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Abstract Polynomial acceleration methods from computational optimization can
be applied to accelerating MCMC. For example, a geometrically convergent MCMC
may be accelerated to be a perfect sampler in special circumstances. An equivalence
between Gibbs sampling of Gaussian distributions and classical iterative methods
can be established using matrix splittings, allowing direct application of Chebyshev
acceleration. The conjugate gradient method can also be adapted to give an acceler-
ated sampler for Gaussian distributions, that is perfect inexact arithmetic.
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1 Introduction

Standard Markov chain Monte Carlo (MCMC) algorithms simulate ahomogeneous
Markov chain by performing a stationary linear iteration onthe space of probability
distributions. The repeated application of afixedkernel results in geometric conver-
gence of the Markov chain, just as it does for thestationarylinear iterative solvers
used to solve systems of linear equations. Stationary linear solvers were state-of-
the-art in the 1950’s, but are now considered very slow precisely because they are
geometrically convergent.

In this paper, methods for accelerating stationary linear iterations developed in
the field of numerical computation are applied to accelerating MCMC, both in the
general setting of a Markov chain designed to target an arbitrary distributionπ (sec-
tion 2), and also in the specific setting of Gibbs sampling from the multivariate
Gaussian distribution N

(

0,A−1
)

with known precision matrixA (sections 4 and 5).
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We will see that polynomial acceleration of a geometricallyconvergent MCMC can,
in certain cases, generate perfect samples in finite time.

The special case of Gibbs sampling applied to Gaussian distributions is precisely
equivalent to classical iterative methods for solving linear systems understood in
terms of matrix splittings, as shown in section 3. Chebyshevacceleration, which
is optimal in a certain sense for matrix-splitting methods,can therefore be used to
optimally accelerate the Gibbs sampler, as demonstrated insection 4. The conjugate
gradient optimization algorithm may also be viewed as a polynomial acceleration in
which the eigenvalues of the iteration operator are estimated within the iteration. A
‘conjugate gradient sampler’ for Gaussian distributions is presented in section 5.

This work takes place within our ongoing efforts in computational (Bayesian)
inference that utilizes sampling methods, specifically MCMC. In these problems
one wishes to evaluate expectations with respect to a given (posterior) target distri-
bution π over a typically high-dimensional state space. Since the statistics overπ
are analytically intractable, the best current technologyis Monte Carlo integration
with importance sampling using samples drawn fromπ via a random-walk MCMC.
That can be very slow. By identifying sampling with optimization, at mathematical
and algorithmic levels, we look to adapt the sophisticated methods developed for
accelerating computational optimization to computational sampling.

We were also curious about Gibbs sampling being referred to as “stochastic re-
laxation” in [11], and whether this was related to the “relaxation” methods of nu-
merical analysis in an intuitive sense or in a more formal mathematical sense.

Throughout this paper it is taken as understood that the tasks of computational
optimization and solution of systems of equations are equivalent; the normal equa-
tions for the optimization form the system to be solved. The termssolveandoptimize
are used interchangeably.

2 Polynomial acceleration of MCMC

This section provides a cartoon of polynomial accelerationof distributional conver-
gence in standard MCMC, to convey the ideas behind polynomial acceleration that
can get hidden in a more formal presentation. The weighted-subsampling scheme
in section 2.2 does not necessarily lead to a practical technique, but does show the
remarkable speedup possible.

2.1 Errors and convergence in standard MCMC

The algorithmic mainstay of MCMC methods is the simulation of a homogeneous
Markov chain{X0,X1, . . .} that tends to some desired target distributionπ . The chain
is homogeneous because the Markov chain is constructed by repeatedly simulating
a fixedtransition kernelP constructed so thatπ is invariant, i.e.,
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πP = π ,

typically using Metropolis-Hastings (MH) dynamics that ensures thatP andπ are
in detailed balance.

When the chain is initialized withX0∼ π (0), then-step distribution (overXn) is

π (n) = π (n−1)
P = π (0)

P
n.

The difference between this distribution and the target distributionπ ,

π (n)−π =
(

π (0)−π
)

P
n, (1)

is called then-step distribution error. Note how the magnitude of the error goes to
zero according to the initial distribution error multiplied by the polynomialPn of
the transition kernel.

All iteration schemes lead to an-step distribution error of this form, i.e. the initial
error multiplied by ann-th order polynomialPn of the transition kernel. In numerical
analysis it is usual to write thiserror polynomialas a polynomial inI −P. Hence
the error polynomial in this case is

Pn(I −P) = P
n = (I − (I−P))n or Pn(λ ) = (1−λ )n. (2)

All error polynomials satisfyPn(0) = 1, sinceP = I leaves the iterate (and error)
unchanged. This error polynomial has only one (repeated) zero atλ = 1.

The second form in Eq. (2) emphasizes that the error polynomial may be evalu-
ated over the eigenvalues ofI −P. SinceP is a stochastic kernel, all eigenvalues
of I −P are contained in[0,2]. The error tends to zero when the eigenvalues of
I −P in directions other thanπ are bounded away from 0 and 2, as is guaranteed
by standard results for aconvergentMCMC.

Thus, a homogeneous MCMC produces a sample correctly distributed asπ either
after one step (when all eigenvalues ofI −P in directions other thanπ equal 1), or
in the limit n→ ∞ (when any eigenvalue in a direction other thanπ is not 1). In the
latter case, the distributional error in Eq. (1) will be dominated by the error in the
direction of the eigenvalue ofI −P furthest from 1,λ∗, hence decays as(1−λ∗)n,
and the convergence isgeometric.

2.2 Acceleration by weighted subsampling

The key idea in polynomial acceleration is to modify the iteration so that the error
polynomial is ‘better’ than the stationary case in Eqs. (1) and (2), in the sense of
smaller error. A simple way to modify the iteration in the setting of MCMC is to
subsample with weights. This does not allow complete freedom in choosing the error
polynomial, hence there is room for improvement. (Finding an optimal modification
is an open problem.) The recipe I will use is: runn steps of a standard MCMC
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starting atx(0) ∼ π (0) to produce the realization{x(1),x(2), . . .x(n)} and then choose
x= x(i) w.p. (with probabilities){αi}ni=1 (whereαi ≥ 0 and∑i αi = 1). The resulting
sample is distributed as the mixture model

x∼ π (0)
n

∑
i=1

αiP
i

with the individual distributions related by increasing powers ofP. Weighted sub-
sampling is also considered by Łatuszyński & Roberts [16].The associated error
polynomial is then

Qn =
n

∑
i=1

αi(1−λ )i

which is ann-th order Lorentz polynomial. Since we choose the coefficients{αi}ni=1
we have some freedom in choosing the error polynomial. In special circumstances,
it is possible to choose an error polynomial that is zero at the eigenvalues ofI −
P other thanλ = 0, in which case subsampling with weights generates aperfect
sample fromπ . That is possible, for example, when the sample space is finite, withs
states. ThenI−P has at mostsdistinct eigenvalues and when thes−1 eigenvalues
other than 0 can be the zeros of a Lorentz polynomial it is possible to chooseQn to
give zero distribution error.

Consider the simple example in which we want to sample from a state-space with
s= 3 states with target pmfπ = (1/3,1/3,1/3). A Markov chain that targetsπ can
be generated by repeatedly simulating the transition matrix

P =







1
48

11
24

25
48

11
24

1
12

11
24

25
48

11
24

1
48







which can easily be seen to be in detailed balance withπ and gives a chain that is
irreducible and aperiodic. Note that convergence is geometric, and that

P
2 =







185
384

55
192

89
384

55
192

41
96

55
192

89
384

55
192

185
384






,P3 =







805
3072

539
1536

1189
3072

539
1536

229
768

539
1536

1189
3072

539
1536

805
3072






, . . . ,P∞ =







1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3







so that asn→ ∞ the chain converges to a sample fromπ that is independent of the
starting state. This chain can be accelerated by weighted subsampling, as follows:

1. Start with (any)x(0), simulate 3 steps withP to getx(1), x(2), x(3).
2. Samplex from (x(1),x(2),x(3)) w.p.

(

1
11

14
33

16
33

)

.

The resultingx is an exact draw fromπ , and independent of the starting state, be-
cause 1

11P + 14
33P

2+ 16
33P

3 = P∞. It is left as an exercise to explicitly construct
the error polynomial to see how the example was constructed.

As mentioned above, there are a few practical difficulties with this simple sub-
sampling scheme. An obvious limitation is that the zeros of aLorentz polynomial
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only occur for eigenvalues that decorrelate the chain, in which case the polynomial
‘acceleration’ that draws exact (and i.i.d. ) samples actually increasesthe variance
in a CLT (see e.g. [16]). However, one might argue that distributional convergence
is improved, which may be important in some settings. A further difficulty occurs
whenn needs to be large since we really want to specify the zeros of the error poly-
nomial yet these are not a stable numerical function of the{αi}. Furthermore,nmust
be chosen in advance which is typically not convenient. All these difficulties may
be circumvented in the case of a Gaussian target by using a second-order iteration.

3 Gibbs sampling of Gaussians is Gauss-Seidel iteration

The Gibbs sampling algorithm [11] repeatedly samples from (block) conditional dis-
tributions ofπ . We consider the simplest, and original, version of Gibbs sampling in
which one iteration consists of conditional sampling alongeach coordinate direction
in sequence, see e.g. Turčin 1971 [21], also known as Glauber dynamics [12], the
local heat-bath algorithm [5], and the sequential updatingmethod.

3.1 Normal distributions

We now focus on the case of Gibbs sampling from the multivariate Normal (or
Gaussian) distribution N

(

0,A−1
)

with known precision matrixA. This situation
commonly occurs in (hierarchical) Bayesian analyses when spatial dependencies are
modelled via neighbourhood relationships, leading to a Gaussian Markov random
field (GMRF) with sparse precision matrix [15]. BothA and the covariance matrix
Σ = A−1 are symmetric positive definite. Ind dimensions the density function is
(written in thenatural parametrization)

π (x) =

√

det(A)

2πd
exp

{

−1
2

xTAx+bTx
}

. (3)

The mean vector̄x satisfies
Ax̄ = b (4)

which gives the first indication that solution of linear equations is relevant to Gaus-
sian distributions.

Cholesky factorization is the preferred method for solvingmoderately sized lin-
ear systems with symmetric and positive definite coefficientmatrix, and also for
sampling from moderate dimension Gaussian distributions [19] (also called global
heat bath [5]). We are interested in the case where the state-space dimensiond is
large andA is sparse. Then, iterative methods such as the Gibbs samplerare attrac-
tive as the main cost per iteration is operation by the precision matrixA, which is
cheap, and memory requirements are low.
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The Gibbs sampler updates components via the conditional distributions, which
are also Gaussian. Hence choosingπ (0) to be Gaussian results in a sequence of
Gaussiann-step distributions. Since thesen-step distributions converge toπ , the
sequence ofn-step covariance matrices converge toΣ , i.e., Σ (n) → Σ . One of the
motivations for this work was to understand what decomposition of the matrixΣ
this sequence is effectively performing. Many matrix decompositions are known in
numerical analysis and we were curious to see if Gibbs sampling was effectively
performing one of them.

3.2 Matrix formulation of Gibbs sampling from N(0,A−1)

Let y = (y1,y2, ...,yn)
T denote the state of the Gibbs sampler. Component-wise

Gibbs updates each component in sequence from the (normal) conditional distri-
butions. One ‘sweep’ over alln components can be written [14]

y(k+1) =−D−1Ly(k+1)−D−1LTy(k)+D−1/2z(k) (5)

whereD = diag(A), L is the strictly lower triangular part ofA, andz(k−1) ∼N(0,I).
SinceD is invertible, the iteration can be written as the stochastic AR(1) process

y(k+1) = Gy(k)+ c(k)

wherec(k) are i.i.d. draws from a ‘noise’ distribution with zero mean and finite
covariance.

3.3 Matrix splitting form of stationary iterative methods

Since about 1965, thematrix splittingformalism has been the standard for formu-
lating and understanding the classical iteration schemes used to solve linear systems
of equations, as in Eq. (4). Thesplitting A = M−N converts the linear system to
Mx = Nx+b. WhenM is invertible, this may be written

x = M−1Nx+M−1b.

Classical iterative methods compute successive approximations to the solution by
repeatedly applying the iteration

x(k+1) = M−1Nx(k)+M−1b

= Gx(k)+ g.

The iteration isconvergentif the sequence of iterates converge for anyx(0).
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Many splittings use terms inA = L+D+U whereL is the strictly lower trian-
gular part ofA, D is the diagonal ofA, andU is the strictly upper triangular part of
A. For example, Gauss-Seidel iteration, that sequentially solves for each component
using the most recent values, corresponds to the splittingM = L+D. The resulting
iteration for a sweep over all components in sequence is

x(k+1) =−D−1Lx(k+1)−D−1LTx(k)+D−1b. (6)

The similarity between Gauss-Seidel iteration in Eq. (6) and the matrix formu-
lation of Gibbs sampling in Eq. (5) is obvious. The only difference is that whereas
in each iteration of Gauss-Seidel the constant vectorD−1b is added, in Gibbs sam-
pling the i.i.d. random vectorD−1/2z(k) is added. This equivalence has been known
for some time; it was explicitly stated in Amit and Grenander1991 [2] and is im-
plicit in Adler 1981 [1].

3.4 Matrix splittings give generalized Gibbs samplers

The standard Gibbs sampler in Eq. (6) and Gauss-Seidel iteration in Eq. (5) are
equivalent in the sense that they correspond to the same splitting of the precision
matrix. In fact any splitting of the precision matrix leads to a (generalized) Gibbs
sampler for N(0,A−1). What makes this equivalence interesting and useful is that
the generalized Gibbs sampler converges (in distribution)if and only if the sta-
tionary linear iteration converges (in value); hence convergent Gibbs samplers are
equivalent to convergent matrix splittings. The followingtheorem formalizes this
statement.

Theorem 1. Let A = M−N be a splitting withM invertible. The stationary linear
solver

x(k+1) = M−1Nx(k)+M−1b (7)

= Gx(k)+M−1b

converges, if and only if the random iteration

y(k+1) = M−1Ny(k)+M−1c(k) (8)

= Gy(k)+M−1c(k)

converges in distribution. Herec(k) iid∼ πn is any ‘noise’ distribution that has zero
mean and finite variance.

Proof. (outline) Each converges iff the spectral radiusρ(G)< 1.⊓⊔
A complete proof is given in Fox & Parker 2013 [9]. (A more general theory

allowing G to be random can be found in [6].) We first saw this result in onedi-
rection in Goodman & Sokal 1989 [14] and Galli & Gao 2001 [10].Further, it can
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be shown [9] that the mean converges with asymptotic convergence factorρ(G),
and covariance withρ(G)2 (see also [18]). Thus, therate of convergence is also
the same for both the Gibbs sampler and the linear solver derived from a splitting.
Hence the optimal solver leads to the optimal Gibbs sampler,and vice versa.

3.5 Some (not so common) Gibbs samplers for N(0,A−1)

There are many matrix splittings known in the numerical analysis community, with
conditions for convergence being well established. Most introductory texts on nu-
merical analysis cover the topic of stationary iterative methods and give several
classical splittings. Some of these are tabulated in Table 1with increasing sophis-
tication and (roughly) speed listed from top to bottom. Conditions that guarantee
convergence, taken from the numerical analysis literature, are also listed for the
case whereA is symmetric positive-definite.

Table 1 Some classical matrix splittings and the derived Gibbs samplers. Conditions for con-
vergence are given in the right-most column, forA symmetric positive definite. Jacobi iteration
converges whenA is strictly diagonally dominant (SDD).

splitting/samplerM Var(c(k)) = MT +N converge if

Richardson 1
ω I 2

ω I−A 0< ω < 2
ρ(A)

Jacobi D 2D−A A SDD
GS/Gibbs D+L D always
SOR/B&F 1

ω D+L 2−ω
ω D 0< ω < 2

SSOR/REGS ω
2−ω MSORD−1MT

SOR
ω

2−ω
(

MSORD−1MT
SOR+NT

SORD−1NSOR
)

0< ω < 2

The convenience of a splitting depends on being able to cheaply solve systems of
the formMu = r given any vectorr. When the splitting is used to generate a Gibbs
sampler, as in Eq. (8), it is also necessary to draw realizations of the noisec(k) ∼
N(0,MT +N), so the covariance matrixMT +N needs to have some convenient
form.

It is interesting to note that the simplest splittings – Richardson and Jacobi – give
simple stationary iterative solvers because it is cheap to operate byM−1 in these
cases. However, the required noise covariance matrix is notnecessarily simple and
so these splittings don’t give particularly useful Gibbs samplers.

The Gauss-Seidel (GS) splitting, that gives the standard component-wise Gibbs
sampler, hits a ‘sweet-spot’ in terms of simplicity of the required matrix solution
and noise sampling problems. The matrixM is lower-triangular, so operation by
M−1 is straightforward byforward substitution, while the noise covariance is di-
agonal which presents a simple sampling problem. It is no surprise, therefore, that
the standard Gibbs sampler was the first of these methods to bediscovered. We see
from the right column in Table 1 that the Gauss-Seidel iteration is unconditionally
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convergent, hence Thm. 1 guarantees that so is the component-wise Gibbs sampler
– but we already knew this from standard convergence resultsfor the Gibbs sampler.

An early method for accelerating the Gauss-Seidel iteration, due to Young and
Frankel in 1950, introduces arelaxation parameterω and modifies the iteration to

x(k+1) = (1−ω)x(k)+ω
(

Gx(k)+M−1b
)

. Thissuccessive over-relaxation(SOR)

method effectively uses the splitting shown on the row labeled SOR in Table 1. It can
be shown that the method converges for 0< ω < 2, though finding values ofω that
actually increase convergence speed is problem-specific and can be difficult. The
equivalent accelerated Gibbs sampler has been discovered afew times: initially by
Adler in 1981 [1] in the physics literature, later in the statistics literature by Barone
& Frigessi in 1990 [4] who subsequently referred to it (immodestly) as the ‘method
of Barone and Frigessi’, and in Amit & Grenander 1991 [2].

A symmetricsplitting, for whichM and henceN is symmetric, has the desirable
property that the iteration operatorG has real eigenvalues. A simple way to achieve
this is to perform a forwards then backwards sweep of SOR giving thesymmetric
successive over-relaxation(SSOR) method introduced by Young [22]. The effec-
tive splitting is listed in Table 1. The equivalent Gibbs sampler was introduced by
Roberts & Sahu 1997 [18] as a reversible kernel produced by a forward then back-
ward sweep of the standard Gibbs sampler, under the title of the REGS sampler.
Polynomial acceleration of this sampler is developed in thenext section.

4 Polynomial acceleration of Gibbs sampling

Sampling from N(x̄,A−1), whereAx̄ = b, using the matrix splittingA = M−N,
with M invertible, determines the iteration operatorG = M−1N and noise distribu-

tion c(k) iid∼ N(0,MT +N). One sweep of the resulting Gibbs sampler is the matrix
iteration

y(k+1) = Gy(k)+M−1(c(k)+b) (9)

that combines Eqs. (7) and (8) to converge in both mean and covariance.

4.1 A closer look at convergence

Since both the mean and covariance are invariant under the iteration in Eq. (9), the
n-step error in the mean is

E
(

y(n)
)

− x̄ = Gn
[

E
(

y(0)
)

− x̄
]

,

and the error in variance is

Var
(

y(n)
)

−A−1 = Gn
[

Var
(

y(0)
)

−A−1
]

Gn.



10 Colin Fox

Both these error terms show that then-step error is the initial error operated on by
then-th order (matrix) polynomialGn. Hence, the asymptotic average convergence
factor isρ(G) for the mean, andρ(G)2 for the covariance. These results also appear
in Roberts & Sahu 1997 [18].

Thus, the error polynomial for the iteration is

Pn (I−G) = (I− (I−G))n =
(

I−M−1A
)n

or Pn(λ ) = (1−λ )n

which has the same form as in Eq. (2) because this iteration isalso stationary, though
now the eigenvalues are of the matrixM−1A.

In particular, the solver and sampler have exactly the same error polynomial. This
is a very important observation, since it means that methodsfor improving the error
polynomial of the solver will also improve convergence of the generalized Gibbs
sampler. Further, since the solver and sampler have exactlythe same asymptotic
average convergence factor, the optimal solver will also bethe optimal sampler.
Thus, the task of finding a fast Gibbs sampler (for Gaussian distributions) is reduced
to the task of consulting the numerical linear algebra literature to find a fast linear
iterative solver.

4.2 Chebyshev acceleration

Golub and Varga 1961 [13] introduced the splitting

A =
1
τ

M+

(

1− 1
τ

)

M−N,

with parameterτ, that the gives the iteration operator

Gτ =
(

I− τM−1A
)

. (10)

Repeated iteration using this splitting results in the error polynomial Pn (λ ) =
(1− τλ )n, while n iterations using thesequenceof parametersτ1,τ2, . . . ,τn results
in the error polynomial

Pn(λ ) =
n

∏
l=1

(1− τlλ ) .

Note that the zeros ofPn can be chosen; they are just 1/τ1,1/τ2, . . . ,1/τn. The re-
sulting iteration is non-stationary (because the iteration operator changes each it-
eration), hence the derived Gibbs sampler simulates a non-homogeneous Markov
chain.

When estimates of the extreme eigenvaluesλmin andλmax of M−1A are available
(λmin andλmax are real whenM is symmetric), the error polynomial may be chosen
to be optimal in the sense that it has minimum maximum modulusover the inter-
val [λmin,λmax]. The solution is the well-known scaled Chebyshev polynomial with
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zeros

1
τl

=
λmax+λmin

2
+

λmax−λmin

2
cos

(

π
2l +1

2n

)

l = 0,1,2, . . . ,n−1. (11)

The potential improvement in rate of convergence achievable by the Chebyshev
error polynomial is shown in Fig. 1 that shows the Chebyshev (solid) and default
(dashed) error polynomials for a random covariance overd = 10 variables, after
n= 10 iterations.

Fig. 1 The default error
polynomial (dashed) and
Chebyshev error polynomial
(solid) after 10 iterations.
Vertical dotted lines show
the minimum and maximum
eigenvalues ofM−1A.

The largest value of the default error polynomial occurs at the extreme eigenval-
ues ofM−1A, as we expect from standard MCMC convergence theory. The Cheby-
shev polynomial achieves a much lower maximum value over theinterval, at the
expense of some ‘ripple’ in the interval that is of no consequence for convergence.
In this case the Chebyshev acceleration gives a factor of 300improvement in con-
vergence, i.e. the distribution error is 300 times smaller,after just 10 iterations.

An explicit calculation of the maximum of the scaled Chebyshev polynomial over
the interval[λmin,λmax] shows that the asymptotic average reduction factor (see e.g.
Axelsson 1996 [3]) is

σ =
1−

√

λmin/λmax

1+
√

λmin/λmax
,

and that this is necessarily better (smaller) than the per-iteration error reduction
factor of the un-accelerated iteration.

4.3 Second-order accelerated sampler

The first-order polynomial-accelerated iteration turns out to be numerically unsta-
ble, because the iteration operators in Eq. (10) may have spectral radius greater than
1, and also suffers from having to choose the number of iterations n in advance.
Numerical stability, and optimality at each step, is given by the second-order itera-
tion [3]
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y(k+1) = (1−αk)y
(k−1)+αky(k)+αkτkM−1(c(k)−Ay(k)) (12)

with αk andτk chosen so the error polynomial satisfies the Chebyshev recursion.

Theorem 2. If {αk} and{τk} are such that the2nd-order solver converges, then the
2nd-order sampler in Eq. (12) converges. Further, the error polynomial is optimal,
at each step, for both mean and covariance.

A proof of this theorem and details of a practical second-order Chebyshev acceler-
ated Gibbs sampling algorithm are given in Fox and Parker 2013 [8].

4.3.1 An example with d = 10×10

Consider the locally-linear Gaussian distribution definedby the precision ma-
trix [15]

[A]i j = 10−4δi j +







ni if i = j,
−1 if i 6= j and||si− sj ||2 ≤ 1,
0 otherwise.

We compute an example on the square 10×10 lattice, so the problem dimension is
d = 100. The precision matrix inherits the neighbourhood structure of the lattice, so
is sparse, with non-zero pattern:

The convergence inn-step covariance of various Gibbs samplers applied to this dis-
tribution is shown in Fig. 2. The dashed line shows the SSOR (or REGS) sampler
using the optimal SOR parameter ofω = 1.6641. The solid curve shows the stan-
dard REGS (forward and backward sweep of Gibbs) sampler (ω = 1). Dash-dot
lines show the Chebyshev accelerated SSOR sampler. It is clear that the Chebyshev
accelerated sampler is considerably faster than standard Gibbs sampling, in this case
≈ 104 times faster. The dotted lines in Fig. 2 show the work and error for a sample
drawn using the Cholesky factorization ofA, and confirm that Cholesky factoring is
the method of choice for moderately-sized problems.

4.3.2 An example with d = 106

Fig. 3 shows a sample from a locally linear Gaussian random field, with the same
definition of the precision matrix as the previous example, on the 3-dimensional lat-
tice with d = 100× 100× 100, computed using the Chebyshev accelerated SSOR
sampler. This problem hasd = 106 which is much larger than could be calculated
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Fig. 2 Convergence ofn-
step covariance as a function
of computational work, for
plain and accelerated Gibbs
samplers applied tod =
100 dimensional problem.
The work and error for the
Cholesky factorization is
shown as dotted lines, for
reference.
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Cheby−SSOR, ω=1

Cheby−SSOR, ω=1.6641

Cholesky

using a Cholesky factorization. However, the iterative structure of the Gibbs sampler
is able to take advantage of the sparse precision matrix, which is the only special
structure exploited here. (The Fourier transform is also applicable in this case be-
cause the GMRF is stationary.)

Fig. 3 Slices through a sample on the 3-dimensional lattice withd = 100×100×100.
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5 A conjugate gradient sampling algorithm

The conjugate gradient (CG) optimization method may be viewed as a polynomial
acceleration in which the optimal error polynomial is chosen by also calculating the
eigenvalues of the iteration operator within the procedure. However, we present the
method here by focusing on the mutuallyA-conjugate directions that are generated
at each iteration.

Fig. 4 shows a schematic of the iterative structure implemented by Gauss-Seidel
(left) and conjugate gradient optimization (right) of a quadratic function ind = 2
dimensions. The sequence ofsearch directionsis depicted by dashed lines. The
Gauss-Seidel iteration performs optimization along each coordinate direction, in se-
quence. As we have seen, this implements exactly the same iteration structure as
the Gibbs sampler, depicted by solid lines with the sequenceof conditional sam-
ples denotedx(0), x(1), etc. In contrast the CG algorithm uses a sequence of search
directions that are mutuallyA-conjugate, seeded by the gradient at each iterate, as
depicted in the right panel of Fig. 4. By performing conditional sampling along
this sequence of directions, as opposed to 1-dimensional optimization, we get the
conjugate gradient sampler (solid lines).
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Fig. 4 Schematic ind = 2 dimensions depicting the path taken by the Gauss-Seidel iteration and
Gibbs sampler (left) and the CG optimizer and sampler (right). Contours of the quadratic objec-
tive function and log-target density are also shown. Path ofthe optimizer shown in dotted lines,
sampler shown in solid lines. Search directions arep(0),p(1), . . ., iterates arex(0),x(1), . . ., while
∇(0),∇(1), . . . show the direction of gradients at iterates.

Mutually conjugate vectors (with respect toA) are independent directions for
N(0,A−1), since

VTAV = D⇒A−1 = VD−1VT

whereV has mutually conjugate columns andD is a diagonal matrix. Hence, if
z ∼ N(0, I) thenx = V

√
D−1z ∼ N(0,A−1). Thus the problem of sampling from

N(0,A−1) is reduced to sampling from standard normal distributions.Both the
Cholesky factorization and eigen-decomposition are examples of sets of mutually
conjugate vectors [7].



Polynomial accelerated MCMC 15

Algorithm 1 (CD sampler producing x∼ N(0,A−1)) initialize x andb (Ax 6= b)

1. r← b−Ax
2. p← r
3. for k= 1 to n do:
4. q← Ap
5. set d← qTp, e← qTx/d, f← pTb/d
6. draw z∼ N(0,1) and setα ← z/

√
d

7. x← x+(α−e)p
8. b← b+(α− f )q
9. r← r− ( f −e)q

10. p← r− rTq
d

p

The sequential conjugate-direction algorithm given in Fox2008 [7] is shown in
Alg. 1. This algorithm operates locally, so can potentiallybe generalized to non-
Gaussian targets. An earlier Krylov-space method was presented in Schneider &
Willsky 2003 [20]. Ceriottiet al. [5] gave an algorithm that solvesAx = b by stan-
dard linear CG and separately accumulates the sampley. They mitigated problems
associated with loss of conjugacy and degenerate eigenspaces by a combination of
random restarts and orthogonalization over a small set of vectors. Parker and Fox
2012 [17] presented a convergence criterion based on the residual, also for an al-
gorithm that solvesAx = b by standard linear CG and separately accumulates the
sampley. They also established that, afterk steps, Var(yk) is the CG polynomial,
and gave following best-approximation property:

Theorem 3. (Parker 2009)
The covariance matrix

Var(yk|x0,b0) =VkT
−1
k VT

k

has k non-zero eigenvalues which are the Lanczos estimates of the eigenvalues of
A−1. The eigenvectors ofVar(yk|x0,b0) are the Ritz vectors Vkvi which estimate the
eigenvectors ofA.

That is, thek-step variance Var(yk|x0,b0) approximatesA−1 in the eigenspaces cor-
responding to the extreme and well separated eigenvalues ofA.

Fig. 5 shows two samples drawn from a 100× 100-dimensional Gaussian field
with a second-order locally linear precision matrix. The left panel was drawn using
the CG sampler of Parker and Fox 2012 [17], while the right sample was evalu-
ated using the Cholesky factorization ofA. Loss of conjugacy in the CG algorithm
means that the algorithm terminates before sampling alld-dimensions of the prob-
lem. For typical covariance functions, this results in oversmooth samples as can
be seen in the left panel of Fig. 5. However, the connection with iterative solvers
immediately suggests the efficient solution which is to initialize the (accelerated)
Gibbs sampler with the CG sample. This plays to the strengthsof each method;
the CG sampler efficiently calculates smooth structures in the Gaussian field, while
relaxation techniques such as Gauss-Seidel (hence Gibbs sampling) are efficient in
removing high-frequency errors.
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Fig. 5 A CG sample (left panel)x∼N(0,A−1) from a 100×100-dimensional Gaussian field with
a second-order locally linear precision matrix. The realized variance Var(x) accounts for 80% of
the variability inA−1. A Cholesky sample is shown on the right panel.

6 Discussion

The motivating query of whether “stochastic relaxation” isformally equivalent to
“relaxation” has been answered in the affirmative, in the Gaussian setting; Gibbs
sampling is precisely equivalent to Gauss-Seidel iteration. This result generalizes
to any splitting of the precision matrix, to give both a “stochastic relaxation” and
a “relaxation” with identical conditions for convergence,rates of convergence, and
error polynomial.

Hence, existing efficient solvers (multigrid, fast multipole, parallel tools) can
all be used to perform sampling from Gaussian distributions; indeed, these ‘best’
solvers are necessarily the ‘best’ samplers for Gaussian distributions.

As was shown in section 2, polynomial acceleration may also be applied to
the Markov chain that targets a non-Gaussian distribution.The example presented,
while rather special and not of practical use, did demonstrate that polynomial ac-
celeration of a geometrically convergent chain can lead to an algorithm that draws
‘perfect’ samples in finite compute time.

For general target distributions, Chebyshev accelerationof convergence in mean
and covariance is also not limited to Gaussian targets. The requirement of explicitly
knowing the precision matrixA may be circumvented byadaptingto it [8]. Appli-
cations in the setting of diffusion tomography show good results, though no proof
of convergence exists for the accelerated adaptive algorithm.
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