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Abstract

We present an efficient and flexible method for computing likelihoods
of phenotypic traits on a phylogeny. The method does not resort to
Monte-Carlo computation but instead blends Felsenstein’s discrete char-
acter pruning algorithm with methods for numerical quadrature. It is
not limited to Gaussian models and adapts readily to model uncertainty
in the observed trait values. We demonstrate the framework by devel-
oping efficient algorithms for likelihood calculation and ancestral state
reconstruction under Wright’s threshold model, applying our methods to
a dataset of trait data for extrafloral nectaries (EFNs) across a phylogeny
of 839 Fabales species.
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Introduction

Statistical models for nucleotide or amino acid mutations and substitutions,
and the algorithms for computing with them, are fundamental to the study of
molecular evolution and biology. As we widen our focus from the evolution of
genes to the evolution of genomes, individuals, and populations, a whole new
class of modelling challenges present themselves. Of course, the usefulness of any
new model is contingent on the tools available to compute with them. The main
contribution of this paper is to show how, by combining ideas from statistical
phylogenetics and numerical mathematics, we can compute efficiently with a far
larger range of evolutionary models.

The algorithms we develop are for computation of the likelihood: the prob-
ability of the data given the phylogeny, evolutionary model and parameters. If
we are working with an evolutionary model with only a small (finite) number
of states, then likelihoods can be computed using the dynamic programming
algorithm of Felsenstein (1981b). We will show how to extend this algorithm to
also compute likelihoods for (essentially) arbitrary continuous trait models.

There is already a wide range of evolutionary phenomena that are studied
using continuous trait models. Much of comparative genomics relies on implicit
or explicit models for the evolution of morphology (Felsenstein, 2002; Harmon
et al., 2010; Ronquist, 2004; Stevens, 1991), many of which make gross simpli-
fying assumptions about how traits vary over time. Continuous evolutionary
models have been used in comparative transcriptomics to study heritable as-
pects of gene expression levels (Khaitovich et al., 2005, 2006), an area with
exceptional promise given recent improvements in accuracy and the ability to
sample in situ Voelckel et al. (2012).

Continuous trait models will be of growing importance in evolutionary stud-
ies of whole genome SNP-databases. Inference methods based on the coalescent
such as SNAPP Bryant et al. (2012) do not scale well as the number of in-
dividuals grows, while those based on continuous models of gene frequencies
(Cavalli-Sforza and Edwards, 1967; Felsenstein, 1981a; Sirén et al., 2011) de-
pend only on proportions of individuals with each allele, so scale extremely
well. In addition, it is often easier to model the effect of selection on continu-
ous gene frequency models than with the coalescent. Continuous evolutionary
models have also been applied successfully to the study of ancestral geography
distributions (Lemey et al., 2010).

Our interest is in developing techniques used to compute with these models,
and to expand the range of models we can work with. Early work of Felsen-
stein (Felsenstein, 1968, 1973), revisited by Freckleton (2012); FitzJohn (2012),
demonstrated that if traits are evolving according to Brownian motion then we
can compute likelihoods quickly and (up to numerical precision) exactly. Felsen-
stein’s approach extends to other Gaussian processes, notably the Ornstein-
Uhlenbeck (OU) process (Felsenstein, 1988; Hansen, 1997; Lande, 1976). Ho
and Ané (2014) used clever algebraic techniques to develop an alternative algo-
rithm for computing the likelihood and related quantities. They survey several
other models which can be handled using the same approach.
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These methods are very efficient, and when they can be used, they should be
used. The drawback of these methods is that they are fundamentally restricted
to models which are Gaussian processes or transforms of Gaussian processes,
where the computational bottleneck lies in the computation of a quadratic form
involving the covariance matrix Ho and Ané (2014). Many evolutionary models
can not be handled within this framework (e.g. (Landis et al., 2013; Ronquist,
2004)) and for these models researchers typically resort to Monte Carlo strate-
gies. Even when we are working with a model satisfying the assumptions of Ho
and Ané (2014) the algorithms they describe do not give an efficient method
for integrating over sets of trait values at the tips, as in the treshold models we
discuss below.

Computing the probability of quantitative character evolution may be framed
as a numerical integration (quadrature) problem. For most models, if we know
the value of the trait at each ancestral node in the phylogeny we can quickly
compute the various transition probabilities. Since we do not usually know these
ancestral trait values we integrate them out. This is a multi-dimensional inte-
gration problem with one dimension for each ancestral node (or two dimensions
for each node if we are modelling covarying traits).

Methods for estimating or approximating integrals are usually judged by
their rate of convergence: how quickly the error of approximation decreases as
the amount of work (function evaluations) increases. Consider the problem of
computing a one-dimensional integral∫ 1

0

f(x) dx (1)

where f is a ‘nice’ function with continuous and bounded derivatives. Simp-
son’s rule, a simple textbook method reviewed below, can be shown to have an
O(N−4) rate of convergence, meaning that, asymptotically in N , evaluating 10
times more points reduces the error by a factor of 104. In contrast, a standard
Monte Carlo method has a rate of convergence of O(N−

1
2 ), meaning that eval-

uating 10 times more points will only reduced the error by a factor of around 3.
For this reason, numerical analysis texts often refer to Monte Carlo approaches
as ‘methods of last resort.’

Despite this apparently lacklustre performance guarantee, Monte-Carlo meth-
ods have revolutionised phylogenetics in general and the analysis of quantitative
characters in particular. The reason is their partial immunity to the curse of di-
mensionality. Methods like Simpson’s rule are not practical for a high number of
dimensions as the asymptotic convergence rate, quoted above, is only achieved
for an infeasibly large number of function evaluations N . The effective conver-
gence rate for small N can be very poor, and typically worse than Monte-Carlo.
In contrast, there are Monte Carlo approaches which achieve close to O(N−

1
2 )

convergence irrespective of dimension. This has been critical when computing
the likelihoods of complex evolutionary models with as many dimensions as
there are nodes in the phylogeny.

The main contribution of our paper is to demonstrate how to efficiently
and accurately compute likelihoods on a phylogeny using a sequence of one-
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dimensional integrations. We obtain a fast algorithm with convergence guaran-
tees that far exceed what can be obtained by Monte Carlo integration. Our ap-
proach combines two standard tools: classical numerical integrators and Felsen-
stein’s pruning algorithm for discrete characters (Felsenstein, 1981b). Indeed,
the only real difference between our approach and Felsenstein’s discrete charac-
ter algorithm is that we use numerical integration techniques to integrate states
at ancestral nodes, instead of just carrying out a summation.

The running time of the algorithm is O(N2n), where N is the number of
points used in the numerical integration at each node and n is the number of
taxa (leaves) in the tree. Using Simpson’s method, we obtain a convergence rate
of O(nN−4), meaning that if we increase N by a factor of 10 we will obtain an
estimate which is accurate to four more decimal places.

To illustrate the application of our general framework, we develop an efficient
algorithm for computing the likelihood of a tree under the threshold model
of Sewell Wright and Felsenstein (Felsenstein, 2005, 2012; Wright, 1934). We
also show how to infer marginal trait densities at ancestral nodes. We have
implemented these algorithms and used them to study evolution of extrafloral
nectaries on an 839-taxon phylogeny Marazzi et al. (2012). MATLAB code
for computing the threshold likelihood has been posted on MATLAB Central
and complete MATLAB code for all analyses and simulations can be found in
Supplemental Data.

The combination of numerical integrators and the pruning algorithm opens
up a large range of potential models and approaches which we have only just
begun to explore. In the discussion, we briefly review developments in numerical
integration techniques that could well be brought to bear on these problems,
and a few suggestions of directions and problems which can now be addressed.

Material and Methods

Models for continuous trait evolution

Phylogenetic models for continuous trait evolution, like those for discrete traits,
are specified by the density of trait values at the root and the transition densities
along the branches. We use f(xr|θr) to denote the density for the trait value at
the root, where θr is a set of relevant model parameters. We use f(xi|xj , θi) to
denote the transitional density for the value at node i, conditional on the trait
value at its parent node j. Here, θi represents a bundle of parameters related to
node i such as branch length, population size, and mutation rate. All of these
parameters could vary throughout the tree.

To see how the model works, consider how continuous traits might be simu-
lated. A state Xr is sampled from the root density f(Xr|θr). We now proceed
through the phylogeny from the root to the tips, each time visiting a node only
after its parent has already been visited. For each node i, we generate the value
at that node from the density f(Xi|xj , θv), where xj is the simulated trait value
at node j, the parent of node i. In this way, we will eventually generate trait
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values for the tips.
We use X1, . . ., Xn to denote the random trait values at the tips and Xn+1,

. . ., X2n−1 to denote the random trait values at the internal nodes, ordered so
that children come before parents. Hence X2n−1 is the state assigned to the
root. Let

E(T ) = {(i, j) : node i is a child of node j} (2)

denote the set of branches in the tree. The joint density for all trait values,
observed and ancestral, is given by multiplying the root density with all of the
transition densities

f(x1, . . . , xn, xn+1, . . . , x2n−1|θ) = f(x2n−1|θ)
∏

(i,j)∈E(T )

f(xi|xj , θi). (3)

The probability of the observed trait values x1, . . . , xn is now determined by
integrating out all of the ancestral trait values:

L(T ) = f(x1, . . . , xn|θ) =

∫ ∫
· · ·
∫
f(x2n−1|θr)

∏
(i,j)∈E(T )

f(xi|xj , θi) dxn+1, . . . , dx2n−1.

(4)
In these integrals, the bounds of integration will vary according to the model.

The oldest, and most widely used, continuous trait models assume that
traits (or transformed gene frequencies) evolve like Brownian motion (Cavalli-
Sforza and Edwards, 1967; Felsenstein, 1973). For these models, the root density
f(xr|θ) is Gaussian (normal) with mean 0 and unknown variance σ2

r . The
transition densities f(xi|xj , θv) are also Gaussian, with mean xj (the trait value
of the parent) and variance proportional to branch length. Note that there are
identifiability issues which arise with the inference of the root position under
this model, necessitating a few tweaks in practice.

It can be shown that when the root density and transitional densities are
all Gaussian, the joint density (4) is multivariate Gaussian. Furthermore, the
covariance matrix for this density has a special structure which methods such as
the pruning techniques of Felsenstein (1968, 1973); Freckleton (2012); FitzJohn
(2012) exploit, as does the top-down approach of Ho and Ané (2014). This
general approach continues to work when Brownian motion is replaced by an
OU process (Felsenstein, 1988; Hansen, 1997; Lande, 1976), or indeed to many
linear or generalized linear models.

Gaussian models, and their relatives, are mathematically and computation-
ally convenient, but rely on assumptions which are unrealistic and inappropriate
in many contexts. Numerous researchers have implemented models which do
not fit into the general Gaussian framework; most have resorted to Monte Carlo
computation to carry out their analyses.

Landis et al. (2013) discuss a class of continuous trait models which are
based on Lévy processes and include jumps. At particular times, as governed
by a Poisson process, the trait value jumps to a value drawn from a given
density. Examples include a compound Poisson process with Gaussian jumps
and a Variance Gamma model given by Brownian motion with with time varying
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according to a gamma process. Both of these processes have analytical transition
probabilities in some special cases.

Lepage et al. (2006) use the Cox-Ingersoll-Ross (CIR) process to model rate
variation across a phylogeny. Like the OU process (but unlike Brownian mo-
tion), the CIR process is ergodic. It has a stationary Gamma density which can
be used for the root density. The transition density is a particular non-central
Chi-squared density and the process only assumes positive values.

Kutsukake and Innan (2013) examine a family of compound Poisson models,
focusing particularly on a model where the trait values make exponentially dis-
tributed jumps upwards or downwards. In the case that the rates of upward and
downward jumps are the same, the model has jumps that follow a double ex-
ponential distribution. Kutsukake and Innan (2013) use approximate Bayesian
computation (ABC) to carry out inference.

Sirén et al. (2011) propose a simple and elegant model for gene frequencies
whereby the root value is drawn from a Beta distribution and each transitional
density is Beta with appropriately chosen parameters.

Trait values at the tips are not always observed directly. A simple, but
important, example of this is the threshold model of Wright (1934), explored
by Felsenstein (2005). Under this model, the trait value itself is censored and
we only observe whether or not the value is positive or negative. A similar
complication arises when dealing with gene frequency data as we typically do not
observe the actual gene frequency but instead a binomially distributed sample
based on that frequency (Sirén et al., 2011).

If the trait values at the tip are not directly observed we integrate over these
values as well. Let π(zi|xi) denote the probability of observing zi given the trait
value xi. The marginalised likelihood is then

L(T |z1, . . . , zn) =

∫ ∫
· · ·
∫
f(xr|θ)

∏
(i,j)∈E(T )

f(xi|xj , θv)
n∏
i=1

π(zi|xi) dx1, . . . , dx2n−1.

(5)

Numerical integration

Analytical integration can be difficult or impossible. For the most part, it is
unusual for an integral to have an analytical solution, and there is no general
method for finding it when it does exist. In contrast, numerical integration
techniques (also known as numerical quadrature) are remarkably effective and
are often easy to implement. A numerical integration method computes an
approximation of the integral from function values at a finite number of points.
Hence we can obtain approximate integrals of functions even when we don’t
have an equation for the function itself. See Cheney and Kincaid (2012) for
an introduction to numerical integration, and Dahlquist and Björck (2008) and
Davis and Rabinowitz (2007) for more comprehensive technical surveys.

The idea behind most numerical integration techniques is to approximate
the target function using a function which is easy to integrate. In this paper
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we will restrict our attention to Simpson’s method which approximates the orig-
inal function using piecewise quadratic functions. To approximate an integral∫ b
a
f(x) dx we first determine N + 1 equally spaced points

x0 = a, x1 = a+
b− a
N

, x2 = a+ 2
b− a
N

, . . . , xk = a+ k
b− a
N

, . . . , xN = b.

(6)
We now divide the integration into N/2 intervals∫ b

a

f(x) dx =

N/2∑
`=1

x2`∫
x2`−2

f(x) dx. (7)

Within each interval [x2`−2, x2`], there is a unique quadratic function which
equals f(x) at each the three points x = x2`−2, x = x2`−1 and x = x2`. The
integral of this quadratic on the interval [x2`−2, x2`] is

(b− a)

3N
(f(x2`−2) + 4f(x2`−1) + f(x2`)) (8)

Summing over `, we obtain the approximation∫ b

a

f(x) dx ≈
N/2∑
`=1

(b− a)

3N
(f(x2`−2) + 4f(x2`−1) + f(x2`)) . (9)

With a little rearrangement, the approximation can be written in the form∫ b

a

f(x) dx ≈ (b− a)

N

N∑
k=0

wkf(xk) (10)

where wk = 4/3 when k is odd and wk = 2/3 when k is even, with the exception
of w0 and wN which both equal 1/3. Simpson’s method is embarrassingly easy
to implement and has a convergence rate of O(N−4). Increasing the number of
intervals by a factor of 10 decreases the error by a factor of 10−4. See Dahlquist
and Björck (2008) and Davis and Rabinowitz (2007) for further details.

It should be remembered, however, that the convergence rate is still only an
asymptotic bound, and gives no guarantees on how well the method performs
for a specific function and choice of N . Simpson’s method, for example, can
perform quite poorly when the function being integrated has rapid changes or
soft peaks. We observed this behaviour when implementing threshold models,
as described below. Our response was to better tailor the integration method for
the functions appearing. We noted that the numerical integrations we carried
out all had the form ∫ b

a

e−
(x−µ)2

2σ2 f(x) dx (11)

where µ and σ varied. Using the same general approach as Simpson’s rule, we

approximated f(x), rather than the whole function e−
(x−µ)2

2σ2 f(x), by a piece-
wise quadratic function p(x). We could then use standard techniques and tools
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to evaluate
∫ b
a
e−

(x−µ)2

2σ2 p(x) dx numerically. The resulting integration formula,
which we call the Gaussian kernel method, gives a significant improvement in
numerical accuracy.

A further complication is that, in models of continuous traits, the trait value
often ranges over the whole real line, or at least over the set of positive reals.
Hence, we need to approximate integrals of the form∫ ∞

−∞
f(x) dx or

∫ ∞
0

f(x) dx (12)

though the methods discussed above only apply to integrals on finite intervals.
We truncate these integrals, determining values U and L such that the difference∫ ∞

−∞
f(x) dx−

∫ U

L

f(x) dx (13)

between the full integral
∫∞
−∞ f(x) dx and the truncated integral

∫ U
L
f(x) dx

can be bounded analytically. Other strategies are possible; see Dahlquist and
Björck (2008) for a comprehensive review.

A pruning algorithm for integrating continuous traits

Felsenstein has developed pruning algorithms for both continuous and discrete
characters (Felsenstein, 1981a,b). His algorithm for continuous characters works
only for Gaussian processes. Our approach is to take his algorithm for discrete
characters and adapt it to continuous characters.

The (discrete character) pruning algorithm is an application of dynamic
programming. For each node i, and each state x, we compute the probability of
observing the states for all tips which are descendants of node i, conditional on
node i having ancestral state x. This probability is called the partial likelihood
at node i given state x. Our algorithm follows the same scheme, with one
major difference. Since traits are continuous, we cannot store all possible partial
likelihoods. Instead, we store likelihoods for a finite set of values and plug these
values into a numerical integration routine.

Let i be the index of a node in the tree not equal to the root, let node j be
its parent node. We define the partial likelihood, Fi(xj) to be the likelihood for
the observed trait values at the tips which are descendants of node i, conditional
on the parent node j having trait value xj . If node i is a tip with observed trait
value xi we have

Fi(xj) = f(xi|xj , θi) (14)

recalling that f(xi|xj , θi) is the density for the value of the trait at node i
conditional on the value of the trait for its parent. More generally, we may only
observe some value zi for which we have the conditional probability π(zi|xi)
conditional on the trait value xi. In this case, the partial likelihood is given by

Fi(xj) =

∫
f(x̃i|xj , θi)π(zi|x̃i) dx̃i. (15)
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Suppose node i is not the root and that it has two children u, v. Since
trait evolution is conditionally independent on disjoint subtrees, we obtain the
recursive formula

Fi(xj) =

∫
f(x̃i|xj , θi)Fu(x̃i)Fv(x̃i) dx̃i. (16)

Finally, suppose that node i is the root and has two children u, v. We evaluate
the complete tree likelihood using the density of the trait value at the root,

L(T ) =

∫
f(x|θr)Fu(x)Fv(x) dx. (17)

The bounds of integration in (15)—(17) will vary according to the model.
We use numerical integration techniques to approximate (15)—(17) and dy-

namic programming to avoid an exponential explosion in the computation time.
Let N denote the number of function evaluations for each node. In practice,
this might vary over the tree, but for simplicity we assume that it is constant.
For each node i, we select N + 1 trait values

Xi[0] < Xi[1] < · · · < Xi[N ]. (18)

How we do this will depend on the trait model and the numerical integration
technique. If, for example, the trait values vary between a and b and we are
applying Simpson’s method with N intervals we would use Xi[k] = a + b−a

N k
for k = 0, 1, 2, . . . , N .

We traverse the tree starting at the tips and working towards the root. For
each non-root node i and k = 0, 1, . . . , N we compute and store an approxima-
tion Fi[k] of Fi(Xj [k]), where node j is the parent of node i. Note that this is an
approximation of Fi(Xj [k]) rather than of Fi(Xi[k]) since Fi(x) is the partial
likelihood conditional on the trait value for the parent of node i. The value
approximation Fv[i] is computed by applying the numerical integration method
to the appropriate integral (15)—(17), where we replace function evaluations
with approximations previously computed. See below for a worked example of
this general approach.

The numerical integration methods we use run in time linear in the number
of points being evaluated. Hence if n is the number of tips in the tree, the algo-
rithm will run in time O(nN2). For the integration techniques described above,
the convergence rate (in N) for the likelihood on the entire tree had the same
order as the convergence rate for the individual one-dimensional integrations
(see below for a formal proof of a specific model). We have therefore avoided
the computational blow-out typically associated with such high-dimensional in-
tegrations, and achieve this without sacrificing accuracy.

Posterior densities for ancestral states

The algorithms we have described compute the joint density of the states at the
tips, given the tree, the branch lengths, and other parameters. As with discrete
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traits, the algorithms can be modified to infer ancestral states for internal nodes
in the tree. Here we show how to carry out reconstruction of the marginal pos-
terior density of a state at a particular node. The differences between marginal
and joint reconstructions are reviewed in (Yang, 2006, pg 121).

First consider marginal reconstruction of ancestral states at the root. Let u
and v be the children of the root. The product Fu(x)Fv(x) equals the probabil-
ity of the observed character conditional on the tree, branch lengths, parameters
and a state of x at the root. The marginal probability of x, ignoring the data,
is given by the root density f(x|θr). Integrating the product of Fu(x)Fv(x) and
f(x|θr) gives the likelihood L(T ), as in (17). Plugging these into Bayes’ rule,
we obtain the posterior density of the state at the root:

f(xr|z1, . . . , zn) =
Fu(xr)Fv(xr)f(xr|θr)

L(T )
. (19)

With general time reversible models used in phylogenetics, the posterior distri-
butions at other nodes can be found by changing the root of the tree. Unfortu-
nately the same trick does not work for many quantitative trait models, includ-
ing the threshold model we study here. Furthermore, recomputing likelihoods
for each possible root entails a large amount of unneccessary computation.

Instead we derive a second recursion, this one starting at the root and work-
ing towards the tips. A similar trick is used to compute derivatives of the
likelihood function in Felsenstein and Churchill (1996). For a node i and state
x we let Gi(x) denote the likelihood for the trait values at tips which are not
descendants of node i, conditional on node i having trait value x. If node i is
the root r, then Gr(x) is 1 for all x.

Let node i be any node apart from the root, let node j be its parent and let
node u be the other child of j (that is, the sibling of node i). We let x̃ denote
the trait value at node j. Then Gi(x) can be written

Gi(x) =

∫
f(x̃|x, θi)Gj(x̃)Fu(x̃) dx̃. (20)

This integral can be evaluated using the same numerical integrators used when
computing likelihoods. Note that f(x̃|x, θi) is the conditional density of the
parent state given the child state, which is the reverse of the transition densities
used to formulate the model. It should be noted that while Brownian motion
has reversible transition probabilities, the OU process does not. How Gi(x)
is computed will depend on the model and its properties; see below for an
implementation of this calculation in the threshold model.

Once Gi(x) has been computed for all nodes, the actual (marginal) posterior
densities are computed from Bayes’ rule. Letting u, v be the children of node i,

f(xi|z1, . . . , zn) =
Gi(xi)Fu(xi)Fv(xi)f(xi)

L(T )
. (21)
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Case study: threshold models

In this section we show how the general framework can be applied to the thresh-
old model of Wright (1934) and Felsenstein (2005, 2012). Each trait is modelled
by a continuously varying liability which evolves along branches according to
a Brownian motion process. While the underlying liability is continuous, the
observed data is discrete: at each tip we observe only whether the liability is
above or below some threshold.

We will use standard notation for Gaussian densities. Let φ(x|µ, σ2) denote
the density of a Gaussian random variable x with mean µ and variance σ2; let

Φ(y|µ, σ2) =

∫ y

−∞
φ(x|µ, σ2) (22)

denote its cumulative density function, with inverse Φ−1(α|µ, σ2).
Let X1, . . . , X2n−1 denote the (unobserved) liability values at the n tips and

n − 1 internal nodes. As above we assume that the i < j whenever node i is a
child of node j, so that the root has index 2n− 1.

The liability value at the root has a Gaussian density with mean µr and
variance σ2

r :
f(x2n−1|θr) = φ(x2n−1|µr, σ2

r). (23)

Consider any non-root node i and let j be the index of its parent. Let ti denote
the length of the branch connecting nodes i and j. Then Xi has a Gaussian
density with mean xj and variance σ2tv:

f(xi|xj , θi) = φ(xi|xj , σ2ti). (24)

Following Felsenstein (2005), we assume thresholds for the tips are all set at
zero. We observe 1 if the liability is positive, 0 if the liability is negative, and ?
if data is missing. We can include the threshold step into our earlier framework
by defining

π(zi|xi) =

{
1 if zi = 1 and xi > 0, or zi = 0 and xi ≤ 0, or zi =?

0 otherwise.
(25)

The likelihood function for observed discrete values z1, . . . , zn is then given by
integrating over liability values for all nodes on the tree:

L(T |z1, . . . , zn) =

∞∫
−∞

· · ·
∞∫
−∞

φ(x2n−1|µr, σ2
r)
∏
(i,j)

φ(xi|xj , σ2ti)
n∏
i=1

π(zi|xi) dx1 . . . dx2n−1.

(26)
The first step towards computing L(T |z1, . . . , zn) is to bound the domain of

integration so that we can apply Simpson’s method. Ideally, we would like these
bounds to be as tight as possible, for improved efficiency. For the moment we
will just outline a general procedure which can be adapted to a wide range of
evolutionary models.
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The marginal (prior) density of a single liability or trait value at a single
node is the density for that liability value marginalizing over all other values
and data. With the threshold model, the marginal density for the liability at
node i is Gaussian with mean µr (like the root) and variance vi equal to the
sum of the variance at the root and the transition variances on the path from
the root to node i. If Pi is the set of nodes from the root to node i, then

vi = σ2
r + σ2

∑
j∈Pi

tj . (27)

The goal is to constrain the error introduced by truncating the integrals with
infinite domain. Let ε be the desired bound on this truncation error. Recall
that the number of internal nodes in the tree is n− 1. Define

Li = Φ−1
(

ε

2(n− 1)

∣∣∣µr, vi) (28)

and

Ui = Φ−1
(

1− ε

2(n− 1)

∣∣∣µr, vi) (29)

so that the probability Xi lies outside the interval [Li, Ui] is at most ε/(n− 1).
By the inclusion-exclusion principle, the joint probability Xi 6∈ [Li, Ui] for any
internal node i is at most ε. We use this fact to bound the contribution of the
regions outside these bounds.

∞∫
−∞

· · ·
∞∫
−∞

f(x2n−1|µr, σ2
r)
∏
(u,v)

f(xv|xu, θv)
n∏
i=1

π(zi|xi) dx1 . . . dx2n−1

−
b2n−1∫
a2n−1

· · ·
bn+1∫
an+1

∞∫
−∞

· · ·
∞∫
−∞

f(x2n−1|µr, σ2
r)
∏
(u,v)

f(xv|xu, θv)
n∏
i=1

π(zi|xi) dx1 . . . dx2n−1

(30)

≤
∞∫
−∞

· · ·
∞∫
−∞

f(x2n−1|µr, σ2
r)
∏
(u,v)

f(xv|xu, θv) dx1 . . . dx2n−1

−
b2n−1∫
a2n−1

· · ·
bn+1∫
an+1

∞∫
−∞

· · ·
∞∫
−∞

f(x2n−1|µr, σ2
r)
∏
(u,v)

f(xv|xu, θv) dx1 . . . dx2n−1

(31)

≤ P
(
Xn+1 6∈ [Ln+1, Un+1] or Xn+2 6∈ [Ln+2, Un+2] or · · · or X2n−1 6∈ [L2n−1, U2n−1]

)
(32)

< ε. (33)
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We therefore compute values Li, Ui for n+ 1 ≤ i ≤ 2n−1 and use these bounds
when carrying out integration at the internal nodes. We define

Xi[k] = Li +
Ui − Li
N

k (34)

for k = 0, 1, . . . , N for each internal node i.
The next step is to use dynamic programming and numerical integration

to compute the approximate likelihood. Let node i be a tip of the tree, let
node j be its parent and let zi be the binary trait value at this tip. For each
k = 0, 1, . . . , N we use standard error functions to compute

Fi[k] = Fi(Xj [k]) (35)

=


∫∞
0
φ(x̃|Xj [k], σ2ti) dx̃ if zi = 1∫ 0

−∞ φ(x̃|Xj [k], σ2ti) dx̃ if zi = 0

1 if zi =?.

(36)

Here φ(x|µ, σ2) is the density of a Gaussian with mean µ and variance σ2.
Now suppose that node i is an internal node with parent node j and children

u and v. Applying Simpson’s rule to the bounds Li, Ui to (16) we have for each
k = 0, 1, . . . , N :

Fi[k] =
Ui − Li
N

N∑
`=0

w`φ(Xi[`]|Xj [k], σ2ti)Fu[`]Fv[`] (37)

≈ Fi(Xj [k]). (38)

Suppose node i is the root, and u, v are its children. Applying Simpson’s rule
to (17) gives an approximate likelihood of

U2n−1 − Ln−1
N

N∑
`=0

w`φ(Xi[`]|µr, σ2
r)Fu[`]Fv[`]. (39)

Pseudo-code for the algorithm appears in Algorithm 1. Regarding efficiency
and convergence we have:

Theorem 1. Algorithm 1 runs in O(nN2) time and approximates L(T ) with
O(nN−4) error.

Proof
The running time follows from the fact that for each of the O(n) nodes in the
tree we carry out O(N) applications of Simpson’s method.

Simpson’s rule has O(N−4) convergence on functions with bounded fourth
derivatives (Dahlquist and Björck, 2008). The root density and each of the tran-
sition densities are Gaussians, so individually have bounded fourth derivatives.
For each node i, let ni denote the number of tips which are descendents of the
node. Using induction on (16), we see that for all nodes i, the fourth derivative
of Fi(x) is O(ni).
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If we use ε = nN−4 in (28) and (29) then replacing the infinite domain
integrals with integrals on [Li, Ui] introduces at most nN−4 error. Using a
second induction proof on (16) and (37) together with the bound on fourth
derivatives we have that |Fi(Xj [k]) − Fi[k]| is at most O(niN

−4) for all nodes
i, where node j is the parent of node i. In this way we obtain error bound of
O(n2n−1N

−4) = O(nN−4) on the approximation of L(T |z1, . . . , zn, θ). �

We can estimate posterior densities using the recursion (20) followed by
equation (21). The conditional density

f(x̃|x, θi) = φ

(
x̃
∣∣∣µr +

vj
vi

(x− µr) ,
σ2tivj
vi

)
(40)

can be obtained by plugging the transitional density

f(x|x̃, θi) = φ(x|x̃, σ2ti) (41)

and the two marginal densities (27)

f(x̃) = φ(x̃, vj), f(x) = φ(x, vi) (42)

into the identity f(x̃|x, θi) = f(x|x̃, θi) f(x̃)f(x) . We thereby obtain the recursion

Gi(x) =

∫
φ

(
x̃
∣∣∣µr +

vj
vi

(x− µr) ,
σ2tivj
vi

)
Gj(x̃)Fu(x̃) dx̃ (43)

which we estimate using Simpson’s method. Algorithm estimates values of the
posterior densities at each node, evaluated using the same set of grid points as
used in Algorithm 1. An additional round of numerical integration can be used
to obtain posterior means and variances.

Evolutionary precursors of plant extrafloral nectaries

To study the methods in practice, we reanalyse trait data published by Marazzi
et al. (2012), using a fixed phylogeny. Marazzi et al. (2012) introduce and
apply a new discrete state model for morphological traits which, in addition
to states for presence and absence, incorporates an intermediate ‘pre-cursor’
state. Whenever the intermediate state is observed at the tips it is coded as
‘absent’. The motivation behind the model is that the intermediate state rep-
resents evoutionary pre-cursors, changes which are necessary for the evolution
of a new state but which may not be directly observed. These pre-cursors could
explain repeated parallel evolution of a trait in closely related traits (Marazzi
et al., 2012). They compiled a data set recording presence or absence of plant
extrafloral nectaries (EFNs) across a phylogeny of 839 species of Fabales, fitting
their models to these data.

The threshold model also involves evolutionary pre-cursors in terms of changes
in ancestral liabilities. We use these models, and our new algorithms to analyse
the EFN dataset. Our analysis also makes use of the time-calibrated phylogeny
inferred by Simon et al. (2009), although unlike Marazzi et al. (2012) we ignore
phylogenetic uncertainty.
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Experimental protocol

We conduct three separate experiments. For the first experiment, we examine
the rate of convergence of the likelihood algorithm as we increase N . This is
done for the ‘All’ EFN character (Character 1 in Marazzi et al. (2012)) for a
range of estimates for the liability variance at the root, σ2

r . The interest in
σ2
r stems from its use in determining bounds Li, Ui for each node, with the

expectation that as σ2
r increases, the convergence of the integration algorithm

will slow. The mean liability at the root, µr, was determined from the data
using Maximum Likelihood estimation.

We also examined convergence of the algorithm on randomly generated char-
acters. We first evolved liabilities according to the threshold model, using the
parameter settings obtained above. To examine the difference in performance
for non-phylogenetic characters we also simulated binary characters by simulated
coin flipping. Twenty replicates were carried out for each case.

The second experiment extends the model comparisons carried out in Marazzi
et al. (2012) to include the threshold models. For this comparison we fix the
transitional variance σ2 at one, since changing this values corresponds to a
rescaling of the Brownian process, with no change in likelihood. With only
one character, the maximum likelihood estimate of the root variance σ2

r is zero,
irrespective of the data. This leaves a single parameter to infer: the value of
the liability at the root state. We computed a maximum likelihood estimate for
the state at the root, then applied our algorithm with a sufficiently large value
of N to be sure of convergence. The Akaike Information Criterion (AIC) was
determined and compared with those obtained for the model of Marazzi et al.
(2012).

For the third experiment, we determine the marginal posterior densities for
the liabilities at internal nodes, using Algorithm 2. These posterior probabilities
are then mapped onto the phylogeny, using shading to denote the (marginal)
posterior probability that a liability is larger than zero. We therefore obtain a
figure analogous to Supplementary Figure 7 of Marazzi et al. (2012).

Results

Convergence of the algorithm

To examine convergence, we compute the absolute error of each likelihood ap-
proximation; since the actual likelihood is not available we use the approxima-
tion when N = 1000. Plots of error versus N are given in Figure 1, both for
Simpson’s method (left) and for the modified Gaussian kernel method (right).
For larger N , the error in a log-log plot decreases with slope at most −4 (as
indicated), corresponding to N−4 convergence of the method. Log-log plots of
error versus N for the simulated data are given in Figure 2. In each case, the
method converges for by N ≈ 30.

While the level of convergence for both algorithms is correct, the accuracy
of the method based on Simpson’s method is far worse. When a branch length
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Figure 1: Log-log plots of error as a function of N for the dynamic programming
algorithm with Simpson’s method (left) and with the Gaussian kernel method
(right). The likelihoods were computed under the threshold model on EFN
trait data for an 839 taxon tree. Dotted lines have slope -4 (corresponding to
convergence rate of N−4. Note the difference in scale for the two methods.).
Logarithms computed to base 10. Letting h be the height of the tree, the circles
in both plots represent errors when σ2

r = h, the asterisks represent errors when
σ2
r = 0.1h, and the triangles represent errors when σ2

r = 10h

is short, the transition density becomes highly peaked, as does the function
being integrated. Such functions are difficult to approximate with piecewise
quadratics, and Simpson’s method can fail miserably. Indeed, for N < 50, we
would often observe estimated likelihoods equal to 0, or estimates greater than
one! (These were omitted from the plots). While we can always bound estimates
computed by the algorithm, a sounder approach is to improve the integration
technique. This we did using the Gaussian kernel method, and the result was
far improved accuracy for little additional computation. For the remainder of
the experiments with this model we used the Gaussian kernel method when
carrying out numerical integration.

Model comparison

Marazzi et al. (2012) describe AIC comparisons between their pre-cursor model
and a conventional binary trait model. We extend this comparison to include
the threshold model. This is a one parameter model, the parameter being the
value of the liability at the root. We used the MATLAB command fminsearch

with multiple starting points to compute the maximum likelihood estimate for
this value. The resulting log-likelihood was logL = −240.6, giving an AIC
of 483.2. This compares to an AIC of 507.4 for the (two parameter) binary
character model and an AIC of 495.4 for the (one parameter) precursor model
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Figure 2: Plots of log-likelihood values as a function of log(N) for the two
types of data simulated from the fixed EFN tree, computed using our algorithm
together with the Gaussian kernel method. Logarithms computed to base 10.

of Marazzi et al. (2012).
We analyzed the five other EFN traits in the same way, and present the

computed AIC values in Table 1, together with AIC values for the two parameter
binary state model and one parameter precursor model computed by Marazzi
et al. (2012) (and the 2 parameter precursor model for trait 6). We see that the
threshold model fits better than either the binary or precursor models for all of
the six traits.

It is not clear, a priori, why the threshold model would appear to fit some
data better than the precursor model since they appear to capture similar evo-
lutionary phenomena. It would be useful to explore this observation more thor-
oughly, given the new computational tools, perhaps incorporating phylogenetic
error in a manner similar to Marazzi et al. (2012).

Inferring ancestral liabilities

Figure 3 gives a representation of how the (marginal) posterior liabilities change
over the tree. Branches are divided into three classes according to the posterior
probability that the liability is positive, with lineages with posterior probability
> 0.7 colored red, lineages with posterior probability < 0.3 colored white, and
remaining lineages colored pink.

This diagram can be compared to Supplementary Figure 7, of Marazzi et al.
(2012). The representations are, on the whole, directly comparable. An positive
liability corresponds, roughly, to an ancestral precursor state. Both analyses
suggest multiple origins of a precursor state, for example for a large clade of
Mimosoidae. Interestingly, there are several clades where the analysis of Marazzi
et al. (2012) suggests widespread ancestral distribution of the precursor state
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Trait Model k logL AIC
1 (All) Binary 2 -251.7 507.4

Precursor 1 -246.7 495.4
Threshold 1 -240.6 483.2

2 (Leaves) Binary 2 -240.3 484.6
Precursor 1 -234.5 470.9
Threshold 1 -230.6 463.1

3 (Inflorescence) Binary 2 -108.3 220.5
Precursor 1 -110.9 223.9
Threshold 1 -108.3 218.5

4 (Trichomes) Binary 2 -86.7 177.3
Precursor 1 -86.9 175.9
Threshold 1 -85.8 173.5

5 (Substitutive) Binary 2 -163.0 330.1
Precursor 1 -161.6 325.3
Threshold 1 -161.3 324.6

6 (True) Binary 2 -132.3.1 268.7
Precursor 1 -131.1 264.3
Precursor 2 -126.7 257.3
Threshold 1 -125.3 252.6

Table 1: Table of log-likelihood and AIC values for the binary character, pre-
cursor, and threshold models on six EFN traits. Column k indicates numbers
of parameters for each model. Data for the binary and precursor models copied
from Table 1 in Marazzi et al. (2012). All likelihoods and AIC values rounded
to 1 d.p. Boldface indicates the best fitting model for each trait.

whereas our analysis indicates a negative liability at the same nodes.
Once again, our analysis is only preliminary, our goal here simply being to

demonstrate what calculations can now be carried out.

Discussion

We have introduced a new framework for the computation of likelihoods from
continuous characters, and illustrated the framework using an efficient algo-
rithm for evaluating (approximate) likelihoods under Wright and Felsenstein’s
threshold model.

This framework opens up possibilities in several directions. The numerical
integration, or numerical quadrature, literature is vast. In this article, we have
focused in on a popular and simple numerical integration method, and our al-
gorithm should be seen as a proof of principle rather than a definitive threshold
likelihood method. There is no question that the numerical efficiency of Algo-
rithm 1 could be improved significantly through the use of more sophisticated
techniques: better basis functions or adaptive quadrature methods for a start.

18

 at U
niversity of O

tago on A
pril 12, 2016

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/


Caesalpinioideae*

Other Fabales

Papilionoideae

Mimosoideae

Figure 3: Marginal posterior probabilities for the liabilities, for EFN trait 1 of
Marazzi et al. (2012) on the phylogeny inferred by Simon et al. (2009). Lineages
with posterior probability > 0.7 colored red, lineages with posterior probability
< 0.3 colored white, and remaining lineages colored pink.
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The connection with Felsenstein’s (discrete character) pruning algorithm also
opens up opportunities for efficiency gains. Techniques such as storing partial
likelihoods, or approximating local neighborhoods, are fundamental to efficient
phylogenetic computations on sequence data (Felsenstein, 1981b; Larget and
Simon, 1998; Pond and Muse, 2004; Stamatakis, 2006; Swofford, 2003). These
tricks could all be now applied to the calculation of likelihoods from continuous
traits.

Finally, we stress that the algorithm does not depend on special characteris-
tics of the continuous trait model, beyond conditional independence of separate
lineages. Felsenstein’s pruning algorithm for continuous characters is limited to
Gaussian processes and breaks down if, for example, the transition probabilities
are governed by Levy processes (Landis et al., 2013). In contrast, our approach
works whenever we can numerically evaluation transition densities, an indeed
only a few minor changes would transform our Algorithm 1 to one implementing
on a far more complex evolutionary process.
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G. Dahlquist and Å. Björck. Chapter 5: Numerical integration. Numerical
Methods in Scientific Computing, 1, 2008.

P. J. Davis and P. Rabinowitz. Methods of numerical integration. Courier
Corporation, 2007.

J. Felsenstein. Statistical inference and the estimation of phylogenies. 1968.

J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating
evolutionary trees from data on discrete characters. Systematic zoology, pages
240–249, 1973.

20

 at U
niversity of O

tago on A
pril 12, 2016

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/


J. Felsenstein. Evolutionary Trees From Gene Frequencies and Quantita-
tive Characters: Finding Maximum Likelihood Estimates. Evolution, 35
(6):1229–1242, Nov. 1981a. ISSN 0014-3820. doi: 10.2307/2408134. URL
http://www.jstor.org/stable/2408134.

J. Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood
approach. Journal of molecular evolution, 17(6):368–376, 1981b.

J. Felsenstein. Phylogenies and quantitative characters. Annual Review of Ecol-
ogy and Systematics, pages 445–471, 1988.

J. Felsenstein. Quantitative characters, phylogenies, and morphometrics. Mor-
phology, shape and phylogeny, pages 27–44, 2002.

J. Felsenstein. Using the quantitative genetic threshold model for inferences
between and within species. Philosophical Transactions of the Royal Society
B: Biological Sciences, 360(1459):1427–1434, 2005.

J. Felsenstein. A comparative method for both discrete and continuous char-
acters using the threshold model. The American Naturalist, 179(2):145–156,
2012.

J. Felsenstein and G. A. Churchill. A hidden markov model approach to vari-
ation among sites in rate of evolution. Molecular Biology and Evolution, 13
(1):93–104, 1996.

R. G. FitzJohn. Diversitree: comparative phylogenetic analyses of diversification
in r. Methods in Ecology and Evolution, 3(6):1084–1092, 2012.

R. P. Freckleton. Fast likelihood calculations for comparative analyses. Methods
in Ecology and Evolution, 3(5):940–947, 2012.

T. F. Hansen. Stabilizing selection and the comparative analysis of adaptation.
Evolution, pages 1341–1351, 1997.

L. J. Harmon, J. B. Losos, T. Jonathan Davies, R. G. Gillespie, J. L. Gittle-
man, W. Bryan Jennings, K. H. Kozak, M. A. McPeek, F. Moreno-Roark,
T. J. Near, et al. Early bursts of body size and shape evolution are rare in
comparative data. Evolution, 64(8):2385–2396, 2010.
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Algorithm 1: Compute probability of a threshold character.

Input:
N : Number of intervals in numerical integration.
t1, . . . , t2n−2: branch lengths in tree.
µr, σ

2
r : mean and variance of root density

σ2: variance of transition densities (per unit branch length)
z1, . . . , zn observed character (zi ∈ {+1, 0, ?})

Output:
Probability L of observed character under the threshold model.

Construct the vector x = [0, 1, 2, . . . , N ]/N .
Construct the vector w = [1, 4, 2, 4, 2, . . . , 4, 2, 1] as in (10)
Compute the path length pi from the root to each node i.
Initialize Fi[k]← 1 for all nodes i and 0 ≤ k ≤ N .
For all i = n+ 1, n+ 2, . . . , 2n−1

Li ← Φ−1( nN
−4

2(n−1) |µr, σ
2
r + σ2pi)

Ui ← Φ−1(1− nN−4

2(n−1) |µr, σ
2
r + σ2pi)

Xi ← (Ui − Li)x + Li
For all tip nodes i = 1, 2, . . . , n

Let j be the index of the parent of node i
For k = 0, . . . , N

If zi = 1
Fi[k] = 1− Φ(0;Xj [k], σ2ti)

else if zi = 0
Fi[k] = Φ(0;Xj [k], σ2ti)

For all internal nodes i = n+1, ..., 2n−2, excluding the root
Let j be the index of the parent of node i
Let u, v be the indices of the children of node i
For k = 0, 1, . . . , N

Fi[k]← Ui − Li
N

N∑
`=0

w`φ(Xi[`];Xj [k], σ2ti)Fu[`]Fv[`]

Let u, v be indices of the the children of the root.

L← U2n−1 − Ln−1
N

N∑
`=0

w`φ(Xi[`];µr, σ
2
r)Fu[`]Fv[`]

Algorithm 1: Pseudo-code of the likelihood approximation algorithm for a single
character, under the threshold model. The nodes are numbered in increasing
order from tips to the root.
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Algorithm 2: Compute posterior densities

Input:
N , t1, . . . 2n− 2, µr, σ

2
r , and σ

2 as in Algorithm 1
Vector p, likelihood L and arrays Fi computed in Algorithm 1.

Output:
Arrays Hi for each internal node i.

Construct the vectors x, w, {Li : i ∈ {n+ 1, . . . , 2n− 2}},
{Ui : i ∈ {n+ 1, . . . , 2n− 2}}, and path lengths pi as in Algorithm 1.

G2n−1[k]← 1 for all k.
For all i = 2n−2, 2n− 3, . . . , n+ 1

Let j be the index of the parent of node i.
Let v be the index of the sibling of node i.
For k = 0, 1, . . . , N

µ← µr +
σ2
r+σ

2pj
σ2
r+σ

2pi
(Xi[k]− µr)

V ← σ2ti(σ2
r+σ

2pj)
σ2
r+σ

2pi

Gi[k]← Uj − Lj
N

N∑
`=0

w`φ(Xj [`];µ, V )Gj [`]Fv[`]

For all i = n+ 1, . . . , 2n− 1
Let u, v be the children of node i.
For all k = 0, 1, . . . , N

Hi[k]← 1
LGi[k]Fu[k]Fv[k]φ(Xi[k]|µr, σ2

r + σ2pi)

Algorithm 2: Pseudo-code for the algorithm to efficiently compute ancestral
posterior densities under the threshold model. At the termination of the algo-
rithm, Hi[k] is an estimate of the posterior density at internal node i, evaluated
at x = Xi[k].
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