit n — o (when any eigenvalue in a direction other thais not 1). In the
latter case, the distributional error in Eq. (1) will be doatied by the error in the
direction of the eigenvalue of- & furthest from 1., hence decays 48 — A..)",
and the convergenced@gometric

2.2 Acceleration by weighted subsampling

The key idea in polynomial acceleration is to modify theaten so that the error
polynomial is ‘better’ than the stationary case in Eqgs. (4 &), in the sense of
smaller error. A simple way to modify the iteration in thetset of MCMC is to
subsample with weights. This does not allow complete freeitiachoosing the error
polynomial, hence there is room for improvement. (Finding@ptimal modification
is an open problem.) The recipe | will use is: rarsteps of a standard MCMC
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starting aix%) ~ 7% to produce the realizatiofx™,x?,...x("} and then choose
x = x1) w.p. (with probabilities) a; }; (wherea; > 0 andy; a; = 1). The resulting
sample is distributed as the mixture model

n
x~10Y a2
2
with the individual distributions related by increasingyars of 2. Weighted sub-
sampling is also considered by tatuszyhski & Roberts [I6le associated error

polynomial is then
n

Q=3 a2
=

which is ann-th order Lorentz polynomial. Since we choose the coeffisiéa; }
we have some freedom in choosing the error polynomial. lcigpeircumstances,
it is possible to choose an error polynomial that is zero atdigenvalues of —
& other thank = 0, in which case subsampling with weights generatpsréect
sample fronvt. That is possible, for example, when the sample space ig fimith s
states. Theh— &7 has at moss$ distinct eigenvalues and when the 1 eigenvalues
other than O can be the zeros of a Lorentz polynomial it isiptesto choos&), to
give zero distribution error.

Consider the simple example in which we want to sample frotate space with
s= 3 states with target pn1f = (1/3,1/3,1/3). A Markov chain that targets can
be generated by repeatedly simulating the transition satri

| 1111

which can easily be seen to be in detailed balance witimd gives a chain that is
irreducible and aperiodic. Note that convergence is geacpend that

185 55 89 805 539 1189 111

5 384 192 384 3 3072 1536 3072 333
_ 55 41 55 _ 539 229 539 o 111
=t wmte | = | B e mw |0 =333
89 55 185 1189 539 805 111

384 192 384 3072 1536 3072 333

so that as — o« the chain converges to a sample franthat is independent of the
starting state. This chain can be accelerated by weighteshsopling, as follows:

1. Start with (anyx\©), simulate 3 steps witl# to getx(?), x(?), x(3).

2. Samplexfrom (x\P,x? x®) w.p. (L 32 18).

The resultingx is an exact draw fromr, and independent of the starting state, be-
causelilﬁf_’ + é—‘s‘ff_’z + ;-293 = P*. ltis left as an exercise to explicitly construct
the error polynomial to see how the example was constructed.

As mentioned above, there are a few practical difficultieth this simple sub-
sampling scheme. An obvious limitation is that the zeros bbeentz polynomial
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only occur for eigenvalues that decorrelate the chain, iithvbase the polynomial
‘acceleration’ that draws exact (and i.i.d. ) samples dlstuacreaseghe variance
in a CLT (see e.g. [16]). However, one might argue that digtidbnal convergence
is improved, which may be important in some settings. A farttifficulty occurs
whenn needs to be large since we really want to specify the zerdseaditror poly-
nomial yet these are not a stable numerical function of thé. Furthermoren must
be chosen in advance which is typically not convenient. Adise difficulties may
be circumvented in the case of a Gaussian target by usingpadexrder iteration.

3 Gibbs sampling of Gaussiansis Gauss-Seidel iteration

The Gibbs sampling algorithm [11] repeatedly samples friolmak) conditional dis-
tributions of . We consider the simplest, and original, version of Giblsgang in
which one iteration consists of conditional sampling aleagh coordinate direction
in sequence, see e.g. Tur€in 1971 [21], also known as Gtalymamics [12], the
local heat-bath algorithm [5], and the sequential updatieghod.

3.1 Normal distributions

We now focus on the case of Gibbs sampling from the multiv@ridormal (or
Gaussian) distribution I@D,A*l) with known precision matribXA. This situation
commonly occurs in (hierarchical) Bayesian analyses whatiad dependencies are
modelled via neighbourhood relationships, leading to asSiam Markov random
field (GMRF) with sparse precision matrix [15]. Bathand the covariance matrix
> = A~1 are symmetric positive definite. lth dimensions the density function is
(written in thenatural parametrizatioh

(X) = d;(;j) exp{—%xTAx+ bTx}. (3)

The mean vectox satisfies
AX=b (4)

which gives the first indication that solution of linear etjoias is relevant to Gaus-
sian distributions.

Cholesky factorization is the preferred method for solvimoderately sized lin-
ear systems with symmetric and positive definite coefficraatrix, and also for
sampling from moderate dimension Gaussian distributi@8% (also called global
heat bath [5]). We are interested in the case where the spatee dimensiod is
large andA is sparse. Then, iterative methods such as the Gibbs saarplattrac-
tive as the main cost per iteration is operation by the pi@tisatrix A, which is
cheap, and memory requirements are low.
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The Gibbs sampler updates components via the conditiosgilitions, which
are also Gaussian. Hence choosm§ to be Gaussian results in a sequence of
Gaussiam-step distributions. Since thesestep distributions converge g, the
sequence ofi-step covariance matrices convergeitpi.e., =" — 5. One of the
motivations for this work was to understand what decompmsivf the matrix>
this sequence is effectively performing. Many matrix depositions are known in
numerical analysis and we were curious to see if Gibbs sagplias effectively
performing one of them.

3.2 Matrix formulation of Gibbs sampling from N(0,A1)

Lety = (y1,Y2,...,¥n)" denote the state of the Gibbs sampler. Component-wise
Gibbs updates each component in sequence from the (nororadjtonal distri-
butions. One ‘sweep’ over all components can be written [14]

y(k+l) _ 7D71Ly(k+l) o DflLTy(k) + Dfl/zz(k) (5)

whereD = diag(A), L is the strictly lower triangular part &%, andzk~Y ~ N(0,1).
SinceD is invertible, the iteration can be written as the stocletaSR(1) process

YD) — gy® 4 )

wherecl®¥ are i.i.d. draws from a ‘noise’ distribution with zero meamdafinite
covariance.

3.3 Matrix splitting form of stationary iterative methods

Since about 1965, thmatrix splittingformalism has been the standard for formu-
lating and understanding the classical iteration schersed to solve linear systems
of equations, as in Eq. (4). Theplitting A = M — N converts the linear system to
Mx = Nx+b. WhenM is invertible, this may be written

X =M INx+M1b.

Classical iterative methods compute successive appraéxingto the solution by
repeatedly applying the iteration

XD = M=INx® Mo
=6xW 4g.

The iteration iconvergentf the sequence of iterates converge for affy).
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Many splittings use terms iA = L + D + U whereL is the strictly lower trian-
gular part ofA, D is the diagonal oA\, andU is the strictly upper triangular part of
A. For example, Gauss-Seidel iteration, that sequentiallyes for each component
using the most recent values, corresponds to the splitlingL + D. The resulting
iteration for a sweep over all components in sequence is

xktD) — _ p=1 kD) =1 Tx(K) +D p. (6)

The similarity between Gauss-Seidel iteration in Eq. (&) #re matrix formu-
lation of Gibbs sampling in Eq. (5) is obvious. The only difface is that whereas
in each iteration of Gauss-Seidel the constant veRtdib is added, in Gibbs sam-
pling the i.i.d. random vectdd—/2z¥ is added. This equivalence has been known
for some time; it was explicitly stated in Amit and Grenand@®1 [2] and is im-
plicit in Adler 1981 [1].

3.4 Matrix splittings give generalized Gibbs samplers

The standard Gibbs sampler in Eq. (6) and Gauss-Seidetideram Eq. (5) are
equivalent in the sense that they correspond to the santérgpbf the precision
matrix. In fact any splitting of the precision matrix leadsa (generalized) Gibbs
sampler for NO,A~1). What makes this equivalence interesting and useful is that
the generalized Gibbs sampler converges (in distributibapd only if the sta-
tionary linear iteration converges (in value); hence cogest Gibbs samplers are
equivalent to convergent matrix splittings. The followitigeorem formalizes this
statement.

Theorem 1. LetA =M — N be a splitting withM invertible. The stationary linear
solver

xkD = M~INXM M ~1b 7)
=Gx® M1

converges, if and only if the random iteration

y(k+l) -M 71Ny(k) +M 7lc(k) (8)
— Gy(k) + M *1c(k)

converges in distribution. Herel®) g Th is any ‘noise’ distribution that has zero
mean and finite variance.

Proof. (outline) Each converges iff the spectral rad(&) < 1.0

A complete proof is given in Fox & Parker 2013 [9]. (A more geaigheory
allowing G to be random can be found in [6].) We first saw this result in dire
rection in Goodman & Sokal 1989 [14] and Galli & Gao 2001 [1®]rther, it can
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be shown [9] that the mean converges with asymptotic coeverg factorn(G),
and covariance withp(G)? (see also [18]). Thus, theate of convergence is also
the same for both the Gibbs sampler and the linear solvevetefiom a splitting.
Hence the optimal solver leads to the optimal Gibbs samatet vice versa.

3.5 Some (not so common) Gibbs samplersfor N(0,A1)

There are many matrix splittings known in the numerical gsialcommunity, with
conditions for convergence being well established. Mogbauctory texts on nu-
merical analysis cover the topic of stationary iterativethods and give several
classical splittings. Some of these are tabulated in Tabiél increasing sophis-
tication and (roughly) speed listed from top to bottom. Qtinds that guarantee
convergence, taken from the numerical analysis literatare also listed for the
case wherd\ is symmetric positive-definite.

Table 1 Some classical matrix splittings and the derived Gibbs $armpConditions for con-
vergence are given in the right-most column, forsymmetric positive definite. Jacobi iteration
converges wheA is strictly diagonally dominant (SDD).

splitting/samplerM Var (c®)=MT+N converge if
Richardson L 2| A 0< W< 5
Jacobi D 2D-A A SDD
GS/Gibbs D+L D always
SOR/B&F ID+L zop 0<w<?2

e

SSOR/REGS  >2-MsorD M {ng MsorD M Egp+ NI D INsoR) 0< w< 2

N

—w

The convenience of a splitting depends on being able to ¢heajve systems of
the formMu = r given any vector. When the splitting is used to generate a Gibbs
sampler, as in Eq. (8), it is also necessary to draw reatizatof the noise®) ~
N(O,MT +N), so the covariance matriM ™ + N needs to have some convenient
form.

Itis interesting to note that the simplest splittings — Riatson and Jacobi — give
simple stationary iterative solvers because it is cheapraie byM 1 in these
cases. However, the required noise covariance matrix isecessarily simple and
so these splittings don’t give particularly useful Gibbmgéers.

The Gauss-Seidel (GS) splitting, that gives the standantpecment-wise Gibbs
sampler, hits a ‘sweet-spot’ in terms of simplicity of thguéed matrix solution
and noise sampling problems. The matkixis lower-triangular, so operation by
M~1 is straightforward byforward substitutionwhile the noise covariance is di-
agonal which presents a simple sampling problem. It is nprise, therefore, that
the standard Gibbs sampler was the first of these methodsdist®/ered. We see
from the right column in Table 1 that the Gauss-Seidel iteraits unconditionally
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convergent, hence Thm. 1 guarantees that so is the compaisnGibbs sampler
—but we already knew this from standard convergence refsultise Gibbs sampler.

An early method for accelerating the Gauss-Seidel itematioie to Young and
Frankel in 1950, introducesralaxation parameteto and modifies the iteration to
XK+ = (1 - w)x® + w (Gx“‘) +M~1b). Thissuccessive over-relaxatigSOR)
method effectively uses the splitting shown on the row laB&OR in Table 1. It can
be shown that the method converges fer @ < 2, though finding values ab that
actually increase convergence speed is problem-specilicam be difficult. The
equivalent accelerated Gibbs sampler has been discovdeadtanes: initially by
Adler in 1981 [1] in the physics literature, later in the &tts literature by Barone
& Frigessiin 1990 [4] who subsequently referred to it (imrestly) as the ‘method
of Barone and Frigessi’, and in Amit & Grenander 1991 [2].

A symmetricsplitting, for whichM and hencé\ is symmetric, has the desirable
property that the iteration operat@rhas real eigenvalues. A simple way to achieve
this is to perform a forwards then backwards sweep of SORhgithiesymmetric
successive over-relaxatidisSOR) method introduced by Young [22]. The effec-
tive splitting is listed in Table 1. The equivalent Gibbs gden was introduced by
Roberts & Sahu 1997 [18] as a reversible kernel produced byveafd then back-
ward sweep of the standard Gibbs sampler, under the titlieREGS sampler.
Polynomial acceleration of this sampler is developed imiie section.

4 Polynomial acceleration of Gibbs sampling

Sampling from Nx,A~1), whereAx = b, using the matrix splittingh =M — N,
with M invertible, determines the iteration opera@®e= M N and noise distribu-

tion ¢ "¢ N(0,MT + N). One sweep of the resulting Gibbs sampler is the matrix
iteration
y* ) =ey® + M1 +b) 9)

that combines Egs. (7) and (8) to converge in both mean aratiemce.

4.1 A closer look at convergence

Since both the mean and covariance are invariant underatatidn in Eq. (9), the
n-step error in the mean is

£(57) - x-er[e (%) -5

and the error in variance is

Var (ym)) —Al=G" {Var (y(o)) —A’l} G".
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Both these error terms show that thestep error is the initial error operated on by
then-th order (matrix) polynomiaG". Hence, the asymptotic average convergence
factor isp(G) for the mean, ang(G)? for the covariance. These results also appear
in Roberts & Sahu 1997 [18].

Thus, the error polynomial for the iteration is

PI-G)=(1-(1-G)"=(1-MTA)" or P(A)=(1-A)"

which has the same form as in Eq. (2) because this iteratelaadsstationary, though
now the eigenvalues are of the matkix 1A.

In particular, the solver and sampler have exactly the samegolynomial. This
is a very important observation, since it means that metfardmproving the error
polynomial of the solver will also improve convergence oé tiieneralized Gibbs
sampler. Further, since the solver and sampler have exéetlgame asymptotic
average convergence factor, the optimal solver will alsdhgeoptimal sampler.
Thus, the task of finding a fast Gibbs sampler (for Gaussisiniliitions) is reduced
to the task of consulting the numerical linear algebraditere to find a fast linear
iterative solver.

4.2 Chebyshev acceleration

Golub and Varga 1961 [13] introduced the splitting

1 1
A:—M—i—(l——)M—N,
T T

with parameter, that the gives the iteration operator
Gr=(I1-tM'A). (10)

Repeated iteration using this splitting results in the repolynomial By (A) =
(1—1A)", while n iterations using theequencef parametersy, 1, .. ., Ty results

in the error polynomial
n

Ph(A) :ll:!(lfn/\).

Note that the zeros d®, can be chosen; they are justid,1/12,...,1/T,. The re-
sulting iteration is non-stationary (because the iteratiperator changes each it-
eration), hence the derived Gibbs sampler simulates a nomgeneous Markov
chain.

When estimates of the extreme eigenvalligg andAmax of M 1A are available
(Amin @andAnax are real whem is symmetric), the error polynomial may be chosen
to be optimal in the sense that it has minimum maximum modoues the inter-
val [Amin, Amax/- The solution is the well-known scaled Chebyshev polyndwmaitn
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Zeros

1 Amax+Amin , Amax— Amin 2l +1 .
7 > + > cos<7‘r n > [=0,1,2,....n—1. (11)

The potential improvement in rate of convergence achie/aplthe Chebyshev
error polynomial is shown in Fig. 1 that shows the Chebysiselid) and default

(dashed) error polynomials for a random covariance aver 10 variables, after
n= 10 iterations.

Fig. 1 The default error
polynomial (dashed) and
Chebyshev error polynomial
(solid) after 10 iterations. \
Vertical dotted lines show \ J
the minimum and maximum ) ~ =
eigenvalues oM —1A.

I
1
|
I
1
I
1
I
)
I
]
1
1
/

The largest value of the default error polynomial occurdatextreme eigenval-
ues ofM ~A, as we expect from standard MCMC convergence theory. TheyGhe
shev polynomial achieves a much lower maximum value oveirttegval, at the
expense of some ‘ripple’ in the interval that is of no consame for convergence.

In this case the Chebyshev acceleration gives a factor ofrBpfbvement in con-
vergence, i.e. the distribution error is 300 times smaditer just 10 iterations.

An explicit calculation of the maximum of the scaled Chel®spolynomial over
the intervalAmin, Amax] shows that the asymptotic average reduction factor (see e.g
Axelsson 1996 [3]) is

o 1- /\min//\max

0= o 4
1+ vV /\min//\max

and that this is necessarily better (smaller) than the teeation error reduction
factor of the un-accelerated iteration.

4.3 Second-order accelerated sampler

The first-order polynomial-accelerated iteration turnstoube numerically unsta-
ble, because the iteration operators in Eq. (10) may hawdrspheadius greater than
1, and also suffers from having to choose the number of iterah in advance.

Numerical stability, and optimality at each step, is giverthe second-order itera-
tion [3]
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y(k+1) — (]_ — ak)y(kfl) + aky<k) + akaM 71(0(") _ Ay(k)) (12)
with ax and 1, chosen so the error polynomial satisfies the Chebyshevsiecur

Theorem 2. If {ay} and{t¢} are such that th@"%-order solver converges, then the
2"d_order sampler in Eq. (12) converges. Further, the errorymamial is optimal,
at each step, for both mean and covariance.

A proof of this theorem and details of a practical secondepfthebyshev acceler-
ated Gibbs sampling algorithm are given in Fox and Parke828]L

4.3.1 An examplewithd =10x 10

Consider the locally-linear Gaussian distribution defirisdthe precision ma-
trix [15]

nifi=j,
[Alij =107%6; +{ —1 ifi# jand||s —sj|2 < 1,
0 otherwise.

We compute an example on the square<1I® lattice, so the problem dimension is
d = 100. The precision matrix inherits the neighbourhood stnecof the lattice, so
is sparse, with non-zero pattern:

\

The convergence in-step covariance of various Gibbs samplers applied to this d
tribution is shown in Fig. 2. The dashed line shows the SSOREGS) sampler
using the optimal SOR parameter @f= 1.6641. The solid curve shows the stan-
dard REGS (forward and backward sweep of Gibbs) sampbes (1). Dash-dot
lines show the Chebyshev accelerated SSOR sampler. laistblat the Chebyshev
accelerated sampler is considerably faster than standbbs$ Gampling, in this case
~ 10* times faster. The dotted lines in Fig. 2 show the work andrdaooa sample
drawn using the Cholesky factorizationAf and confirm that Cholesky factoring is
the method of choice for moderately-sized problems.

4.3.2 An examplewith d = 10°

Fig. 3 shows a sample from a locally linear Gaussian randdoh figth the same
definition of the precision matrix as the previous examptethe 3-dimensional lat-
tice with d = 100x 100x 100, computed using the Chebyshev accelerated SSOR
sampler. This problem has= 10° which is much larger than could be calculated
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Fig. 2 Convergence of- 10° ===
step covariance as a function NN SSOR
X NI , 0=1

of computational work, for NN e SSOR, 0=1.6641
plain and accelerated Gibbs NS [ Cheby-SSOR, o=1
samplers applied td = ‘ NN | T ey SO, omt 841
100 dimensional problem. 510 NS oy ]
The work and error for the 5 ’ )
Cholesky factorization is Q0 <
shown as dotted lines, for = N
reference. e .,

107 ]

10'3 L L L L

0 1 4 5

3
flops x10°

using a Cholesky factorization. However, the iterativaature of the Gibbs sampler
is able to take advantage of the sparse precision matrixghwikithe only special

structure exploited here. (The Fourier transform is alguliegble in this case be-
cause the GMRF is stationary.)

Fig. 3 Slices through a sample on the 3-dimensional lattice @ith100x 100x 100.
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5 A conjugate gradient sampling algorithm

The conjugate gradient (CG) optimization method may be gtkas a polynomial
acceleration in which the optimal error polynomial is chobg also calculating the
eigenvalues of the iteration operator within the proceddmvever, we present the
method here by focusing on the mutuallyconjugate directions that are generated
at each iteration.

Fig. 4 shows a schematic of the iterative structure implaetehy Gauss-Seidel
(left) and conjugate gradient optimization (right) of a dtetic function ind = 2
dimensions. The sequence sfarch directionds depicted by dashed lines. The
Gauss-Seidel iteration performs optimization along eachdinate direction, in se-
guence. As we have seen, this implements exactly the samagigte structure as
the Gibbs sampler, depicted by solid lines with the sequeha®nditional sam-
ples denoteat©, xV, etc. In contrast the CG algorithm uses a sequence of search
directions that are mutuallik-conjugate, seeded by the gradient at each iterate, as
depicted in the right panel of Fig. 4. By performing conditi sampling along
this sequence of directions, as opposed to 1-dimensiorniahization, we get the
conjugate gradient sampler (solid lines).

Ly
0
p
& ﬁ fo)
é o)
= p
\F/
0
'Tl

Gibbs sampling & Gauss Seidel

CG sampling & optimization

Fig. 4 Schematic ird = 2 dimensions depicting the path taken by the Gauss-Sedatatibn and
Gibbs sampler (left) and the CG optimizer and sampler (yighontours of the quadratic objec-
tive function and log-target density are also shown. Patthe@foptimizer shown in dotted lines,
sampler shown in solid lines. Search directions @f®, p@ .., iterates are© x| ..., while
0@, 0@, ... show the direction of gradients at iterates.

Mutually conjugate vectors (with respect &) are independent directions for
N(0,A1), since
VIAV=D=A1=vD VT

whereV has mutually conjugate columns abdis a diagonal matrix. Hence, if
z~ N(0,1) thenx = Vv/D~1z ~ N(0,A%). Thus the problem of sampling from
N(0,A~1) is reduced to sampling from standard normal distributidsth the
Cholesky factorization and eigen-decomposition are exesnpf sets of mutually
conjugate vectors [7].
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Algorithm 1 (CD sampler producing x ~ N(0,A~1)) initialize x andb (Ax # b)

1.r+<b—Ax
2.p«r
3. fork=1to ndo:
4. g+ Ap
5. setd«q'p,e«~q'x/d, f<p'b/d
6. drawz~ N(0,1) and seta « z/+/d
7. X+<Xx+(a—e)p
8. b«+b+(a—f)q
9. r«r—(f—eq
rTq
10. per—Tp

The sequential conjugate-direction algorithm given in E6R8 [7] is shown in
Alg. 1. This algorithm operates locally, so can potentidlly generalized to non-
Gaussian targets. An earlier Krylov-space method was pteden Schneider &
Willsky 2003 [20]. Ceriottiet al.[5] gave an algorithm that solvésx = b by stan-
dard linear CG and separately accumulates the saynflkey mitigated problems
associated with loss of conjugacy and degenerate eigegspgca combination of
random restarts and orthogonalization over a small set cbve Parker and Fox
2012 [17] presented a convergence criterion based on tiduedsalso for an al-
gorithm that solve#\x = b by standard linear CG and separately accumulates the
sampley. They also established that, aftesteps, Vafy¥) is the CG polynomial,
and gave following best-approximation property:

Theorem 3. (Parker 2009)
The covariance matrix
Var(y¥|x% 0% = Vi T, W]

has k non-zero eigenvalues which are the Lanczos estimatae eigenvalues of
A~1. The eigenvectors afar(yX|x°, b°) are the Ritz vectors¥ which estimate the
eigenvectors oA.

That is, thek-step variance Vay*|x°, b®) approximate#\ 1 in the eigenspaces cor-
responding to the extreme and well separated eigenvalues of

Fig. 5 shows two samples drawn from a 20@00-dimensional Gaussian field
with a second-order locally linear precision matrix. Thie peanel was drawn using
the CG sampler of Parker and Fox 2012 [17], while the rightamwas evalu-
ated using the Cholesky factorization®f Loss of conjugacy in the CG algorithm
means that the algorithm terminates before sampling-dilmensions of the prob-
lem. For typical covariance functions, this results in oserooth samples as can
be seen in the left panel of Fig. 5. However, the connectidh wtérative solvers
immediately suggests the efficient solution which is toiatite the (accelerated)
Gibbs sampler with the CG sample. This plays to the strengtlesach method;
the CG sampler efficiently calculates smooth structuresér@aussian field, while
relaxation techniques such as Gauss-Seidel (hence Gibiisg) are efficient in
removing high-frequency errors.
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Fig.5 A CG sample (left panetj ~ N(0,A~1) from a 100x 100-dimensional Gaussian field with
a second-order locally linear precision matrix. The reslizariance V&ix) accounts for 80% of
the variability inA~1. A Cholesky sample is shown on the right panel.

6 Discussion

The motivating query of whether “stochastic relaxationfasmally equivalent to
“relaxation” has been answered in the affirmative, in the $3&@n setting; Gibbs
sampling is precisely equivalent to Gauss-Seidel itemafithis result generalizes
to any splitting of the precision matrix, to give both a “dtastic relaxation” and
a “relaxation” with identical conditions for convergencates of convergence, and
error polynomial.

Hence, existing efficient solvers (multigrid, fast multipoparallel tools) can
all be used to perform sampling from Gaussian distributiom$eed, these ‘best’
solvers are necessarily the ‘best’ samplers for Gausssrihitions.

As was shown in section 2, polynomial acceleration may aksapplied to
the Markov chain that targets a non-Gaussian distribufitve. example presented,
while rather special and not of practical use, did demotesttzat polynomial ac-
celeration of a geometrically convergent chain can leadhtalgorithm that draws
‘perfect’ samples in finite compute time.

For general target distributions, Chebyshev accelerati@onvergence in mean
and covariance is also not limited to Gaussian targets. @épairement of explicitly
knowing the precision matriA may be circumvented bgdaptingto it [8]. Appli-
cations in the setting of diffusion tomography show goodiitss though no proof
of convergence exists for the accelerated adaptive algorit

Acknowledgements Polynomial acceleration of Gibbs sampling is the brairccbfl Al Parker, to
whom | am indebted. This research was supported by Marsden §0-UOO-221.



Polynomial accelerated MCMC 17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Adler, S.L.: Over-relaxation method for the Monte Canaleation of the partition function

for multiquadratic actions. Physical Review23(12), 2901-2904 (1981)

. Amit, Y., Grenander, U.: Comparing sweep strategies foctsstic relaxation. Journal of

Multivariate Analysis37, 197-222 (1991)

. Axelsson, O.: Iterative Solution Methods. Cambridgevérsity Press (1996)
. Barone, P., Frigessi, A.: Improving stochastic relaafior Gaussian random fields. Proba-

bility in the Engineering and Informational Scienees369-384 (1990)

. Ceriotti, M., Bussi, G., Parrinello, M.: Conjugate graili heat bath for ill-conditioned actions.

Physical Review &6, 026707-1-8 (2007)

. Diaconis, P., Freedman, D.: Iterated random functiohsMReview 41(1) 45-76 (1999)
. Fox, C.: A conjugate direction sampler for normal disitibns, with a few computed exam-

ples. Technical Reports from the Electronics Group, Usitgiof Otago (2008)

. Fox, C., Parker, A.: Convergence in variance of first-nedel second-order Chebyshev accel-

erated Gibbs samplers. SIAM Journal on Scientific Computiodpe published 2013)

. Fox, C., Parker, A.: Gibbs sampling of normal distriboSaising matrix splittings and poly-

nomial acceleration. In preparation (2013)

Galli, A., Gao, H.: Rate of convergence of the Gibbs samipl the Gaussian case. Mathe-
matical Geology33(6), 653—-677 (2001)

Geman, S., Geman, D.: Stochastic relaxation, Gibbshilisbns, and the Bayesian restoration
of images. |IEEE Transactions Pattern Analysis and Machitedligences, 721-741 (1984)
Glauber, R.: Time dependent statistics of the Ising mddeirnal of Mathematical Physids
294-307 (1963)

Golub, G.H., Varga, R.S.: Chebyshev semi-iterativehods, successive over-relaxation iter-
ative methods, and second-order Richardson iterative odstiparts | and Il. Numerische
Mathematik3, 147-156, 157-168 (1961)

Goodman, J., Sokal, A.D.: Multigrid Monte Carlo methGdnceptual foundations. Physical
Review D40(6), 2035-2071 (1989)

Higdon, D.: A primer on space-time modelling from a Bagegerspective. In: B. Finken-
stadt, L. Held, V. Isham (eds.) Statistics of Spatio-Temap8ystems, pp. 217-279. Chapman
& Hall/CRC, New York (2006)

tatuszynski, K., Roberts, G.O.: CLTs and asymptotidaveee of time-sampled Markov
chains. Methodology and Computing in Applied Probabili§f1), 237—247 (2013)

Parker, A., Fox, C.: Sampling Gaussian distributionKnylov spaces with conjugate gradi-
ents. SIAM Journal on Scientific Computidg(3), B312-B334 (2012)

Roberts, G.O., Sahu, S.K.: Updating schemes, cowalatructure, blocking and parameteri-
zation for the Gibbs sampler. Journal of the Royal Stati8ociety: Series B9(2), 291-317
(1997)

Rue, H.: Fast sampling of Gaussian Markov random fieldsirnal of the Royal Statistical
Society: Series B3, 325-338 (2001)

Schneider, M.K., Willsky, A.S.: A Krylov subspace matifor covariance approximation and
simulation of random processes and fields. MultidimengiSyatems and Signal Processing
14, 295-318 (2003)

Turchin, V.F.: On the computation of multidimensionatgrals by the Monte Carlo method.
Theory of Probability and Its Applicatioris, 720-724 (1971)

Young, D.M.: Iterative Solution of Large Linear Systemsademic Press (1971)



