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Abstract

The aim of this paper is to provide researchers dealing with inverse heat
transfer problems a review of the Bayesian approach to inverse problems, the
related modelling issues, and the methods that are used to carry out inference.
In Bayesian inversion, the aim is not only to obtain a single point estimate
for the unknown, but rather to characterize uncertainties in estimates, or pre-
dictions. Before any measurements are available, we have some uncertainty
in the unknown. After carrying out measurements, the uncertainty has been
reduced, and the task is to quantify this uncertainty, and in addition to give
plausible suggestions for answers to questions of interest. The focus of this
review is on the modelling-related topics in inverse problems in general, and
the methods that are used to compute answers to questions. In particular,
we build a scene of how to handle and model the unavoidable uncertainties
that arise with real physical measurements. In addition to giving a brief re-
view of existing Bayesian treatments of inverse heat transfer problems, we
also describe approaches that might be successful with inverse heat transfer
problems.

1 Introduction

1.1 Inverse problems

The classical definition of a well-posed problem, due to Hadamard, is that the solu-
tion exists, is unique and depends continuously on data [1]. If any of these conditions
is not fulfilled, the problem is called #ll-posed.
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With well-posed problems, the existence problem is circumvented by looking for
generalized solutions such as least squares solutions, while the uniqueness problem
is approached by considering minimum-norm solutions [2]. In practice, the (lack
of) continuity means that with an ill-posed problem, small errors in the data or the
associated models and mappings may cause very large errors in the solution. Since
measurements are always noisy, and observation models are always only models, ill-
posed problems could be characterized as being problems that cannot be solved using
straightforward least squares or minimum norm approaches. Well-posed problems
by definition do not possess these problems and are stable in this sense. In this
paper, we adopt the common practice of using interchangeably the notions of an
ill-posed problem and an inverse problem.

The counterparts of inverse problems are the associated forward problems. Loosely
speaking, if we knew the answer to an inverse problem, the solution of the forward
problem could be interpreted as computing (predicting) the associated noiseless
measurements. For example, the solution of the one-dimensional heat equation with
known initial and boundary conditions would be tagged as a forward problem since
it is stable. On the other hand, solving for the initial conditions when the boundary
conditions are known and the temperature distribution is given at a time 7" > 0, is
a highly unstable problem and is thus an ill-posed inverse problem [3, 4]. The more
stable the forward problem is, the less stable is the corresponding inverse problem.

1.2 Deterministic framework for inverse problems

In the deterministic framework for inverse problems, the solution is interpreted as
an unknown parameter, vector or a function. If the unknown takes, for example,
the form of a projection®, the projection coordinates are assumed to be completely
unknown in the sense that any projection is equally plausible and acceptable, save
for possible constraints such as positivity of the solution.

Naturally, all parameter estimation problems do not exhibit ill-posed nature
[5]. Furthermore, it is sometimes difficult to make the distinction between a stable
parameter estimation problem and an ill-posed problem when dealing with prac-
tical computational problems. For example, in the strict mathematical sense, an
invertible finite dimensional linear problem is never discontinuous. However, these
problems may well exhibit all practical problems associated with an ill-posed prob-
lem. On the other hand, using the projection approach with a low-dimensional
subspace, an extremely ill-posed inverse problem is seemingly turned into a stable
one. Referring to the above problem related to finding the initial condition, finding
the best constant initial temperature to match the data at time 7' is a stable one

'With unknown functions, one usually approximates the function = as a projection Pz onto a
subspace spanned by a set of functions, say ¢, so that we write Px = ), xx @k, where zj, are the
projection coordinates. The task is then to solve for these projection coordinates and thus for Px.
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and can be solved as a least squares problem. But this is not the same problem as
finding the spatially inhomogeneous initial condition. Mathematically, one has then
solved the (orthogonal) projection of the initial condition to the (one-dimensional)
subspace spanned by the constant function.

The history of parameter estimation problems dates back at least to Gauss in
the framework of general parameter estimation |6], and Laplace who developed in-
verse (or Bayesian) probability methods |7]. Historically, most of the parameter
estimation problems studied have been stable ones. Problems with ill-posed nature
were sometimes considered as unsolvable and left as such. Until the 1960’s, several
disciplines in physics, engineering and other fields developed proprietary methods
to deal with important practical problems without a unifying general mathematical
and statistical theory.

The general theory of ill-posed problems has been developed since the 60’s, most
notably by Tikhonov and others [8, 9, 10, 11] and produced a number of different
approaches, such as truncated singular value decomposition, Tikhonov regulariza-
tion, stopped iterative methods, to accompany the obvious projection approaches,
see for example |12, 13, 14, 3, 15]. These methods are referred to as regularization
methods.

Research in regularization methods has traditionally focused on two types of
issues: the uniqueness and stability of the analytical errorless problems, and the
convergence of the solution to the minimum norm solution when the norm of the
noise tends to zero. The structure of the noise is almost always neglected and typi-
cally the norm of the errors is expected to be known. In most real world problems,
the measurement errors do not vanish and, furthermore, their level (norm) is not
known accurately. Also, model errors have very seldom been considered [16] for
reasons that become apparent later in this paper. With real world problems, the
(effects of ) modelling errors tend to dominate the measurement errors, for examples
related to electrical impedance tomography, see |17, 18, 19|.

Regularization methods are not based on explicit models for the unknowns, ex-
cept in the case of some projection methods [20, 21| in which the subspaces are
constructed from explicit models for the unknowns. However, these methods can be
argued to employ implicit models, which is most manifest in the case of truncated
singular value decomposition [17]. Also, the deterministic methods usually seek only
to find a single solution for the problem, possibly with some error estimates based,
for example, on sensitivity analysis. These error estimates do not, however, gen-
erally bear any solid (statistical) interpretation. Most importantly, regularization
methods are implicitly based on a number of assumptions which may not be valid
[17]. For example, using 2-norms (cf. least squares) usually refers to an additive
noise model with independent identically distributed Gaussian errors.
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1.3 Bayesian framework for inverse problems

While the statistical framework has been systematically employed when solving
stable parameter estimation problems throughout the 20th century [5], it seems
to have been a notable framework with inverse problems only in geophysics and
astronomy before the 90’s [22, 23, 24, 25].

In contrast to the deterministic approach and the related regularization methods,
the Bayesian approach for solving inverse problems is not a method. Rather, it can
be described as a framework for the modelling of the entire problem in terms of
probability in order to allow for inference, that is, the posing of questions in terms
of statistics, and giving answers to these questions?.

While in the deterministic paradigm one attempts to obtain a single solution
for the interesting unknown, in the Bayesian framework the essence is to explore
the posterior distribution to determine the uncertainty in the unknowns given the
measurements and (prior) uncertainty inherent in all models. The exploration calls
for computing different point estimates and spread estimates, as well as marginal
distributions of individual unknowns or sets of unknowns. Also, probabilities of
events are eventually often of interest and can be computed within this framework.
In most cases, this calls for sampling of the posterior distribution [26].

The most important sampling algorithms are called Markov chain Monte Carlo
methods (MCMC). If we had a large number of samples from a probability distri-
bution, all statistical question that are related to the associated random variables
could be answered with sample averages. Unfortunately, the implementation of sam-
pling methods for inverse problems can turn out to be a tricky business due to the
typically high number of unknowns and the narrowness of the distributions.

Bayesian inversion is a hierarchical process which first calls for the modelling
of the measurement process and the unknown, with special reference to the actual
uncertainties of the models. These models together with the measurements fix the
uncertainty of the unknowns given the measurements. Formally, this uncertainty is
given in the form of the posterior distribution which is then subject to exploration,
for example, using MCMC sampling. It is of central importance that the modelling
of the measurement process and the modelling of the unknowns are carried out
completely separately. This is not usually the case with regularization methods in
which a change in measurement setting may change the implicit model for unknowns.

Regularization methods and Bayesian inversion results are difficult to compare to

2The terms Bayesian inverse problems and statistical inverse problems have been used inter-
changeably in recent times. The aspect of regularization theory which takes into account the
measurement error distribution is also referred to as statistical inversion. The related theory is,
however, based on the same interpretation and problem formulation of inverse problems as the
deterministic regularization theory. In particular, no explicit modelling of the unknowns is usually
carried out.
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each other since the Bayesian modelling is almost invariably more extensive and thus
contains information that is not used with regularization methods. Furthermore,
while regularization methods focus on providing a single (numerically) stable answer
to the problem, the aim in Bayesian inversion is to provide point estimates together
with systematic assessment of reliability and posterior uncertainty. The Bayesian
approach invariably calls for significantly more elaborate modelling of the overall
problem and prior uncertainties than the deterministic approaches. Furthermore, in
the deterministic (regularization) framework it is completely impossible to answer
questions such as “What is the probability of thermal conductivity at the center of
the slab being smaller than kuya, ?” or, ultimately, “What is the probability that the
temperature gradients are so large that a composite will develop cracks?”

In general, the Bayesian framework allows for combining data from different
modalities in a single formulation in a straightforward, albeit sometimes tedious,
manner. For example, let the current problem be to estimate the spatially inhomo-
geneous thermal conductivity based on a measurement setting. Let separate data
be earlier acquired which was used to estimate the specific heat. The conventional
approach would be to estimate a point estimate for the specific heat first, and use
this estimate in the model used for the estimation of the thermal conductivity. In
the Bayesian approach, all these data and the related uncertainties can be embed-
ded in a single formulation. The resulting estimates for the thermal conductivity
can be significantly better than the traditional approach which usually proposes
unrealistically small posterior uncertainty.

Naturally, the posterior uncertainty can be, and often is, still very large. But
this (large uncertainty) is an important piece of information in itself and indicates
that the current data does not allow us to draw affirmative conclusions. Again,
regularization methods do not provide us with statistically meaningful ways to assess
the reliability of the solutions.

1.4 Modelling and methods

The notion of a “method” is used rather loosely in the literature in general. In this
paper we require that a (numerical) “method” is something that should not affect
the final outcome. It is not uncommon in the scientific literature to see studies
in which two minimization methods are compared for the minimization of a fixed
functional so that the different characteristics of the minimizers are explained to
be related to the minimization algorithm. Of course, if the minimizers differ from
each other, at least one of the two minimization algorithms has not converged to the
(global) minimum. The functional here represents “the model” and the minimization
algorithms are “methods”.

We find it of central importance to distinguish models from methods. Fortu-
nately, in the Bayesian framework this is usually straightforward. For example, the
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forward problems are often induced by partial differential equations and the related
initial-boundary value problems. There are different approaches to approximate the
mapping from the unknowns to the measurements, such as finite difference and finite
element methods. When these are constructed properly, the predictions should be
essentially the same. On the contrary, how the boundary conditions are modelled,
can have a profound effect on the predictions.

To take the notion further, when implementing a Metropolis-Hastings sampling
algorithm, one has a choice over the proposal distributions. The choice of proposal
distribution should bear no effect to the estimates and answers to specified questions.
The choice may, however, have a significant effect on the convergence rate of the
algorithm.

If any of the models is infeasible, the posterior model may also be such. If the
posterior model is infeasible, it is of no avail to embark on the inference and vice
versa, if the models are feasible but the samplers or other computational machinery
is inefficient, no inference can be made. Although we might refer, for example, to a
likelihood distribution in the sequel, all distributions absolutely have to be understood
as models only. Also, we use the notions of density and probability interchangeably,
although the former is the correct one.

1.5 Inverse problems in the Bayesian context

What makes inverse problems a special class of problems in Bayesian inference?
There are a few related issues.

In many cases, the dimension of a feasible representation of the unknowns is sig-
nificantly larger than the number of measurements. Thus, for example, a maximum
likelihood estimate is impossible to compute. Even in cases in which the number
of unknowns would be significantly smaller than the number of measurements, the
structure of the forward problem is such that maximum likelihood estimates would
still be unstable. Any approach using a stabilized or regularized likelihood method
inherits the problems that are related to deterministic regularization methods.

In addition to the instability, the variances of the observation (likelihood) model
are almost invariably much smaller than the variances of the models for the un-
knowns (priors). The posterior density is often extremely narrow and, in addition,
may be a nonlinear manifold. Constructing samplers for such distributions is signif-
icantly more tricky than for more regular distributions.

When dealing with physical data, it is clear that the computational forward
models, which form the central part of the likelihood models, are approximate at
best. This fact together with the typical narrowness of the likelihood density can
lead to infeasible posterior models, that is, the actual unknown may have essentially
zero probability with respect to the posterior distribution. With inverse problems,
this can easily happen when model uncertainties are underestimated, or their struc-
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ture is poorly modelled. Thus, with inverse problems, the realistic analysis of the
actual measurement system is a centrally important task. This task is, however,
often neglected. Very often, the standard ad hoc choice of an independent identi-
cally distributed Gaussian noise model is adopted, even though it may bear little
resemblance to the actual noise process.

When taken in the strict sense, an extensive Bayesian analysis of an inverse
problem has only seldom been carried out. There is, however, an extensive literature
on statistical inverse problems from the Bayesian perspective, with the state of the
art being distributed over a number of fields.

1.6 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we discuss the classifica-
tion of inverse heat conduction problems from the viewpoint of Bayesian inference.
In Section 3, we discuss some simple examples of inverse heat transfer problems
with the intent to motivate the readers to venture beyond least squares estimation
and standard regularization approaches. In Section 4, we give a brief review of the
philosophy and basic notions of Bayesian probability, model building, and posterior
inference. In Section 5, we discuss MCMC methods and inference in general. In
Sections 6 and 7, we treat the likelihood and prior models, respectively, that are
most common with inverse problems. In Section 8, we discuss typical sources and
types of uncertainties and approximations and how to treat these. In Section 9, we
discuss nonstationary inverse problems. These are problems in which the unknowns
are time-varying and that can be modelled with stochastic evolution models. In
Section 10, we discuss computational issues such as model reduction, inverse crimes
and computational models for the forward problems solvers. In Section 11, we dis-
cuss briefly miscellaneous topics such as model selection and problems with variable
dimensions. In Section 12, we give a brief review of existing statistical inversion
analyses of inverse heat transfer problems. In Section 13, we draw conclusions.

2 Classification of inverse heat transfer problems

Inverse heat transfer problems are considered in many excellent texts [27, 28, 29,
30, 4]. We follow the classification used by Ozisik and Orlande [4] who consider
problems in inverse heat conduction, convection, and radiation, according to which
mode is dominant in heat transfer. The dynamics of heat within a region of space €2
is described in terms of the temperature 7" (¢, 7) for 77 € Q and ¢ in some time interval

S. We will consider cases in which € is a fixed region in 1-, 2-, or 3-dimensions?®,

3We note, however, that it is straightforward to extend the formalism we give to treat regions
that vary with time.
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and the time interval S = {t : 0 <t < tp} represents times after some initial state
at t = 0 up to time tp that we may take to be infinite.

We first discuss the forward and inverse problems in inverse heat conduction
in some detail, and then briefly discuss inverse heat convection and radiation as
extensions.

2.1 Forward problem for heat conduction

For problems in heat conduction, heat flow within the medium is characterized by
the thermal conductivity  (7') and the heat capacity c () = pc, where p is the density
of the medium and ¢, is its specific heat.

In a fairly general formulation of heat conduction, the temperature T (¢,7) is
governed by the initial boundary value problem (IBVP)

T
caa—t—v-(mVT):q(t,F) e t>0, (1a)
T
kg—n:qN(t,’F) 7€ 0y, t >0, (1b)
T:TD(t,’F‘) FE@QD,t>O, (1C)
T—Ty(7) Fei=0. (1d)

These equations model the situation where a medium occupying region 2 is initially
at temperature T (7), and is subsequently subject to heat sources in the interior with
heat rate density ¢ (¢, 7), sources of heat flux gx(t,7) on part of the surface denoted
Oy, while the remainder of the boundary denoted 0{)p is held at temperature
Tp (t, 7). The Neumann condition (1b) is often written as a convective condition, as
discussed in Section 2.4.

We write the heat conduction operator as

0
L=c g V- (kV)

so that the spatial part is formally self-adjoint and positive definite, since x (7) >
0 [31]. When ~ does not depend on 7', or can be assumed to be a constant over the
temperature range, the system in (1) is a linear boundary value problem and its
solution is essentially a problem in linear analytical or numerical methods. When
k does depend on T, the system in (1) is nonlinear, requiring implicit solution
methods.

When the thermophysical coefficients ¢ and x are known, as are all source terms
q, qx, Tp, and Tp, (and the geometry), the system in (1) defines a classical initial-
boundary value problem that uniquely determines the temperature T (¢,7) at all
points 7 in €2, and for all times ¢ > 0.
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In cases where the finite speed of heat propagation is important, the hyperbolic
heat conduction equation

((9T 0*T q (t,7)

)—V-(kVT):q(t,F)jLTr Py (2)

ot + s o2
is used in place of (1a) [32, 33|. Here 7, is a relaxation time (or phase lag in heat
flux), giving a thermal wave speed of \/k/cT;.

Green’s function solution. When the coefficients ¢ and k in system (1) do not
depend on the temperature 7', a formal solution may be written in terms of the
Green’s function, allowing a clear understanding of the nature of the forward and
inverse problems. For a general inhomogeneous medium, the Green’s function is not
available in closed form, and must be computed numerically. We note, however, in a
problem with the same structure as a stationary inverse heat conduction problem, an
efficient computational scheme for Bayesian inversion has been developed that actu-
ally maintains numerically evaluated Green’s functions [34|, while an eigenfunction
expansion was employed in [35].

The Green’s function for the boundary-value problem in system (1) is the unique
solution to the auxiliary equation Lg(t, 7|, 5) = (1" — 5)5 (t — 1), for (t,7) and
(E, 7) € Q x S, that satisfies the homogeneous* form of the boundary conditions,
that is, with g = 0, Tp = 0, and Ty = 0, for all ¢. This function gives the
temperature at the field point (¢,7) when there is a unit heat source localized in
space and time at the source point (7, é’ ), with no other sources of heat. It follows
that this function is causal, i.e. Lg(t,7|7,€) = 0 for t < 7 [31]. Solutions to the
system (1) can then be written as

T (t,7) = /stq (7’, E) glt, 7T, E) drdé

(
+ /as) XSqN <T, 5) g <t,F|7', 5’) ds (&) dr

- /8 T (n) s %d (&) dr

" /Q C(6) Ty () g (1,71€, 0) de

for (¢,7) in the region Q2 x S.
Since the Green’s function depends on the thermophysical properties ¢ and
(and the geometry of the medium), but not on the heat sources in (1), we see

4This use of homogeneous refers to the boundary conditions being zero. It is not to be confused
with a homogeneous material which is one that has properties that do not vary with location.
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that the temperature T, and hence the forward map, is a linear function of the
heat sources. However, the Green’s function depends nonlinearly on ¢ and &, and
hence the temperature 7' is, in general, a nonlinear function of those thermophysical
properties.

When k and c are constant the causal free-space fundamental solution in n space
dimensions that satisfies Lg(t, 7T, 5) = §(F— €)d (t — 7) with homogeneous initial
conditions, has the simple form [31, vol. 2, p. 60|

= 1 Ir — &JI*
g <t’ﬂ7—7 £> B c(dra(t — T))n/2 P {_m} 3

for t > 7, where a = k/c is the thermal diffusivity. We will use this fundamental
solution later in Section 3.

2.2 Inverse problems in heat conduction

Inverse heat conduction problems occur when the temperature 7" is measured at one
or several locations, and the aim is to estimate one, or more, of the arguments in the
forward map. The purpose of some inverse heat conduction problems is to determine
these thermophysical properties, while in others these properties are assumed known.
We will classify the inverse problem according to which quantities are unknown.
These are usually referred to as the primary unknowns in the engineering literature,
or parameters in statistics.

We denote by dj the measured temperature at the location and time (7%, tx)
for k = 1,2,..., M when there are M measurements in all. Typical experimental
setups are when the temperature is measured at M, locations 7,75, ..., 7y, at each
of the M; times t1,to,...,ty, in which case a simple enumeration of measurements
isk=n+M,.(m—1)+1. Thusdy, fork =1,2,..., M = M, M,, is the temperature
measured at location and time (¢,,,7,). Hence we have made the usual assumption
that measurements are made instantaneously a single known point. Practical sensors
are of finite size and have a finite time response, leading to uncertainty in the exact
location of measurements. Methods for dealing with these additional uncertainties
are discussed in Section 8, and in [36, 37|.

For computational purposes, the forward map is the composed operator consist-
ing of the solution of the IBVP (1) and the observation process that can be as simple
as a projection of the temperature field T (¢, 7) — {T (t1,71) , T (t2,72) ..., T (tar, Tar) }
onto the finite set of measurements.

Thermal conductivity. In the inverse problem for thermal conductivity, the func-
tion k& is unknown, while all other quantities appearing as coefficients in IBVP (1)
are known. A typical experimental setup for noninvasive measurement is to apply
known heat fluxes to the entire surface of the medium, i.e. ¢y is prescribed and
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0y = 0f), with known initial temperature, have no internal heat sources so ¢ = 0,
and measure the resulting temperature at several locations on the surface.

In this paper, we mainly consider the case in which k& does not depend on tem-
perature. There are, however, many materials and temperature regimes where the
system (1) holds where k depends appreciably on the dependent variable T', see for
example [38|.

Thermal capacity. In systems where the relaxation time 7, is appreciable, such
as the rapid heating due to laser pulses [39], heat flow is modelled by (2).

Initial temperature distribution. Estimation of the initial condition is typically
made from measurements of the temperature at the surface at some time ¢, >
0, when there are no other heat sources. In the system (1), Tj is the primary
unknown while ¢, ¢gx, and Tp are all fixed at zero. This is sometimes called “thermal
archaeology”, for example in [3], and is an example of an extremely ill-posed problem
with eigenvalues of the forward operator decaying as exp(—k?).

Heat sources. The inverse problem for source strength requires, in general, inter-
preting measurements of temperature in terms of internal heat sources g (¢,7) that
vary in space and time. A typical problem setup is where the medium has a known
initial temperature and the internal heat source is to be determined for time ¢ > 0
using measurements of temperature at locations on the boundary of the medium.

Conductance at interfaces. Determining the thermal conductance at contact in-
terfaces nearly always requires solving an inverse problem as the value of conductance
depends on local properties such as surface roughness and contact pressures [40] and
is seldom known a priori. Contact conductance inverse problems can arise in situa-
tions that have fixed boundaries, time-varying fixed boundaries such as occurs when
parts in a machine make contact and separate [4, Examples 3-7],[41], or with moving
boundaries such as the interface between different phases in medium. In the latter
case the boundary is defined implicitly by the relationship between temperature and
phase, and therefore requires an implicit computational method for the solving the
system in (1).

Truncation boundaries. A further estimation problem arises in situations where
numerical solution of the system in (1) necessitates truncating the computational
domain, thereby creating boundaries with an unknown relationship between tem-
perature and heat flux. We discuss unknown boundary conditions in Section 7.3.

2.3 Forward and inverse problems in heat convection

Heat convection occurs when motion of the medium itself leads to transport of heat.
Then the material derivative is required, and the equation

c(%—{—i—u(?)-VT)—V-(kVT):q(t,F) ret>0 (4)
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holds in place of (1a). Here, the velocity of the medium is denoted w (7). In free
convection problems, the motion is caused partially by thermal effects and so u (7)
in unknown a priori, leading to a system of coupled PDE’s, in which the other
PDE describes the flow and has a driving term that depends on temperature. In
forced convection problems, the flow is externally generated and the velocity field
u () may be known a priori, or can be determined independently of thermal effects.
Then the inverse heat transfer problems have the same basic structure as those for
inverse heat conduction. That is, the inverse source problems lead to linear inverse
problems while inverse problems for thermophysical properties or boundary location
are nonlinear.

2.4 Forward and inverse problems in heat radiation

For opaque materials, heat radiation is a surface phenomenon and may be treated as
a boundary condition, with heat transport within the medium governed by the heat
conduction or convection equations in Sections 2.1 and 2.3. Radiative heat transfer
at a surface is nonlinear. A common linearized surface radiation condition is given
by replacing the flux boundary condition (1b) with the Newton condition

k;g—: BT = Th) 7€ 001> 0. (5)

that also represents a convective boundary condition.
Radiation in transparent materials is a bulk scattering phenomenon, that is
outside the scope of this paper. See [4] for further details.

2.5 Numerical methods

While there are a few idealized problems in inverse heat transfer for which ana-
lytic solution of the forward map is possible (we give an example in Section 3), in
most practical cases, accurate simulation of data requires computer evaluation of a
discretized version of equations (1).

Time-independent problems. Discretization of the space derivatives most com-
monly uses the finite element method (FEM), the finite difference method (FDM) [42],
or the boundary element method (BEM).

The BEM uses a discrete form of the boundary integral equations [43, 44, 45]
that express fields within regions of constant thermal properties in terms of values
at the boundary of the region. Hence BEM is applicable to problems where the
thermophysical properties are piecewise constant in sub-domains, and has been used
extensively in IHT [43, 46]. The BEM discretization results in a system with the
form

<K + %[) T = Hg (6)
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where T is a vector of Dirichlet values, ¢ is the vector of Neumann values, and the
matrices K and H are dense, non-symmetric, and of size NV}, X N, when the internal
and external boundaries are partitioned into NV, boundary elements in total.

In FEM discretization of equations (1), the region  is usually discretized as the
union of triangular elements, each with constant thermophysical properties, with the
temperature interpolated between nodes by piecewise linear functions [47, 48, 36|,
giving the expansion

Tt = S L)), (7)

The FEM discretization of stationary problems results in a linear system to be solved
of the form
KT = f (8)

where T is a vector of nodal values, over the whole mesh, and f is a forcing vector
and K is the stiffness matrix modified for the Dirichlet conditions corresponding
to non-zero heat sources. Notably, the matrix K is symmetric, sparse, and of size
N, X N, when there are N, nodes in the mesh.

Time dependent problems. Time-dependent problems are often solved using semi-
discretization, or the ‘method of lines’, in which FDM, FEM, or BEM is used to
discretize the space part of the IBVP (1), so as to obtain a coupled system of
ordinary differential equations (ODEs) which is then solved using an ODE solver,
typically a high order implicit Runge-Kutta (RK) method or similar method [48].
Evolution equations are given in Section 9.1. The classical Crank-Nicolson method
for time-dependent heat equations is an example, using a suitable choices of FDM
or FEM followed by Heun’s implicit RK method [47, 49]. FEM methods can also be
used for both space and time parts |47, 48]. More efficient numerical methods use
fully adaptive methods that coarsen in both space and time directions, as solutions
become smooth [50]. Fast multipole methods (FMM) implementing convolution
kernels give some of the fastest BEM based methods [51].

For the theory and numerical approaches of finite element methods and methods
for ordinary differential equations, see |52, 48, 53, 49].

3 Motivating examples

In this section, we give two examples that demonstrate some of the problems that
can occur with least squares or regularized least squares approaches. The examples
are chosen to allow simple analytic solutions so that the results are not obfuscated
by numerical issues. We also briefly compare with results that would be given
by Bayesian methods. Our hope is that the fundamental problems with the least
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squares approach in these simple examples will motivate readers to explore Bayesian
methods.

For non-linear inverse problems, least squares estimates suffer from stochastic
bias, which is a systematic offset in estimated values resulting from errors on mea-
sured temperatures, or other measurement uncertainties. Stochastic bias may be
displayed in a simple form as follows: Let = be a (scalar) random variable from any
distribution with mean E (z) = p and variance 0. Then, E(y) = E (2?) = pu? + o2
That is, in the presence of noise on variable x, the mean of the square equals the
square of the mean plus the variance of the noise. In a situation where we have
measured x subject to noise, and the problem is to estimate the random variable
y = 22, simple estimation of y by squaring an estimate for z will lead to a systematic
offset in the estimate of y. The bigger the noise, the bigger the offset. Stochastic
bias is a very real effect that, for example, is one of the mechanisms that allows
profit to be made in volatile markets, whether increasing or decreasing [54]. The
first example demonstrates stochastic bias in least squares estimation.

The ability to calculate data-dependent or posterior variance is a distinct ad-
vantage of a Bayesian approach to inverse problems. In contrast, methods such as
least squares are justified on the basis of the variance of the estimator, defined as
the average variance over all possible measurements. Yet, in many practical inverse
problems the variance of the estimator has little to do with the uncertainty in pa-
rameters estimated from the actual data set. The second example demonstrates the
issue in a very simple setting, where the forward map is the identity function with
uniform measurement errors.

3.1 Estimating heat capacity from impulsive heating

Consider the problem of determining the heat capacity ¢ in a 3-dimensional ho-
mogeneous medium of large extent for which the thermal conductivity  is known,
perhaps from measurements of stationary heat flow. Since heat capacity affects the
time derivative in the heat conduction equation, it is best measured using transient
heating. We consider the idealized problem where an infinite medium is subject to
unit impulsive heating at » = 0 and time ¢ = 0, and the temperature at the point
of heating is subsequently measured. For this problem the forward map is available
analytically since the causal fundamental solution in equation (3) is the Green’s
function for this problem. In particular the noise-free temperature at time ¢ is

cl/2

T(t):m.

(9)

Consider the case in which the measurements d; are made at times t = its, i =
1,2,... M, and are subject to additive noise with zero mean and variance o2. Then,
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the least squares estimate of ¢ is

M 2
. ) Ve
¢ = argmin ;_1 (di — bi37
?. The normal equations are solvable in this case, and give

M , 2
Z‘ dZ 3/2
é = [ i=1 /2 ] - w2

where b = (4rrty) ™/

byl 1/

The term in the square brackets, denoted by w, is a weighted sum of random variables
and hence w is a random variable with mean /c and variance o2/ <b2 M /z3> —

o2/ (b*C(3)) as M — oo. Here ((3) ~ 1.2021 is the Riemann zeta function
evaluated at 3 [55, Chapter 23|. Using the result quoted above, for a large (in-
finite) number of measurements, the least squares estimate of ¢ has expected value
¢ = c+02/(1.2021 x b*). That is, in the presence of measurement error the least
squares estimate is systematically biased for all M. Note that reducing the measure-
ment error results in smaller bias, whereas increasing the number of measurements
by increasing M actually increases the bias.

In this case the bias may be easily removed, by subtracting o2/ (1.2021 x »?).
The result is a better estimator, having the same variance but lower bias, and is
explicitly not the least squares estimator. Unfortunately, the obvious conclusion,
that best fit to data is not the same as best fit to parameters, is not commonly
observed in the inverse problems literature.

In most inverse problems, we are not able to determine the bias analytically,
making the least squares estimate both biased and difficult to fix. The application
of regularization actually compounds this problem. For example, for this example
the Tikhonov regularized estimate may be calculated analytically, and has bias that
is dependent on the unknown value of ¢, leaving an implicit problem to remove bias.

It is instructive to note that the quantity w is an unbiased estimator for \/c, since
the data is a linear function of \/c. Hence the least squares estimate of \/c makes a
good estimate, but its square is not a good estimate of c. This apparently paradoxical
behavior is an example of how the algebra of random variables with uncertainty is
quite different to the algebra of deterministic variables, see |56]. For this reason
it is necessary to track the distribution of possible values that a variable can take,
not just the single ‘best’ estimates. Maintaining and summarizing distributions over
variables is a central component of the Bayesian approach.

Anticipating the framework in Section 4, we briefly describe how a Bayesian
approach could solve this example. The likelihood function combines the forward
map in (9) and the distribution over measurement error, or noise. As is typical in
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inverse problems, the range of the forward map is a small fraction of data space,
and so the noise statistics may be determined from the measurements. In this case,
at large times when T () ~ 0 the data solely consists of measurements of the noise.
Hence sample statistics may be determined and the noise distribution modelled.
For this simple single parameter estimation problem, an ‘objective Bayesian’ [57]
analysis is feasible, by choosing the Jeffreys type |22, 58], or ‘reference’ [59], prior
distribution that is invariant to choice of units for heat capacity, giving m, (¢) o
¢~'/2. This is an ‘improper’ prior distribution and would require modification if
only a few measurements were available, although in such a case the data would be
too poor to allow for reasonable estimation of ¢ with any approach. When the data
is adequate, the posterior mean gives a suitable point estimate for c. In the ideal
case where the noise is independent identically distributed (iid) zero-mean Gaussian,
and measurements are very accurate, there is little to choose between the least
squares estimate and the posterior mean, except in computational cost. In most
other circumstances the posterior mean does a much better job of estimating the
unknown true heat capacity.

3.2 Uncertainty in estimates with uniform noise

Consider the simple case where a scalar quantity p is measured directly, subject to
uniform noise, with mean zero and width 2. Then the i*" measurement is

di=p+e;

where each e; ~ Uniform (—1,1) is uniformly distributed over the interval [—1,1].
Since p — 1 < d; < p+ 1 for all 4, it follows that max{d;} — 1 < g < min {d;} + 1.
In fact, these bounds are exactly what the measurements tell us about p. We note
that the likelihood distribution precisely expresses these bounds, and so they are
automatically included in a Bayesian analysis.

The least squares estimate of p from M measurements is easily seen to be

1 M
/lls - M ;dz

It is instructive to note that this estimate can lie outside the interval [max {d;} — 1, min {d;} + 1],
in which case it is not even consistent with the measured data and information on
the distribution of the errors. For K = 10, this happens a little more that 30% of
the time. Thus, in one out of every three experiments the least squares estimate
is not even a possible value. More troublesome, in practice, is that the error often
quoted for the least squares estimate has little to do with the actual uncertainty in
the value of y as determined by the data. From the considerations above, we see
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that 4 € 5 (max {d;} + min{d;}) £ 5 (2 + min {d;} — max {d;}) so the uncertainty is
(certainly) 1+ 3 (min {d;} — max {d;}). The mean-square-error for the least squares
estimator of 1/ V/3M is often quoted as the error in the least squares estimate.
Note that this is independent of the data. Three simulations for the case u = 0
and M = 2, returned the values (di,dy) = (—0.7477,0.6688), (—0.6112, —0.6136),
and (0.6278, —0.0376) giving estimates with posterior error £0.2918, +0.9988, and
+0.6673. This is sometimes larger, and sometimes smaller than the least squares
error of +0.4082.

Posterior error estimates are particularly informative when recovering spatially-
varying parameters such as the thermal conductivity of an inhomogeneous material.
It is clear on physical grounds that the spatial dependence of uncertainty in a re-
construction must depend on the measurements. For example, when a region of low
thermal conductivity is surrounded by a region of high thermal conductivity, the
outer region shields the inner region from external heat sources, since heat will pref-
erentially flow through the outer region and not penetrate the inner region. Hence,
the conductivity of the inner region cannot be accurately determined from measure-
ments based on external heat sources. However, if the whole medium has similar
thermal conductivity the heat can flow through all regions, resulting in more accu-
rate estimation. Since the data reflects the distribution of thermal conductivity, the
spatially varying error must be dependent on the data. An example of shielding by
a region of high electrical conductivity, that shows up in posterior variance, is given
in [60]. As mentioned above, the mean square error of the least squares estimate, or
of any other fixed estimator, gives no clue to this effect.

4 Bayesian inference

In this section, we give a brief introduction to topics in Bayesian statistics. These
topics are elaborated in later sections. We will first consider the case in which the
primary unknown is the only unknown. In Section 4.5, we consider the case in which
there are auxiliary unknowns.

For treatises of Bayesian statistics in general, we refer to |26, 61, 62, 63] and in
connection with inverse problems [17, 64, 65].

4.1 Bayesian probability

We denote the unknown random variables with x and the measurements (data)
with d. Complete statistical information of all the random variables is given by
the joint distribution m(z, d). This distribution expresses all the uncertainty of the
random variables. Once the measurements d have been obtained, the uncertainty
of the unknowns z is (usually) reduced. The measurements are now reduced from
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random variables to numbers and the uncertainty of x is expressed as the conditional
distribution 7(x|d), which is also referred to as the posterior distribution. This
distribution contains all information on the uncertainty of the unknowns x when
the information on measurements d is utilized®.

A schematic example in the case z € R, d € R is given in Fig. 1. The marginal
distribution 7(z) is called the prior distribution and it represents the uncertainty of
the unknown prior to obtaining the measurement. Two different conditional densities
m(x|d) with different measurements d are also shown. After the measurement the
uncertainty regarding the unknown is significantly reduced.

The conditional distribution of the measurements given the unknown is called
the likelihood distribution and is denoted by 7(d|x). The marginal distribution of the
unknown is called the prior (distribution) and is denoted by m(z). By the definition
of conditional probability we have

(z,d) = n(d|z)n(z) = n(z|d)r(d) . (10)

Furthermore, the marginal distributions can be obtained by marginalizing (inte-
grating) over the remaining variables, that is, 7(z) = [7(z,d)dd and 7(d) =
[ 7(x,d) dz. Note that after the measurement is obtained, 7(d) is a positive number.
The following rearrangement is called Bayes’ theorem

m(x|d) = 7(d) ‘7 (d|z)m(z) . (11)

If we had access to the joint distribution, we could simply use the above defini-
tions to compute the posterior distribution. Unfortunately, only in rare cases, the
joint distribution is available in the first place. However, it turns out that in many
cases the derivation of the likelihood density is a straightforward — if not always
trivial — task. Also, a feasible probabilistic model for the unknown can often be
obtained. Then one can use Bayes’ theorem to obtain the posterior distribution.
The key point here is that the posterior is obtained by using a (prior) model for
the distribution of the unknown rather than the marginal density, which cannot be
computed since the joint distribution is not available in the first place®.

4.2 Point and spread estimates

Point estimates are the Bayesian counterpart of the deterministic “solutions”. The
most common point estimates are the mazimum a posteriori estimate (MAP) and the

5To avoid confusion, all densities should have the associated subscript, here for example,
Tz|d(x|d). We will omit subscripts when the arguments specify the density unambiguously.

6Roughly speaking, the frequentist and Bayesian frameworks are separated by the following
issue: If the prior is modelled separately (not by marginalization from the joint distribution), we
are in the Bayesian framework.
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conditional mean estimate (CM, also known as the minimum mean square estimate,
MMSE). In the sequel, we consider the unknowns and measurements as random
vectors (of finite dimension): z € RV, d € RM,

The computation of the MAP estimate is an optimization problem while the
computation of the CM estimate is an integration problem:

Tyap = arg mraXW(x|d) (12)
R mﬂ@:/}w@umx (13)

where arg reads as “argument of” the maximization problem, E(-) denotes expecta-
tion, and the integral in (13) is an N-tuple integral.
The most common estimate of spread is the conditional covariance

Paja = /(fc — E(z[d))(z — E(z|d))" n(x|d) dz (14)

Here, I'; |4 is an N x N matrix and the integral (14) refers to a matrix of associated
integrals.

Often, the marginal distributions of single variables are also of interest. These
are formally obtained by integrating over all other variables

ﬂm@:/}m@m4 (15)

Ty

where the notation (-)_, refers to all components excluding the (" component. Thus,
(15) is an (N — 1)-tuple integral. Furthermore, m(z;|d) is a function of a single
variable, and can be visualized by plotting. The credibility intervals are the Bayesian
counterpart to the frequentist confidence intervals, but the interpretation is different.
Technically, a p%-credible interval is a subset which contains p% of the probability
mass of the posterior distribution.

4.3 Linear models and Gaussian densities

The linear Gaussian, or normal, problems are an important class of inverse problems.
For these problems, the answers to the most common questions often have analytical
expressions. For this reason, Gaussian approximations for prior, likelihood and
posterior models are often sought.

As an important example, we consider the additive error model in which the
error ¢ and z are jointly independent and the measurement model is linear:

d=Ar+e, n(x,e)=mn(zx)n(e)
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and m(x) = N(x,,T';) and 7(e) = N (es, ). Then, the joint distribution of (y, ) is
Gaussian and is thus completely specified by its mean and covariance only. Direct

computation gives
x Ty

o d B AT AT +T, AT, (17)

"\ ) T r, A" T,
In the linear Gaussian case, all conditional distributions are Gaussian. It suffices
therefore to compute the (conditional) means and covariances only. Furthermore, in
the case of Gaussian distributions, the MAP and CM estimates are equal. From (16-

17), for example, using the Schur complements, the posterior mean and covariance
can be obtained

TcM = Ty + FxAT (AFIAT + Fe)_l .
(d— Az, —e,) (18)
Tya = Dp—T,AT(AT,AT +T,) 7 AT, (19)

Another form for the posterior mean and covariance can be obtained by employing
the matrix inversion lemma [66]"

e = (ATTtA4+T;0)7 (20)
zem = Doa(ATTe(d —e.) + T, 'a,) (21)

All marginal distributions of single variables or sets of variables can be obtained
analytically by the Schur complements, see for example [17].

The simplicity of using Gaussian models applies only to the computation of the
posterior statistics given that the models are available. Consider the case where
the parametrization of the primary unknown is x € R, The covariance I, is a
symmetric positive semi-definite matrix which means that I', has about 500, 000 real
numbers to be specified. The question is, how does one fix these numbers so that
I', is a feasible and sustainable model for the prior uncertainty? Some nontrivial
constructions of Gaussian prior models are mentioned in Section 7.

There is a widespread confusion about the relationship between Bayesian in-
version and Tikhonov regularization. Assume that the additive noise is zero mean
Gaussian iid noise, that is, e ~ N(0,02I). Assume further that we can model the
unknown as a (spatial) zero mean white noise process with covariance I', = 5721,

"We have equivalence if all covariances and their inverses exist. If not, one of these forms may
be feasible. In the general case, reparametrizations of the random variables may be necessary.
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and that we can assume that the additive noise and the unknown are mutually
independent. The conditional mean estimate is

Toy = arg IIl:ciIl {o7%||d — Az|]* + 5%||=|} . (22)

Then, the CM (and MAP) estimates coincide exactly with the Tikhonov regularized
solution
zri = arg min {||d — Az||* + o®||z[]*} (23)

only if we have set @ = of. But in the Tikhonov regularization approach, we
would use, for example, the Morozov discrepancy principle to adjust « so that the
Tikhonov solution @i («) satisfies

|d — Azri()|| = VNo (24)

where it is assumed that o is known exactly. Here, the notation zri(«) indicates
that the estimate has been computed using a fixed « in (23).

Thus, it seems that we have done something that resembles Bayesian inversion.
The particular problems here are the following. If the models for the additive noise
and the unknown were feasible and could be supported, there is no reason to tamper
with these indirectly by adjusting a. Moreover, how does one compute the posterior
covariance, if the task has to be to minimize (23) subject to (24) in the first place?

4.4 Exploration by sampling

In the general case, point and spread estimates, as well as answers to other questions
cannot be computed analytically. In such cases there are roughly two possibilities:
either one tries to approximate the posterior model, for example with a Gaussian
model or, one has to resort to the sampling methods.

The motivation behind sampling is straightforward. Assume that one has an
ensemble of independent samples from the posterior distribution m(z|d). We write
{x®™ &k =1,..., N} ~ m(z|d) where N is the number of samples (draws) from the
posterior distribution. Then, the mean of any function g(x) of = can be approxi-
mated by the sample average

Blg(o)]d) = [ gl wlold)de - Yo (o). 29

Furthermore, the law of large numbers guarantees that (under quite mild assump-
tions) the variance of the sample average behaves like oc Nt

For example, for the posterior mean of x we would set g(z) = x and for the
posterior covariance g¢(z) = (z — E(z|d))(z — E(z|d))T. Furthermore, the answer
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to a question such as “What is the posterior probability that the & component of
x is between 1 and 5”, is obtained as

number of samples with z;, € [1, 5]
N ‘

Pz € [1,5]) ~

Furthermore, marginal densities of single random variables z; are simply ob-
tained by considering the k' components of the samples only.

The key problem is, of course, how to obtain an ensemble from the posterior
distribution in the first place. This turns out not to be a trivial problem. The most
important class of methods for the generation of samples from an arbitrary proba-
bility distribution are the Markov chain Monte Carlo methods, which are discussed
in Section 5.

4.5 Auxiliary variables and uncertainties

We very seldom face a problem in which the primary unknowns are the only un-
knowns. Most often, we have a number of auziliary unknowns; We denote these
variables with x in a specific parametrization of the uncertainties.

An example of an almost ubiquitous auxiliary variable is the noise on measure-
ments. In the sequel, we shall distinguish between the measurement errors e and
other auxiliary unknowns, which we denote with p, so that we have xy = (i, e). For
example, consider a linear deconvolution problem

d=Ax+e

where A, is the convolution operator with a convolution kernel that can be com-
pletely specified with a single real number p > 0. We assume that p is not known
exactly but can take any value in the interval [uq, o). Furthermore, we know that
all values on this interval are not equally probable, and we would then aim to
construct a model 7(u) accordingly. Furthermore, the additive noise (vector) e is
known to obey the Gaussian probability distribution with known mean and covari-
ance e ~ m(e) = N(e,,I'c). Then, given the measurements d, we have the unknowns
(x,p,e) and thus x = (i, e) when we are mainly interested in the reconstruction of
x only.

In some fortunate cases, such as additive noise that is independent of other
unknowns, we can marginalize over some variables. Specifically, if e and (z, u) are
mutually independent, we have

d— Az ~m.=Ne,T.)

and we have

m(d|x, p) = /W(d,e\x,,u) de = m.(d — A,x).
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In the special case of Gaussian distribution with zero mean and iid components, we
have E(e) = e, = 0 and T'. = 0*I. This gives us the likelihood distribution in which
the additive errors have been marginalized

1
m(d|z, ;) o< exp {_Tt?Hd — AuxHQ} .

Unfortunately, the variable p cannot usually be marginalized so that we would
have an analytical form for 7(d|z). In such cases, we have to treat both = and u as
unknowns that have to be estimated simultaneously. But this will almost invariably
necessitate sampling, for example, to compute E(z|d) = [ w(z, u|d) dp.

The key is to realize that the uncertainty of the primary unknown x is given by
the posterior density

(] d) =/w<x,md>du

and not by
m(z|d) # n(x|d, p.)
generally with any choice for a fixed p,. In particular, the conditional mean

E(z|d) # E(z|d, p.)

generally, and these two estimates may differ significantly.

5 Exploration of the posterior distribution

The posterior distribution for practical problems usually does not allow analytic eval-
uation of posterior statistics. However, the posterior distribution may be evaluated
using Bayes’ theorem (11) and posterior statistics evaluated using computational
methods. In a Bayesian analysis, model space will consist of primary unknowns as
well as parameterizations of other uncertainties, and may have many parameters.
When model space is high dimensional, expectations need to be evaluated using
Monte Carlo integration as in (25).

These computational methods rely on drawing samples from the posterior dis-
tribution, which is achieved by Markov chain Monte Carlo (MCMC) algorithms. A
general introduction to MCMC can be found in [67]. These algorithms generate a
sequence of states in model space {2 n =0,1,2,...,} that converge in distribu-
tion to the desired distribution as n — oco. The resulting sequence of states forms
a random walk through feasible solutions, with the proportion of time spent at any
state being equal to the relative probability of the state.

The chain is constructed as a Markov chain, that is, P(z" V|2 z(=0 20 =
P(z™V|z(™) so the transition from state (™ to 2"*1 depends on (™, but not
explicitly on previous states.
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Below, we only describe the discrete state Markov chain. A homogeneous (dis-
crete state) Markov chain is defined by the transition matrix

Ky = P(a" = jlat™ =) (26)

giving the conditional probability to enter state number j on the next step, given that
the current state is numbered 7. The chain is initialized by drawing z(® according to
some distribution 7(°) and then iterating the random update. Let 7(® be the n-step
distribution, which is the row vector with j*" component 7r](-") = P(2™ = j). Then
7 = 7O K" When 7™ — 7 for some fixed distribution 7, independent of 7(),
the Markov chain is said to be ergodic [61]. Then we are able to replace integrals
over m by averages over the chain as required in (25), with convergence guaranteed
by appropriate central limit theorems |68, 69, 70|.

Ergodicity is guaranteed when K has a single eigenvalue of 1 in which case 7 is
the corresponding left eigenvector®. This determines the equilibrium distribution 7
from the transition matrix K.

MCMC algorithms require the converse, that is, determining a transition matrix
K that has the desired equilibrium distribution 7, in our case the posterior distri-
bution for the inverse problem being considered. Even for univariate models, model
space can be huge and so it is not feasible to actually assemble the transition matrix.
Instead, MCMC algorithms simulate operation by a suitable transition matrix at
each step.

5.1 Metropolis-Hastings algorithm

Almost all implementations of MCMC sampling employ the Metropolis-Hastings
(MH) algorithm, or some variant of it. This algorithm was originally developed
for applications in statistical physics [71], and was later generalized to allow general
proposal distributions [72], and then allowing transitions in state space with differing
dimension [73|, allowing insertion and deletion of parameters [74, 75|. Even though
we do not always use variable-dimension models, we prefer this ‘reversible jump’
formulation of MH as it greatly simplifies calculation of acceptance probabilities for
the subspace moves that are frequently employed in inverse problems.

The MH algorithm generates a Markov chain with the desired equilibrium distri-
bution by simulating a suitable transition kernel at each step. The reversible jump
MH algorithm [73] can be described as follows. When at state z, we generate, say, r
random numbers 7 from a known density ¢(v) and then form a proposed new state
x’ as some suitable deterministic function of x and . This gives a random proposal
depending on the current state. The proposal is accepted or rejected according to a
rule that ensures the desired equilibrium distribution.

8 All eigenvalues of K have magnitude less than or equal to 1.
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The reversible jump formalism considers the composite parameter (z,7), and
(«’,4") which is the composite parameter for the reverse proposal. One step of the
MCMC sampling algorithm with MH dynamics can be written as:

Let the chain be in state x, = x, then x,1 is determined in the following way:

/

1. Propose a new candidate state x’ from x depending on random numbers ~ with
density q(v)

2. Calculate the MH acceptance ratio

"\ = min W(x/‘d)qm/)
afr,2') = (1’ m(x|d)q(y)

(', 7)
(z,7)

) (1)

3. Set x,41 = x' with probability oz, a") (accept the proposed state), otherwise
set T+ = x (reject).

The last factor in equation (27) denotes the magnitude of the Jacobian determinant
of the transformation from (x,~) to (z/,7').

The only choice one has in the MH algorithm, is how to propose a new state x’
when at state x. The popular choice of Gibbs sampling is the special case where
2’ is drawn from a (block) conditional distribution, giving a(x,z") = 1. The choice
of the proposal density is largely arbitrary, with convergence guaranteed when the
resulting chain is irreducible and aperiodic |61, 76]. However, the choice of proposal
distribution critically affects efficiency of the resulting sampler. We discuss efficiency
further in Section 10.5.

The most common MH variants employ random walk proposals that set 2’ = z+-~
where 7y is a random variable with density ¢(-), usually centered about zero.

To demonstrate the algorithm we give an example of sampling from the univariate
posterior distribution in Section 3.1 when there are M = 100 measurements. The
posterior probability density over heat capacity ¢ for one measurement set is shown
in Fig. 2.

We use the simple random-walk proposal ¢ = c¢4+w~y where 7y ~ Uniform(—1/2,1/2)
so that w sets the width of a uniform window about the current state c.

The reverse proposal is ¢ = ¢ + w~' giving 7/ = —~. Hence the Jacobian is

0(0’,7’): Za—CC: 28—1: :< 1 0 )
d(c,7) > o w -1

which has determinant with unit magnitude. Since ¢(y) = ¢(7') = 1, the acceptance

ratio in 27 simplifies to
'Id
a(z,2") = min (1, 7;((66‘|d>)>
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which depends only on the ratio of the posterior densities at the current and proposed
states.

Fig. 3 shows three traces of a sequence of 2000 states generated by the MH
algorithm for three choices of proposal window, w = 0.1, w = 1, and w = 10.

Each of the resulting chains is guaranteed to converge to the posterior distribu-
tion, but, as can be seen the nature of the three traces is quite different. The choice
w = 1 gives a proposal window that is similar in scale to the width of the posterior
distribution, has about 50% of proposals accepted, and the chain efficiently produces
samples from the posterior distribution. When w = 0.1, proposals are only a small
change on the current state, and are accepted about 90% of the time. However, be-
cause the proposal window is small, adjacent states are strongly correlated and the
chain moves slowly through state space, taking a long time to generate independent
samples. When the proposal window is large, w = 10, a very small proportion of
proposals are accepted which shows up by the chain remaining constant for many
steps, and again the chain is slow to produce independent samples. We look at the
efficiency of MCMC in more detail in Section 10.5.

For this univariate problem, expectations over the posterior are easily calculated
using numerical quadrature and MCMC sampling is simple though not particu-
larly efficient. However, for models with more than about 5 components, numerical

quadrature is computationally infeasible while Monte Carlo integration remains fea-
sible.

6 Likelihood models

The likelihood distribution 7(d|z) introduced in Section 4.1 is a probabilistic model
for the distribution over measurements d given that the unknowns have value x.
Design of the likelihood, in the case of inverse problems, often involves modelling
the forward problem along with a separate model for measurement errors. In that
case, the forward map is the model for errorless observations. This is a feasible
interpretation in most cases, such as in the case of additive noise models. However,
in many important measurement processes, for example with counting observations
of radioactive decay, there is no such thing as an errorless observation.

While the construction of the likelihood can generally be considered as a straight-
forward problem, this task is not always trivial, especially when real data is to be
used and the actual uncertainties that are related to the measurement setting are to
be considered. Improvement of likelihood models is often best achieved by examin-
ing residuals to ensure they conform to the assumed error distribution, particularly
when tracking down physical processes that are not part of the intended measure-
ment procedure. A practical limit to likelihood modelling is often set by complexity
or computational limitations. We discuss some frameworks for dealing with the
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resulting approximate likelihoods in Sections 8.5 and 10.6.

Partial differential equations and initial-boundary value problems arguably form
the most common class of forward problems that are relevant in the case of inverse
problems. As discussed in Section 2.5, implementation of the model usually requires
numerical solution. Before one embarks on the computational implementation, the
physical setting should be thoroughly investigated and the uncertainties identified
and modelled. A suitable computational framework should then be chosen that can
accommodate the models and parameterizations for all unknowns.

It is often the case, for example, that measurement locations are not exactly
known, or the geometry of the medium required to specify the outer boundary of
the computational domain is not known exactly, and it may be necessary to include
these uncertainties in the likelihood model. Computational limitations often require
truncating computational domains, for example when a large body is investigated
and the measurements are carried out locally, in which case the boundary conditions
holding at this truncation boundary are unknown. These topics are discussed later
in Section 8.

6.1 Forward models

Forward models define (conditionally) the deterministic part of the likelihood dis-
tribution. As in Section 4.5, let the primary and secondary unknowns be z and p,
respectively, and e denote the (classical) noise variable. In the case of additive noise,
we have

d=A4,(x)+e

where A, (x) is the mapping (x, 1) — d which predicts the noiseless measurement
when both x and p are known. We also presume that the distribution 7(e) is known,
or if applicable, the joint distribution 7(x, p1, €) is known. Thus, if both (z, u) were
known, we could compute the errorless observations and evaluate the likelihood.
As it turns out, when MCMC methods are to be used, this is basically the only
requirement.

In the case of non-additive noise models, we need the more general data simu-
lation d = A,(z,e) when a realization of the random variables (z, 1, €) is available.
In the most general form, we have to be able to evaluate the likelihood distribution,
see Section 6.3.

In inverse heat transfer problems, the mapping A, is commonly related to partial
differential equations and the related initial-boundary value problems, see Section 2.
Then the numerical schemes for the IBVP discussed in Section 2.5 provide a simple
and tractable form for the model A,(z). For example, let 1 be the unknown Dirichlet
data on part of the boundary of the computational domain, and let us use FEM for
the numerical approximation of an elliptic problem. Then, if we write x in the same
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basis as the FEM basis on the boundary, we can write
A, (z) =Bx+Cpu

where B and C' are matrices provided by the FEM formulation, see Section 9 for an
example. Modelling of the unknown g could be achieved by using a mid- or high
level representation that is then mapped onto the FEM basis, see Section 7.

The computational implementation of the likelihood and forward models are
generally approximative, due to the following issues:

e The mapping that is used in the computations is always a computational and
numerical approximation for the PDE and IBVP.

e The PDE itself may be an approximation, for example, that neglects radiation
effects.

e [nitial conditions may be approximate.

e All boundary data and/or parameters of the boundary models are seldom
known even in controlled laboratory experiments.

e The measurement sensor locations might not be exactly known and an ideal-
ized pointwise measurement model might not be an adequate model for the
actual sensors.

Possibilities for how to handle these model errors, will be discussed in Section 8.

The construction of the likelihood density can thus roughly be divided into two
tasks: the construction of the deterministic forward model that assumes a value for
all unknowns, and the extension to a full statistical model that gives the likelihood
distribution over measurements.

6.2 Additive noise models

The construction of the likelihood model in the case of additive noise is the easiest
to implement. The additive noise model was briefly visited in Section 4.3 in the case
of Gaussian errors that are mutually independent with other unknowns.

The additive noise model is of the form

d=A,(z)+e

with a marginal distribution model for e ~ m.(e). Generally, however, the variables
(x, , €) are not mutually independent. When (z, i, ) are given, we have formally
n(d|x, p,e) = d(d — A,(x) — e) which gives us

m(dz, p) = mejapu(d — Ap(z) |2, 1)
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where we write 7(z, i, e) = w(e|x, u)m(x, 1), see, for example, [17]. The special case
in which e and (z, 1) are mutually independent, gives the simple form

m(d|z, ) = m(d — Aﬂ(x))a

and hence the likelihood modelling task consists only of the separate tasks of mod-
elling m.(e) and A,(z). If e and (x, ) are not mutually independent, a feasible
starting point is usually to consider modelling m(e|z, u) first.

The most commonly used model for the distribution over e is the Gaussian
distribution. Moreover, almost always the special choice e ~ N(0,%I) is employed,
that is, the zero mean iid error model®. While there are situations in which this is a
feasible model, in the majority of problems there are more realistic models. Note that
the Gaussian distribution decays very fast and thus if the mean and covariance are
badly modelled, the actual x might correspond to an essentially vanishing likelihood
and thus also to a vanishing posterior. In other words, according to our posterior
model, the true x would be essentially impossible.

Even when the Gaussian additive noise model is sustainable, the assumptions of
zero mean, diagonal covariance structure and identical variances (diagonal elements
of I'.) can usually be challenged in real physical situations. For example, errors due
to model reduction and approximate physical models are very unlikely to have zero
mean. Also the Gaussianity and the iid covariance structure are often not feasible
assumptions.

As an extreme example, consider the following industrial measurement setting.
There are 10 temperature sensors attached to the target, the measurements are
carried out simultaneously and there are high power electric motors nearby. For
example, in a typical thermomechanical pulp plant there can be twenty 2 MW motors
within 20 m radius. The electric and magnetic fields are very strong with most
energy around 25 Hz, and induce large currents into the measurement leads. The
resulting noise is typically several orders of magnitude larger than any measurement
instrument noise. While the instrument noise could be modelled as iid errors, the
measurement, errors due to the external fields are very highly correlated. In this
case, let o7 and o3 be the variances of a single measurement that are due to the
instrument noise and the external fields, respectively. Then, a model of the form

e ~N(0,0% + 02117)

where 1 = (1,...,1)T and 117 is thus a matrix of all ones, could be more sustain-
able. The use of an independent (uncorrelated) error model in such a situation is
bound to lead to significantly misleading estimates, and, in particular, significantly
overoptimistic error estimates.

9In the Gaussian case, uncorrelatedness implies mutual independence.
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Fortunately, the measurement errors and their distribution can almost always
be determined experimentally. Also, the designers of measurement systems should
be able to provide operational specifications of the system, in particular, the joint
statistics of internal errors.

There are several common sources of non-Gaussian additive errors. In many
measurement situations there are infrequent large errors that are often referred to
as anomalies or outliers. In one-off investigations the most obvious outliers could
be removed after visual examination of the data, but this is seldom a feasible or
optimal way of treating the data. Heavy tailed distribution models such as the
Cauchy distribution and the Lj;-norm induced distribution e ~ exp(—c||e||;) can
mitigate the effects of outliers [17], while a mixture model in a hierarchical Bayesian
formulation can be used to explicitly model and detect outliers [59].

6.3 Other noise and likelihood models

We consider two other common likelihood types, the multiplicative noise case and
the Poisson distributed observations [17]. For uniformly distributed additive noise,
see also Section 3.

Multiplicative noise. It is quite common that errors have a multiplicative com-
ponent. Modulation type observations are a typical example. As a very simple
example, consider an observation model that is linear with respect to the primary
unknown, with a noisy amplifier in the measurement chain, so the likelihood model
has the form

d=A(h, +v)z+e

where the nominal amplification, say, h, = 1 is corrupted by noise v ~ 7(v). Such
a noise model is called (partially) multiplicative due to the term Avz.

Counting distributions. Another example of a non-additive noise likelihood
model is that of Poisson distributed measurements. Such a measurement model
is typical for situation in which the measurements are counts, the most common ex-
ample being radioactive decay of low activity samples. Although such measurements
are not that common with inverse heat transfer problems, Poisson distributed obser-
vations form a simple example in understanding likelihood models beyond standard
additive errors models.

In the simplest case, we can write for the measurements dj,

dy, ~ Poisson (Ag(x))

where di € N. If the random variables d; are mutually independent, we have
M dk

m(d|z) = HMexp(—Ak(x))

X exp (dT log(A(x)) — ||A(x)||1) )
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There is no additive error form for 7(d|x). Most importantly, the notion of “error”
or “noise” is irrelevant, since the measurement d can only be considered as a draw
from the conditional distribution 7 (d|x).

In most practical cases, relevant error models are more complex than these sim-
ple models. In addition to the combination of additive and multiplicative errors,
combination of Poisson distributed variables and additive errors may be a relevant
model [77, 78]. In Section 8.5 we consider likelihood models that arise when ap-
proximate marginalization is used to remove auxiliary unknowns, and when model
reduction is employed.

6.4 Comments

One of the most important principles in likelihood modelling for inverse problems,
is to not underestimate any of the errors and uncertainties. While overestimating
errors can be interpreted as squandering the accuracy of the measurement informa-
tion and thus reducing the accuracy of estimates, this is not a capital crime since
the true unknowns would still be supported by the posterior model. In contrast,
underestimating the errors will typically provide a posterior model with respect to
which the actual unknown is impossible, and thus cannot be recovered.

7 Prior modelling

One of the practical advantages of the Bayesian formulation for inverse problems is
that it provides the framework whereby uncertainties can be included in a way that
is informed by stochastic modelling. Prior modelling is perhaps the most distinctive
of these, since separate modelling of the measurement process and the unknowns is
a distinguishing feature of Bayesian methods.

While the construction of the likelihood models can be described as a straightfor-
ward albeit sometimes tedious task, prior modelling typically is considered at least
partially as an “art”. This is due to the fact that there are always several plausible
models for the unknowns. These models may, however, differ significantly as to how
easily they can implemented, and especially how efficient the related computational
machinery can be implemented.

7.1 General considerations

Prior modelling has the same flavor as mathematical modelling in general. That
is, one describes the key physical features of unknowns, checks plausibility of the
model and robustness of solutions to particular assumptions, and refines the model as
needed. In particular, there is no single ‘correct’ prior model, since the purpose of a
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model depends on the purpose of performing the inverse problem. A prior model will,
in general, be informative with respect to some questions but non-informative with
respect to others, hence different prior models are required to give quantitatively
accurate answers to different questions, see for example [79]. Competing models may
be tested using Bayesian model comparison [80, 61], as discussed in Section 11.5.

The central components of prior models are the representation of primary un-
knowns, that is, the parameters or coordinates used, and a normalizable prior density
over allowable values. The choice of representation is largely determined by the mod-
elling assumptions one wants to enforce and the properties that are being sought.
Stronger modelling assumptions leading to reduced models can reduce ill-posedness
of the inverse problem, however extreme models that excessively restrict model space
can lead to large approximation errors and vastly over-confident estimates of accu-
racy [17, 81|. Since a Bayesian analysis primarily quantifies uncertainty in models,
there is no need to restrict models to give a unique solution.

As discussed in Section 2, primary unknowns in inverse heat transfer problems
can be the thermophysical properties, heat sources, boundary conditions, or some
combination of these. Since these unknowns are spatially-varying functions, models
developed for spatial statistics |82, 83| are directly applicable.

In that field, representations and priors are classified as low-level, mid-level, and
high-level [84, 85]. Low-level representations are local and generic, and usually very
high-dimensional, such as gray-scale pixel images, or the vector of element coef-
ficients in a FEM discretization. These representations are typical in regularized
inversion and can be used for any image, but are inconvenient for stating or calcu-
lating anything other than local structural information. Mid-level models are also
generic, but provide convenient ways of expressing quantities of interest such as ge-
ometric features of objects, or between objects. An example is the representation of
boundaries using implicit functions or patches [85, 86, 87|. High-level models cap-
ture important, possibly complex, features of the images and are useful for answering
global questions, such as counting the number of heat sources [88].

The type of model that is applicable to a given problem depends on what is
known about the primary unknowns, and the purpose of the analysis. We now look
at modelling issues in the context of heat transfer.

7.2 Modelling thermophysical properties

If the thermophysical properties are unknown a priori, the estimation problem re-
quires determining all of the thermal conductivity x, the heat capacity ¢ and the
relaxation time 7,. In the following, we discuss models for the conductivity x, though
the models are equally applicable to all other thermophysical properties.
Modelling of the coefficient x depends on modelling of the medium. When the
medium is isotropic, x is a scalar since heat flows in the direction of the gradient
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of temperature. For laminated materials that are orthotropic, k can be written as
a diagonal matrix in suitable orthonormal coordinates, while for general composite
materials & is a tensor of a more general structure. Combinations of these properties
are possible, for example in a medium that is homogeneous and orthotropic, x can
be modelled as a constant diagonal matrix [4, 35].

When the material is homogeneous but the constant value of k is unknown, a
univariate prior distribution is required over the unknown value of k. Positivity of
conductance can be asserted by requiring the prior density to be zero for k < 0.
As in the first example of Section 3, a reference prior [59] based on transformation
groups [89] ensures that inference does not depend on choice of units, see also [57].
These prior distributions are typically improper, i.e. do not have finite integral, and
hence can only be used in an MCMC when there is sufficient data to ensure that
the likelihood effectively constrains x to a finite set. Prior knowledge of a range for
k, such as the possible values for a given material, may be asserted by using a prior
distribution with finite support.

More generally, x will depend on position and we write x(7"). In layered three-
dimensional materials, or rod-like geometries, x can be represented by a one-dimensional
function, while more generally k£ may be an unknown function of two or three di-
mensions. In exploratory analyses, or when little is known about the medium, it is
typical to use a low-level representation such as a pixel image, and a non-parametric
prior distribution such as a Markov prior model with the Gibbs form

(k) o exp {— Z \Ifc(ﬁ)} (28)

Cecliques

where W is a potential function and the sum is over cliques, i.e. sets of pixels that are
mutually neighbors. When pixels have no neighbors, so the cliques are individual
pixels, and W;(k) = [|x;|?, the prior density is the Gaussian density of Section 4.1
with I', = 37 11. More typically smoothness of the unknown function % is asserted
by considering nearest-neighbor interaction giving

(k) o exp {—ZZ\P(/@,/@)} (29)

i=1 jni

where the first sum is over the M pixels and the second is over pixels j that neighbor
pixel i, denoted j ~ i. An example is the Gaussian Markov random field (GMRF)
when V(k;, k) = Bij (ki — /@-)2, though other potentials and neighborhood struc-
tures are possible. Small neighborhood structures lead to sparse precision matrices
(inverse of the covariance matrix) which is useful for computational purposes [90].
An alternative is to specify the covariance matrix directly, often by writing (k) as
a Gaussian process specified by the covariance matrix I';; = ¢ (||7; — 7||) where ¢(-)
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is a suitable covariance function [83]. Commonly used is the exponential covariance
function

o(r) = coexp{—r/ro} (30)

where ¢ sets the variance of each location, and ry sets a length scale, or ‘correlation
length’. This function is often generalized to allow different length scales in different
directions, when, for example, modelling time and space dependence, or when length
scales differ along differing coordinates as occurs in orthotropic materials.

The parameters ¢y and ro appearing in (30) are examples of hyperparameters
that appear in the distributions over primary unknowns. In some cases these hyper-
parameters may be given fixed values, but more typically are modelled as uncertain
and ascribed distributions, often called hyperpriors. This multi-level, or ‘hierarchi-
cal’, approach to prior modelling is handled easily in the Bayesian framework, and
is discussed extensively in [36] in the context of inverse heat conduction problems.
Further applications of hyperpriors are discussed in Section 8.4.

The inhomogeneous nature of a material may be modelled more explicitly, such
as when the medium is known to be a composite of several homogeneous materials.
In that case k can be represented as being piecewise constant [46], or more generally
as piecewise smooth. When the medium is known to consist of two types of material,
each with known s but with unknown distribution, the prior distribution may be
specified as a discrete Gibbs distribution over type defined on the pixel lattice. When
there are two material types, a suitable potential is

0 K=K,
() = { o

in (29), giving the familiar Ising model [91]. The Potts model generalizes this set-
ting to more than two material types [85|. If the conductivity ~ of each type is also
uncertain than a two-level prior distribution can be used such as a segmented Gaus-
sian field [60] in which an Ising or Potts distribution models the material type, with
smoothness asserted within regions of a given type, but not across type boundaries.
In regularization methods, the total-variation (TV) semi-norm is often used as an
attempt to produce solutions of this type |92]. The TV seminorm also lends itself
to an improper exponential prior distribution, however, see the related comment in
Section 7.5.

Type-field models are examples of mid-level priors since a classification of ma-
terial type is included in the representation of unknowns. The Ising and Potts
models give a type field defined over a pixel lattice, which can be high dimensional
and lead to slow computing. An alternative is to use continuum processes, such
as the change-point models in 1-dimension [73|, and colored continuum triangula-
tions in two dimensions [93]. For example, a change-point model would be useful
when modelling a layered material of thickness R in which layers occur at depths
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0=r9g<r <ry<...,<r,= R with conductivity ; in the interval (r;_1,7;),
i =1,2,...,n in which the {r;}, {s;} and n are unknown. This is a variable di-
mension model since the number and location of material boundaries is unknown.
Performing inference on this model is straightforward using reversible jump MCMC
described in Section 5.1, see also [73]. In contrast, this would be a near impossible
task using standard regularization methods, see for example [46]. A further possibil-
ity is to define auxiliary unknowns, in this case a (spatially smooth) random process
that defines the (spatially varying) smoothness of the primary unknown, see [94].

7.3 Modelling unknown boundary conditions

In a traditional deterministic approach it would be necessary to either estimate or
assume the effective boundary conditions that hold at computational boundaries.
Straightforward simultaneous estimation of material parameters and the boundary
conditions may lead to an identifiability problem as will be explained in Section 8.2.
In the general case, a joint distribution model for the primary unknowns and the
secondary unknowns is needed — in which these unknowns are not independent.

However, the Bayesian approach allows truncation boundaries to be included in
the prior model for thermophysical properties. The key realization here is that the
boundary conditions on the truncation boundaries depend on the distribution of
the material parameters outside the computational domain. If we can model the
material parameters, for example, as GMREF’s, this model links (statistically) the
material parameters inside the computational domain and the boundary conditions
implicitly. This leads to a joint distribution model for the primary unknowns and
the boundary data, here playing the role of the secondary unknowns. See [95] for
an example for how the approximation error approach can be used to handle the
truncation boundaries.

7.4 Modelling heat sources

In many cases there is strong prior knowledge about aspects of the source such as
it strength, or location in time and/or space. For example, a heat source that is
known to be localized at the point 7, may be written as ¢ (7,t) = q(t)d (7 — 70)
and the estimation problem reduces to finding the unknown function of time ¢ (¢).
Alternatively, a heat source may be known to be essentially instantaneous in which
case we may write ¢ (7,t) = q () § (t — to) and the estimation problem is to find the
spatial dependence of the heat source ¢ (i) and also the time at which it acts, to, if
that is not known a priori.

Inverse problems particular to forced convection include estimation of unknown
temperature of the flow at an inlet. If the inlet temperature is stationary in time,
then the inverse problem reduces to finding the spatial variation of temperature over
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the inlet, only. Alternatively it may be known that the inlet temperature is constant
in space, but varies in time. In that case the inverse problem has the unknown inlet
temperature as a function of time as the primary unknown.

7.5 Comments

There is an important recent observation regarding the discretization and represen-
tation of the unknown, especially in relation to non-Gaussian prior models. The
total variation prior is commonly used to represent “blocky” objects, that is, un-
knowns that are assumed to have the tendency to be spatially piecewise constant.
The total variation is qualitatively the 1-norm of first order smoothness, and the
corresponding prior model is an exponential distribution with this norm as the po-
tential. In [96], it was shown that when the discretization is made spatially denser,
the non-Gaussian TV distribution actually tends to a Gaussian distribution, thereby
losing the desired prior characteristics.

The Gaussian smoothness type priors are often considered trivial and restrictive.
This is definitely true with priors of type

m(z) o (—al Dyz|?)

where L, is a standard discretization of a p™ order differential operator, with a
null space of dimension p. But the smoothness can be made inhomogeneous and,
in particular, anisotropic [97, 17]. In addition, the smoothness prior can be made
proper by a conditioning process. The draws from the resulting prior models are
often difficult to perceive to be from a Gaussian distribution. Such inhomogeneity
and anisotropicity information is often available from complementary information,
such as other measurement modalities. See [98] for an example of in-painting, that
is, how to fill in missing parts of an image.

8 Model uncertainty

With model errors and uncertainties, we refer to all unknowns (and their param-
eterizations) other than the primary unknown. It is to be noted, of course, that
with different formulations of the problems, some unknowns, such as the initial
temperature distribution, might be either primary unknowns or uncertainties.

8.1 Rough categorization of errors and uncertainties

We classify the model errors and uncertainties roughly into the following categories:
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1. Model reduction errors. These errors are due to using a reduced order model,
usually for computational efficiency. In other words, given more time and
greater computational arsenal, these errors could be avoided in principle .

2. Uncertainties related to the physical models. These errors include missing
boundary and initial data, and approximative (simplified) physical models,
for example, neglecting radiation effects. Also, uncertainty of geometry be-
longs to this category.

3. Uncertainties related to the behavior of the measurement system. These include
unknown measurement noise variance, covariance structure, or statistics in
general, as well as measurement system specific issues such as cross-talk in
multichannel measurement systems.

4. Prior and other uncertainties. Generally, uncertainties in the prior model:
(covariance) structure and the distribution itself.

Some of the uncertainties could be avoided in a straightforward manner, such
as the missing boundary data on the truncation boundaries of the computational
domain: simply enlarge the computational domain so that the uncertain bound-
ary conditions have no effect to prediction of the measurements. Similarly, with
pure discretization errors of the forward solver, we could simply use more accu-
rate approximations. Many others cannot be avoided in a straightforward way, and
feasible prior models have to be constructed for these uncertainties. For example,
parametrization of uncertain geometry in 3-dimensional situations, and simultane-
ous estimation with primary unknowns can turn out to be a prohibitively complex
undertaking.

Thus, having parameterized the overall problem, we have two extreme possibili-
ties: straightforward but often prohibitively computationally complex “estimate all
unknowns (including uncertainties) simultaneously” or to “approximate all auxiliary
unknowns with ad hoc guesses”, and anything in between.

8.2 Identifiability of problems

It must be noted that if all uncertainties are parameterized, the overall structure
of the problem might not be identifiable. If we are honest with the likelihood and
prior modelling, it may turn out that the posterior model is improper, that is, it is
technically not integrable!?. Thus a MAP estimate would not be a point estimate
but rather a manifold (or a linear or affine subspace), and could not be computed.
Also, computation of MCMC is typically not possible.

10The problem of improper posterior distributions tends not to happen when reference priors
are used [99].
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As a simple example, consider the linear additive Gaussian noise case with Gaus-
sian prior model with 7(e) = N(0,T.), m(x) = N (., ;). The posterior distribution

can be written in the form
2
} (31)

where 't = L, "L, and T';! = L,TL, and

- L. A ~ L.d

A (BA) i do (B4,
If the models for A, I, and T, are such that A has a nontrivial null space,'' the
conditional mean does not exist and the MAP estimates are not points but linear
manifolds with the same dimension as the null space of A, see for example [17].

Of course, in such a case, regularization methods could be applied to obtain a
numerical solution for MAP or CM estimates. But this approach would inherit the
problems that are associated with regularization methods, most importantly: the
estimates would not have any statistical interpretation

The correct conclusion here is that the information contained in the models and
measurements is not adequate to allow for estimation of the unknowns. Thus, more
information has to be acquired, either in terms of measurements or more informative
models. This might not necessarily mean that more measurements have to made.
Changing the way measurements are carried out changes the model A and has an
effect (in the above case) on A and its properties, and thus the characteristics of
the posterior distribution. Optimization of measurements can thus be carried out

in relation to the prior model. For an example in electrical impedance tomography
see [100].

m(x|d) o< exp {—% HAx —d

8.3 Strategy

The feasible choice for the strategy depends on realizability and other implementa-
tion issues, specifications for accuracy, and small versus large dimensional parame-
terizations for uncertainties.

Below, we discuss two classes of approaches with which to handle uncertainties.
The use of hyperprior models is especially useful for uncertainties that have a low-
dimensional parametrization. The other class is the approximation error approach,
in which stochastic simulation over the uncertainties is performed and approximate
marginalization is then carried out.

11We would have nonzero vectors z so that Az = 0.
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8.4 Hyperpriors

Prior and likelihood modelling is typically a hierarchical process, with a density over
primary unknowns depending on parameters which themselves may be uncertain,
and hence are modelled as random variables with some distribution. These sec-
ondary parameters are called hyperparameters while the associated distributions are
called hyperpriors. The term “hyperprior” is slightly misleading since the approach
is equally well suited to modelling parameters in any distribution, not only the prior.

Modelling uncertainty in hyperparameters appearing in the prior distribution
was discussed in Section 7.2. Extensive discussions can be found in [36, 37]. Un-
known parameters in the likelihood can also modelled using hyperpriors. A natural
example of such a hyperparameter is the variance, or noise level, o appearing in
a Gaussian model for measurement error, as in Sections 4.3 and 6.2, that can be
modelled using a hyperprior to good advantage. As noted in Section 4.3, it is a
common mistake to view this parameter as fixed and hence equate MAP estima-
tion to Tikhonov regularized inversion. However, it is an important difference that
this variable has the distribution of the hyperprior and is not a fixed value. In an
“empirical Bayes” analysis, a ‘best’ estimate of this variable is made, often by max-
imum likelihood, and subsequent analysis conditioned on this value [59, 63|, hence
mimicking a regularization approach. However, a notable feature is that the value is
determined [101] based on data. The empirical Bayes approach is recognized as an
approximation, perhaps necessitated by computational considerations, and in many
cases gives much worse results compared to the correct action of marginalizing over
this nuisance parameter.

An informative discussion of the importance of modelling auxiliary variables with
uncertainty, in the context of heat transfer, is in [37]. See also [17] for an example of
simultaneous deconvolution and estimation of the width of the convolution kernel.

8.5 Second order additive error model for approximation and
modelling errors

The approximation error approach was introduced in [17, 81] originally to cope
with model reduction related errors in the likelihood, where model reduction can be
carried out both for the computational forward problem and the representation of
the unknown. In this context, the approximation error approach can be described
as follows. Let the accurate physical model be

d=A,(Z)+e

where Z is typically an infinite dimensional distributed parameter, such as thermal
conductivity, and u represents other uncertainties, which in this example are related
to the forward map only.



BAYESIAN INVERSE HEAT TRANSFER 40

Let us fix the approximate computational model A, where we have fixed the
unknown p = p,, and a finite dimensional representation x, typically x = Pz =
>_; i, where P is a projection onto the subset {¢;} and Z; are the projection
coefficients. In the following, we identify x and the set of coefficients {Z;}. We can
then write

d = Ao+ (A,z— A, z)+e
= A,x+e(@p)+e

where the random variable ¢(Z, 11) is called the approzimation error.

In the approximation error approach, the aim is to carry out approximate marginal-
ization over € + e prior to inference on the interesting variable z.

This is carried out by approximating the joint distribution 7(x, ¢, €) and the like-
lihood distribution with Gaussian models with possibly a nonlinear forward model.
First, as in Section 6.2, note that

m(d|z, e, p) = 5(d_AM(f)_6)
= 5(d— A (2) — e — (D))

where p, is fixed, for example, p. = E(p), and e(p, ) = A, (Pz) — A,.(Z). Hence,
we write for the likelihood

w(d|x) = /W(d,e,u|x)ded,u:/W(d,e,6|x)ded6
— Tereeld = Ay (@)]2).

The core of the (Gaussian) approximation error approach is, then, to approxi-
mate the distribution e, with a Gaussian distribution 7., =~ N(e*|x+€* 2s Lete|a)-
For details, see [17, 81, 102] for formulation for model reduction only, and [103] for
a more general formulation with uncertainties.

Naturally, ¢ and = are not independent, but in the enhanced error model we
make the additional approximation 7 (e, e|x) =~ 7(e, ), which has been proven to be
a feasible model with many applications, [17].

The approximation error approach has proven to be a feasible and computa-
tionally attractive alternative to simultaneous estimation of z and p and to using
computationally accurate forward (PDE) solvers. In addition to coping with model
reduction (such as finite elements discretization) related errors, also errors due to
using approximative physical models have turned out to be negotiable. Model re-
duction and unknown anisotropy structures in optical diffusion tomography were
treated in [104, 105, 106|. Missing boundary data in the case of image processing
and geophysical ERT/EIT were considered in [107] and [95], respectively. Fur-
thermore, overcoming errors in domain geometry was treated in [18, 108]. Also,
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in [18, 108| the problem of recovery from simultaneous geometry errors and drastic
model reduction was found to be possible. In [109], an approximative physical model
(diffusion model instead of the radiative transfer model) was used for the forward
problem. In [103], an unknown distributed parameter (scattering coefficient) was
treated with the approximation error approach.

Furthermore, the error estimates given by the approximation error approach are
feasible and often only slightly larger than when accurate computational models are
employed [110].

8.6 Comments

The central issue here, again, is not to underestimate the errors and uncertainties.
The effects of either underestimating or overestimating the errors are the same as
with those with general likelihood modelling, see Section 6.4.

The approach to dealing with uncertainties is mostly related to availability of
computational resources as well as the available computational time. In process
industry both may be constrained and, for example, heavy model reduction may be
needed.

9 Nonstationary problems

This far, we have mainly addressed problems in which the measurements may have
been time-varying but the unknowns have been constants with respect to time.
Inverse problems in which the unknowns are time-varying, are referred to as non-
stationary inverse problems [17, 111]. In addition to describing the state estimation
approach for the estimation of nonstationary quantities, the purposed here is to give
an example of how to approach the modelling of uncertainties.

Several inverse problems are nonstationary in the sense that the unknown is nat-
urally a time-varying entity. These problems are also naturally cast in the Bayesian
framework. Nonstationary inverse problems are usually written as evolution-observation
models in which the evolution of the unknown is typically modelled as a stochastic
process. The related algorithms are sequential and in the most general form are
of the Monte Carlo type [112]. However, the most commonly used algorithms are
based on the Kalman recursions [113, 114, 17]. A review that covers most of the
topics in this section, is given in [115].

We note that if we are studying a transient problem and carrying out temperature
measurements at a number of locations, we may, of course, wish to compute the
temperatures also at locations where measurements were not made. Then, the
overall temperature evolution is also unknown and time-varying. Depending on the
characteristics of the measurement setting and uncertainties, the estimation of the
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overall temperature evolution may or may not be an ill-posed problem. When the
material parameters and the initial and boundary data were known, the estimation of
the overall temperature evolution would reduce to a stable model-based interpolation
problem. Kalman filtering was suggested as suitable for estimation of inverse heat
transfer problems in [30].

Problems in which the primary unknowns are ezplicitly time-varying and can be
modelled as stochastic processes, are called state estimation problems. Examples of
explicitly time-varying variables include the temperature evolution itself, and the
boundary heat flux, which may be poorly known and not completely specified by
the temperature distribution. Naturally, unknown heat sources are usually to be
considered as (explicitly) time-varying. On the other hand, the thermal diffusivity
K, for example, usually depends on time through the temperature evolution 7'(¢)
only.

What is the difference then to standard least squares fitting of, say, a time-
varying boundary flux to transient temperature measurement data? The answer is
the same as with time-invariant Bayesian problems, which is that the state estima-
tion formalism takes systematically into account all uncertainties and errors, and
also yields systematic error estimates for the unknowns. In many seemingly simple
problems, the propagation of errors through the model can turn out to be highly
non-trivial.

The state estimation formalism is also relevant in the estimation of time-invariant
parameters, when it is called state space identification, see for example [116, 117].
Also here, the motivation to use the state space formalism instead of least squares
estimation is the same as above.

We note that there is a major difference between state estimation approach, and
in fitting type algorithms in which the heat equation is (at least implicitly) taken
as accurate and is used as a constraint. The constraint type approach should be
avoided unless the accuracy of the deterministic model is confirmed. The authors
can think of very few inverse problems in which the constraint approach would be
justified.

9.1 Stochastic heat equation

To set the scene, we consider the following state space identification problem. The
temperature evolution is governed by the basic heat equation in IVBP (1), with
the insulating boundary condition gx = 0, and where the Dirichlet condition is
Tp = f(t) where f is a time-varying boundary temperature representing heating by,
for example, a gas torch.

Let us assume that the insulating boundary condition is not exactly fulfilled, and
that the model for the boundary temperature f is based on a single measurement
only. Furthermore, assume that the overall problem is to estimate the specific heat
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capacity ¢, and the thermal diffusivity coefficient x when the density p is treated
as fired, and transient temperature data is collected at specified locations on the
insulating boundary 2y while the boundary control f(¢) is time-varying.

We have at least the following sources of error and uncertainty:

e The insulating boundary condition is not exactly fulfilled but since the ambient
temperature is lower than in €2, we know, from an improved condition such
as (5), that the heat flux is negative.

e The temperature on {2p is not constant and thus cannot be completely specified
by the single temperature measurement.

e We only know the mean density of the object and use a spatially homogeneous
model for the density. In reality, we know that the density is inhomogeneous
and that it could be modelled as a Markov random field with some correlation
length.

e We use a basic projection approach to reduce the degree of ill-posedness and
use a sparse piecewise constant parametrization for x and ¢, while the actual
scale of inhomogeneities is possibly smaller.

e We might be forced to employ an approximate reduced order computational
model that would give biased predictions for the measurements even without
any other uncertainties.

It should be clear that if these uncertainties and errors are neglected in the
modelling, the accuracy and reliability of the estimates for x and ¢ can be highly
questionable. In particular, how reliable are the respective error estimates, such
as posterior covariance, for these parameters? Furthermore, it is evident that the
statistics of the related errors will be time-varying.

To proceed, assume that we are to employ FEM semi-discretization (7), giving
the time-dependent formulation

_ oT
Gs(c p)g

in which the abstract parameter o refers to the errors due to discretization and other
uncertainties. The matrices A; and By are related to the boundary conditions, and
G5 and K are the mass and stiffness matrices, respectively. Due to the uncertainties
and errors, all these matrices are in fact stochastic in the sense that they depend on
the realization of the experiment, that is, the actual unknown coefficients*?. This
means that the model (32) is to be interpreted as a stochastic system of differential
equations which in turn means that the solution of (32) is to be interpreted as a

= Ks(k)T + As(k)T + Bs(k) f (32)

12Note that the term stochastic matriz is also used to refer to matrices whose row and/or column
sums are unity. This is not the case here.
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probability distribution 7(7,¢) at each time ¢. The evolution of probability dis-
tributions of drift-diffusion type model is governed by the Fokker-Planck equation
[118].

We interpret the model (32) as follows. Assume that the initial temperature
distribution is known. Let T,(7,t) be the true temperature evolution of the real
physical experiment at times ¢ = t; and locations ¥ = 7. Then, the predictions
of the model (32) with the stochastic models for all related matrices should be
consistent with the realization 7T,. As in the previous sections, this means that the
probability (7%, t) is relatively high for all ¢ when compared to maxy 7(7,t).

Let us fix the density and consider only the explicit dependence of the FEM ma-
trices on the primary unknowns, and subsequently integrate (32) using, for example,
a single step implicit Runge-Kutta scheme [49] over the time intervals (tx,tx+1) to
give

Tk+1) = F(k,c)T(k)+ B(r,c)f(k)
+ C(k,c) + W(k) (33)

where W, is a stochastic process which means that given a fixed T'(k), T'(k+1) is a
probability distribution. The model (33) is referred to as the (state) evolution model
with respect to the variable T'(k). If we start at a spatial temperature distribution
T'(t) at time tj, the distribution of T'(k + 1) should be consistent with the actual
state Ti(tr+1) as defined above. With the model (33), this means that we have to
be able to model the process W (k) accordingly.

9.2 State space representation

A suitable statistical framework for dealing with unknowns that are modelled with
stochastic processes and which are observed either directly or indirectly, is the state
estimation framework. In this formalism, the unknown is referred to as the state
variable, or simply the state. For treatises on state estimation and Kalman filtering
theory in general, see for example [114, 117]. For the general nonlinear non-Gaussian
treatment, see [112], and state estimation with inverse problems, see [17].

In the following, we consider only the state estimation problems with the most
common assumptions. It must be noted that these assumptions are not necessary
for the general state estimation problems, but the associated estimation procedures
may become much more involved and that the exact interpretation of the results
may change.

The standard discrete time state space representation of a dynamical system is
of the form

Tky1 = Fk(xk,wk) (34)
dy, = Gk(ﬁkﬂ)k) (35)
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where wy, is the state noise process and vy, is the observation noise process, while (34)
and (35) are the evolution model and observation model, respectively. We do not
state the exact assumptions here, since the assumptions may vary somewhat result-
ing in different variations of Kalman recursions, see for example [114, 119]. It suffices
here to state that all sequences of matrices are assumed to be known and that the
state and observation noise processes are temporally uncorrelated and that their (sec-
ond order, possibly time-varying) statistics are known. Under these assumptions,
the state process is a first order Markov process. The first order Markov prop-
erty facilitates recursive algorithms for the state estimation problem. The Kalman
recursions were first derived in [113].

9.3 Prediction, filtering and smoothing

Formally, the state estimation problem is to compute the distribution of a state

variable z;, € RY given a set of observations d; € RM, j € Z where 7 is a set of

time indices. In particular, the aim is to compute the related conditional means and

covariances. Usually, 7 is a contiguous set of indices and we denote Dy = (dy, ..., dy).
We can then state the following common state estimation problems:

o Prediction. Compute the conditional distribution of x; given Dy, k > /.
o Filtering. Compute the conditional distribution of z; given Dy, k = ¢.

e Smoothing. Compute the conditional distribution of x; given D, k < /.

The solution of the state estimation problems in linear Gaussian cases is usually
carried out by employing the Kalman filtering or smoothing algorithms that are
based on Kalman filtering. These are recursive algorithms and may be either real-
time, on-line or batch type algorithms. In more general cases, one has the choice
between the MCMC type particle filtering algorithms and the approximate extended
Kalman filtering variants.

9.4 The linear Gaussian case

For linear Gaussian state estimation problems, all posterior densities are Gaussian
and one only needs to compute the conditional means and covariances. We write
the state space representation in the form

Tyl = Fkl’k + Bkuk + Sk + wg (36)
dk = Gk.iﬂk + v (37)

where uy, is the control input, By, the related control response model (if applicable),
and s; is a deterministic term that can be due to, for example, nonzero state noise
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mean. The term s, practically never appears in the literature although it is almost
always nonzero in real problems.

For these problems, the densities and, in particular, the conditional mean (min-
imum mean square) estimates, can be computed analytically. Furthermore, these
can be computed recursively with the Kalman filtering algorithm. Let us denote
E(xr|D¢) = xxe and cov (x| Dg) = Tge. The standard innovation form Kalman
filter and the (one step) predictor recursions take the form

Tpk—1 = FroaTp_1jp—1 + Sp—1 + Br_1ugp—1 (38)
D1 = Froilpopo1Fit” 4 Ty, (39)
Ky = Tep1Gr (GilpiGi' + ka)_l (40)
Tie = (I — KpGr)Trppa (41)
Tre = Thpp—1 + Ki(yo — Grpp—1) (42)

where xy, and ), are the conditional means of the filtering and prediction densi-
ties, respectively, and Kj is the so-called Kalman gain. Equations (38-39) are often
called the time update while equations (40-42) are called the measurement update.

As noted above, on-line imaging, perhaps for quality assurance purposes, but
without automatic control is feasible even when the state estimates are not obtained
immediately after the observation y;. Furthermore, in transient type situations the
estimates can possibly be computed completely off-line. The two relevant schemes
for these two cases are the fized-lag smoother xj_p|r, where h > 0 is the lag in the
estimation and the fized-interval smoother Tt s where ¢, is the final time of the
observations.

How much better the smoothed estimates are when compared to the real-time
Kalman filtered estimates, depends on the overall state space model in a complex
way. In some cases the filtered estimate errors possess a delay type structure which
is largely absent in the smoothed estimates. This is typical behavior especially in
cases in which the observation model is not exceptionally informative!'® and the state
evolution model is not very accurate. With this we refer to the situation in which

the uncertainties are significant and thus var ||z || > var ||wg|| does not necessarily
hold.

9.5 Nonlinear non-Gaussian cases

The extended Kalman filter algorithms (EKF) form a family of estimators that do not
possess any optimality properties. For many problems, however, the EKF algorithms
provide feasible state estimates. For EKF algorithms, see for example [114, 17].

13In these cases the maximum likelihood problem max 7(y;|x;) is not stable
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The idea in extended Kalman filters is straightforward: the nonlinear mappings
are approximated with the affine mappings given by the first two terms of the Taylor
expansion. We note that the notion of extended Kalman filter is not completely fixed
and several levels of refinement can be referred to with this term. The state in which
the linearization is computed, will be denoted with z}. We describe briefly the three
most common variants of the extended Kalman filters.

In the global linearization approach, the mappings F; and G; are linearized
at some fixed (time-invariant) state z; = x* so that we have Fi(z;) ~ Fi(z*) +
Jp o+ (2 — 24) = by + Jp, |2+, and similarly for G;. Here Jp, is the Jacobian map-
ping of Fi. The rationale behind global linearization is that the Jacobian does not
have to be recomputed during the iteration. It is clear that a good guess of the
“mean state” x* is a prerequisite for this approximation to be successful.

The version of extended Kalman filter that is most commonly used, is the lo-
cal linearization version, in which version the mappings are linearized at the best
currently available state estimates, either the predicted or the filtered state. This
necessitates the recomputation of the Jacobians at each time instant. Note that the
linearization is not necessarily needed in the time update when the predictor xy,—
is computed. This applies also for the measurement update. Furthermore, one does
not have to approximate the control term when the state estimates are computed.
The recursions take the form

Tep—1 = Feo1(Tp—1jp—1) + Sk—1 + Br—1(us_1) (43)
Fijp—1 = JFk,lrk—uk—lJFk,lT + 1w, , (44)
Kp = Tip-rJe,” (Jo,Trp-rde, " +T0) " (45)
Due = (I = KJay ) Drjp—a (46)
Tk = Tpp—1+ Ki (yk - Gk(xk\k—l)) (47)

The linearizations are needed only in the computation of the covariances and the
Kalman gain. However, if the computation of the Jacobians is faster than for exam-
ple Gy (zkk—1), then the affine approximations could be used in (43) and (47).

The third version is the iterated extended Kalman filter. Assume here that the
state evolution equation is linear and thus there are no problems in computing the
prediction covariances, and let the observation model be nonlinear. The idea is
easiest explained based on the Bayesian interpretation of the Kalman filter. To
keep the treatment brief, we note that the measurement update is equivalent to the
computation of the conditional mean estimate for the state x; given the measurement
history (di,...,dy), which is E(xy|dy,...,d;). In Section 4.3 we saw that in the
Gaussian case the computation of the mean of the posterior density m(xy|dy, .. ., dx)
coincides with the computation of the maximum of the density. It can be shown
that we have

m(zgldy, ..., di) o< w(di|zg)m(TE|dyy - ..y di—1) (48)
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where the first density on the right hand side is the likelihood density and the latter
is called the prediction density.

Assume that the predictor covariance I'y,—; and I',, are positive definite for all
k so that the Cholesky factorizations F,;‘z_l = Ly"Lyand T',! = LT Ly exist. In our
case the maximization of the posterior density is equivalent with the minimization
of the following quadratic functional so that we can write

Tgly = arg mrin {HLl(yk - sz(@)”%
+ Lo(z — x5} (49)

which can be solved for example with the Gauss-Newton algorithm. Thus, in the
iterated extended Kalman filter, we would compute (43-44) as before, but (45-47)
would be replaced by first computing the estimate xy, by minimizing (49) and then
computing 'y, from (45-46) so that the Jacobians Jg, are recomputed at z;. The
case of nonlinear state evolution equation is an isolated problem of solving a non-
linear differential (difference) equation. The evaluation of the predictor covariance,
however, may call for a Taylor series approximation. This is turn may be a complex
undertaking, see [120| for an example that is related to hydrological flows.

9.6 State space identification

In practical problems it is usually the case that one or more of the state space terms
is at least partially unknown. While careful analysis of the measurement system may
determine the observation model relatively accurately, the state evolution model is
always inaccurate to some extent.

In the batch type optimization approaches the task is to estimate the time-
invariant parameters for example by the maximum likelihood method. However, if
the unknown parameters are assumed to be time-varying, it is possible to augment
the state variable to include the unknown parameters.

Denote the unknown physical parameters that are to be estimated by . Several
parameters of the state space representation might depend on the parameters u. As
a typical example, we might be able to sustain the model T, = 021 but cannot
specify a fixed 02, and thus have to come up with a model 7(p) with u = o2.

The idea is to compute the likelihood of the observations Dtp = (dy,.. .,th)
given the parameters p and maximize the likelihood with respect to pu, that is,

max (D, 1) (50)

The likelihood depends on the unknown parameters. For example, consider the
case in which the initial state distribution is known. Then, in the case of a linear
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Gaussian problem, the likelihood 7(D;_|u) can be written in the form [117]

tp

1
7T(DtF jp) =C— 2 Z (log L] + 6tTFt|t—1€t | M) (51)
=1
where C' is a constant, | - | denotes determinant of a matrix, e, = d; — Gyzy—1 is

the prediction error and the notation (-| i) refers to all variables and their time
evolutions being calculated with parameter pu.

There are certain other analytical forms for the likelihood with various types
of unknown parameters. However, most often it is necessary to use Newton or
quasi-Newton type methods with numerically approximated gradients to compute
the maximum of (51). A particularly suitable algorithm is the BFGS quasi-Newton
algorithm. Some numerical considerations are given in the general state space ref-
erences and more details can be found for example in [121]. See also [122] for the
application of the expectation-maximization (EM) algorithm in this problem.

9.7 Approximation errors and model reduction in nonsta-
tionary problems

The treatment of the systematic approximation error approach for nonstationary
inverse problems is outside the scope of this paper. As with stationary inverse
problems, the approach is usually relatively straightforward but may be tedious in
the sense that it again calls for systematic modelling of the uncertainties.

The nonstationary approximation error approach was developed in [123, 110,
124], in which linear state estimation and nonlinear state space identification prob-
lems that were related to heat transfer, are discussed. This approach is applicable to
handling model reduction as well as long time stepping. Both the evolution and ob-
servation models are modified when approximation errors are present. The approach
was further developed in [125, 120]| to employ an importance sampling type mod-
ification which involves iterative recomputation of statistics of the approximation
error while the data is accumulated.

We stress again the importance of the feasibility and consistency of the models
with reality. For an example, we refer to [110] in which the estimation of diffusivity
and specific heat capacity is considered. It is shown that if approximation errors are
not taken into account systematically, then error estimates are significantly over op-
timistic, and it is essentially impossible to recover the true values from the resulting
model.
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10 Computational aspects

As with all iterative methods, computational efficiency of sample-based inference is
critical if estimates are to be evaluated in any reasonable time. In this section we
discuss model reduction and other ways of speeding up evaluation of the forward
map, and considerations for accelerating MCMC sampling.

10.1 Model reduction

In Section 9, we referred to model reduction related issues, and discussed one route
for coping with model reduction in Section 8.5. The use of reduced models within
MCMC is discussed in Section 10.6. We now discuss briefly how model reduction is
carried out. A systematic approach to model reduction, especially in the context of
dynamical systems, can be found in [126].

With forward problems that are induced by PDE’s and the related IBVP’s, the
most obvious approach is to use coarse meshes. As in Section 2.5, consider the
finite element approximation (7). How accurate the finite element solution with
this approximation is, depends on the particular mesh used (how well its density is
adapted to the local temperature gradients), the dimension N and the integration
method used to solve the system of ODEs.

Here, the dimension N is the obvious target for model reduction, as is the length
of the time steps 0t = t1 —tx. The theory of finite element methods and numerical
methods for ODE’s give error estimates to the solutions but these are only up to
(usually multiplicative) constants, see references in Section 2.5. In practice, simula-
tions over the expected range of material and other parameters have to be carried
out to find out about the actual errors of the forward solvers.

One approach to the assessment of tolerable errors would be that the maximum
errors, over the expected range of uncertainties, should be smaller than the standard
deviation of the (additive) errors. This will typically lead to a very dense discretiza-
tion and dense time stepping. Due to the nature of inverse problems, if the model
errors are larger than, say, 1-2 standard deviations and they are not taken into ac-
count in any way, there is a high risk that the estimates and error estimates are
highly misleading.

The related errors can, however, be handled up to a degree as explained in
Sections 8.5 and in the references given in Section 9.7, as well as the methods in
Section 10.6.

Another model reduction type is to write the unknown T as a projection x onto
a small-dimensional subspace, that is,

p
k=1
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Naturally, the basis {3} determines the characteristics of Z that can be retrieved in
theory. Very often with finite elements, for example, the basis {U; } is adapted to the
FEM basis functions ¢, in the sense that v; are characteristic functions of (unions
of) the elements used to construct the FEM basis. This approach makes it easy
to compute the integrals in the variational form. A multilevel coarsening scheme,
in which the FEM basis functions are also variationally coarsened, is applied to an
inverse problem in [127].

The state basis is usually obtained by sampling the parametric input space,
propagating through the forward model, and computing a basis which spans the
space of the resulting states. Popular methods for sampling the inputs vary little
in methodology but go by many different names. One very popular method is
to select the inputs one expects for the particular problem. Then, the resulting
states are converted to an efficient basis by means of a singular value decomposition
(SVD). This method goes by many titles including proper orthogonal decomposition
(POD) [68], principal components analysis (PCA) [60], [20], Karhunen-Loeve (K-L)
expansion [46], and empirical orthogonal functions (EOF) [62], depending on the
community.

In [128] a greedy sampling algorithm is employed to determine appropriate sam-
ple locations to reduce errors between full-order and reduced-order outputs, giving
an algorithm that is suitable for large-scale systems. An example is given for the
thermal design and analysis of heat conduction fins.

The SVD provides insight into redundant data and guides the user in deciding
how many basis vectors to retain'?. In fact, the resulting basis can be shown to
be optimal in the sense that the representation of the states in the basis produces
minimal error in the 2-norm.

The essence of POD is as follows. Let again Z € RY be the approximation as in
(52), where N might be too large for our purposes. Assume that the prior model
m(x) for the unknown be proper with finite covariance matrix I',. Note that we do
not require 7m(x) to be a Gaussian distribution. Let the eigenvalue decomposition of
I'; be

N
Lo = egron”
k=1

and let the ordering be such that A\ > Mgy for all k. It can be shown that if the
basis in (52) is chosen so that ¥ = ¢y, the approximation in (52) is the best in the
mean square sense for all p, that is,

2

E|x — QEHQ =FE

p
r — Z(Qf, 79k>19k:
k=1

M Note that for symmetric matrices, the singular value decomposition is equivalent with the
eigenvalue decomposition.



BAYESIAN INVERSE HEAT TRANSFER 52

attains its minimum if we set ¥, = . This holds for all p. It is also important to
note, that the approximation z € S, C RY, that is, Z is represented in a subspace
of dimension p, but is a vector in R .

How to handle the related approximation error due to the truncation of the series
representation? First, note that when p = N, we have = x since the eigenvectors
{9)} are orthonormal and form a complete set in RY. Consider again the linear
additive error model d = Ax + e. Then, we can write

p N
r=> (w0 + > (v,0) =T+i
k=1 k=p+1

and further

d = Az +e=Ax+ AT +e
= AT +e(x)+e

This means that the effects of the truncated series representation for the unknown
can be handled within the approximation error formalism explained in Section 8.5.
The above hold for all orthonormal bases {;}. However, if we have set ¥y = @,
the covariance of £(x) is minimized, that is, the least bad approximation error is
induced.

10.2 Forward solvers

Because computation of the forward map happens within each step of the MCMC,
the speed of the overall computation depends critically on efficient solution of the
governing PDEs.

For FEM meshes or FDM grids with up to tens of thousands of nodes, or in BEM
partitions with up to thousands of elements, efficient solution of the systems (6) and
(8) can be performed by first factorizing matrices. For 2-dimensional problems, effi-
cient solution for FEM or FDM is achieved by first operating by a bandwidth reduc-
ing permutation of the sparse system matrix, followed by Cholesky factoring [129]
and solution. For 3-dimensional problems with fine meshes, multigrid solvers are
significantly faster, and also provide access to cheap solutions at coarse scales that
may be utilized within the MCMC to decrease overall compute time [127]. When
time-dependence is evaluated by convolution, interpolation methods similar to fast
multipole methods (FMM) [130] are efficient [51].

When changing the thermophysical properties in an iterative optimizer or MCMC,
a straightforward approach is to reform the system matrices at each iteration. How-
ever, it is also feasible to directly maintain the QR factorization in BEM, and the
Cholesky factorization in FEM or FDM [129], with gain in computational efficiency.



BAYESIAN INVERSE HEAT TRANSFER 53

Also possible is direct updating of solutions using the Woodbury formula [34| though
this is numerically unstable in the long term.

Both FEM and BEM formulations also allow efficient calculation of derivatives.
In a FEM formulation, operation by the Jacobian may be performed using only
solutions at the current state [131]. In BEM formulations, expressions for the
Fréchet derivative of the forward map allow evaluation of the gradient with re-
spect to the boundary by solving a non-homogenous equation with the current BEM
matrices [132].

10.3 Precomputations

Computation of fixed quantities needed in each step of the MCMC may be performed
once at initialization, for substantial gain in efficiency. For FEM systems with a
fixed mesh, the linear map from thermophysical properties to system matrix may
be precomputed, as can the bandwidth-reducing permutation. In solvers based on
BEM or FMM, precomputation and tabulation of the fundamental solution and
geometric terms is critical to producing efficient code.

When using fast surrogates for the forward map [133, 134] or model reduction,
these can be precomputed along with the enhanced error model discussed in Sec-
tion 8.5.

Computational cost of evaluating the prior distribution is often neglected, though
it can be significant particularly once efficient methods for the forward solver and
likelihood evaluation have been implemented. For prior models using neighborhood
structure, or other spatial features, it is often important to use efficient data struc-
tures with precomputed geometric terms.

10.4 MCMUC practicalities

Practical computation generates a chain of finite length, so an obvious question is:
how large does N, need to be for estimates evaluated via (25) to be sufficiently
accurate? While the central limit theorem guarantees finite variance in estimates, it
gives no hint to the size of the variance in practice. Similarly, the ergodic properties
of a finite chain may be imperfect so that there remains some residual effect of the
starting state, and the chain may not be effectively irreducible, perhaps getting stuck
in a mode of the distribution and giving no clue to the presence of other modes.
These practical issues need to be diagnosed from the computational implementation.

To a large degree the problem of dependence on starting state may be mitigated
by discarding the ‘burn-in’, that is, throwing away the m samples at the beginning

of the chain before the chain has become independent of the starting state [135].
Ng+m

Inference is then based on the N, samples {x(i)}i:mﬂ.
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A strategy that can be taken, particularly when debugging code, is to run mul-
tiple chains (typically of the order ~ 10) using the same MCMC algorithm but
starting from randomly chosen starting states. The problem of the chain getting
stuck is usually identifiable this way. This type of an approach is also often used
when diagnosing whether optimization algorithms have got stuck in a local opti-
mum. Ideas for selecting a starting distribution are discussed in [136]. The sample
mean of any property g is approximated by computing over each chain,

Ng
_ I i
v =3 ;g (@) (53)
and the sample variance

ox, = ﬁ ZS (9 (=) —an.) (54)

=1

and check that the intervals gy, & 3o, substantially overlap. We increase Ny until
this check is satisfied. This gives a check against multiple possible problems with
MCMC including dependence on the starting state, the possibility of the chain get-
ting stuck in local modes, etc. This exhaustive computing may be called the “many
long chains” approach [136, 69|, and is a good self-consistency check of ergodic
properties. Of course, these checks indicate that the chain is mixing and converg-
ing in distribution; they do not prove that the chain is converging to the correct
distribution. To check convergence to the desired distribution one often performs
transformations on the MCMC that should have no effect on the equilibrium distri-
bution, such as varying move ratios, and verify that the output statistics are indeed
unchanged.

10.5 Efficiency of the MCMC

Efficiency of an MCMC algorithm can be measured by how quickly the sample mean
in (53) converges to the asymptotic value E(g(x)|d), as Ny increases, that we want
in (25). Although we are guaranteed that E(gn,) = g and that limy, .. gy, = g by
the central limit theorem [68], that gives no idea how accurate this estimate is for
finite ;. In practice the accuracy needs to be determined from the chain, which
can be done using standard results from time series.

. ; Ns . . . .
Since the sequence of states {x(l)}izl is a realization from a Markov chain then

SO is {g (x(i)) }f\;l The sum defining gy, may be viewed as the output at one time of

a running-mean filter when the input is the (infinite) sequence {g () }. Since the
filter relates the autocorrelation of input and output sequences, and the variance is
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just the autocovariance at zero lag, it follows that

) = 52| 3 0=

:_Ns+1

(55)

where p; is the correlation coefficient of the input with lag j. The term in the brack-
ets is the integrated autocorrelation time (IACT), denoted by 7,. Since var (gn,) =
var (g)/Ns for independent samples, as quoted in Section 4.4, the TACT gives the
effective number of samples with the same variance reducing power as one inde-
pendent sample. When N, > 7, we have 7, = >>°°__ p;. As with estimation of
power spectra, time windowing or spectral smoothing is needed for practical esti-
mation of 7,. A suitable practical estimator is given by using sample estimates of
Ym = Pam + Pam+1 and truncating the sum at 2n terms when v, .1 > 7, or v,+1 <0,
that is, the sample estimates are non-decreasing or go negative |69, 137, 138|.

The TACT is a measure of relative efficiency of a MCMC scheme since small
IACT means that a shorter chain, using less compute time, is required to calculate
results to a given accuracy, and hence is more statistically efficient. In a standard
MH scheme, this means tuning the proposal distribution to give a minimal value for
IACT. Proposal distributions may be tuned in many ways, for example in random
walk proposals, the width of the window can be tuned for particular problems since
it greatly affects statistical efficiency and the TACT, see [67, 139]. The example
in Section 5.1 shows the effect of choosing window sizes. In inverse problems, it is
common to construct proposal distributions using a number of moves, giving a chain
that has a mixture kernel [131|. Each move has an associated proposal distribution
that is chosen with probability p;, > . p; = 1. Tuning the p; can also greatly affect
statistical and computational efficiency, see for example [140].

10.6 Acceleration schemes for Metropolis-Hastings MCMC

The advantages of MCMC based inference come at the computational cost of solving
the forward map typically hundreds of thousands times to explore the posterior
distribution. Hence much research effort has gone into finding ways of accelerating
the basic MH algorithm. We review several schemes that have proved useful in
solving inverse problems, see also [141]. As with all variants of the MH algorithm,
these schemes may be viewed as ways of improving the proposal distribution to give
better mixing.

Simulated tempering. Consider the case where the MH algorithm is used to sam-
ple from posterior distribution 7(-) using some proposal distribution, and it is found
that the resulting chain is evolving slowly, or worse still, is getting stuck. Simulated
tempering [142] (with the name and idea adapted from simulated annealing) defines
a sequence of distributions {m,(-)}i_, where 7y = 7 and m,(-), mo(*), ..., 7p(-) are
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distributions that are increasingly easier to sample from. The distribution over the
augmented space is taken as
m(x, 0) = Neme() (56)

where A\g, A1, -+, Ay are pseudo prior constants with Zle A¢ = 1. Transitions for a
fixed k are derived from the original proposal, which are interspersed with proposals
that change k (perhaps by a random walk in k) with both accepted/rejected by a
standard MH algorithm. Samples from the conditional density m(z,¢|¢ = 0), are
samples from the desired distribution.

A simple tempering scheme, used to overcome difficulties with multi-modal dis-
tributions, is given by the sequence of distributions m,(z) = A\ (z) which are
increasingly unimodal, where 1 = 3y < (5 < --- < (p are inverse temperatures.
The opposite regime, of increasing temperature, has found greater success in in-
verse problems where high-accuracy data leads to posterior distributions that are
too narrow to easily sample [143].

Parallel tempering is similar to simulated tempering except that the P chains
(one for each value of ¢) are maintained simultaneously. An example is the Metropo-
lis coupled MCMC in [144] that simultaneously runs chains with the spatial param-
eters increasingly coarsened, defining a sequence of distributions as above. Evo-
lutionary Monte Carlo algorithms are examples of parallel tempering with moves
inspired by the genetic optimization algorithms [145].

Parallel rejection. The parallel rejection algorithm utilizes m computer proces-
sors to give a straightforward parallelizing of the serial MH algorithm [146, 147].
Each processor runs an independent instance of the MH algorithm initialized at
state (™ to give the m independent Markov chains {d)(“k)};o:o forr=1,2,....m
with ¢" = 2. Enumerate the resulting states by s (r,k) = 7 + m (k — 1) for
r=12,....mand k= 1,2,... giving the total ordering s = 1,2,.... The m par-
allel chains are run until the first non-trivial acceptance (in the order s) occurring
at Smin, that is, the minimum s for which ¢(s) # z(t). Then set 29 = (™ for
j=n+1,n+2,....,n+ Sun— 1 and & (n + syuiw) = ¢©mn)| and reinitialize.

For the acceptance rate v and time for transactions relative to the forward map
[, the speedup factor is

1-(1-a)" 1
« 1+n8

Using approzimations to the forward map. The model reduction methods of
section 10.1, and surrogate models mentioned in section 10.3, can achieve significant
speedup. However, by approximating the forward map, these methods only give
access to an approximation of the true posterior distribution, see also [148]. The
approximation error approach, described in Section 8.5 mitigates the effects of this
approximation.
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Sampling from the exact posterior distribution while utilizing a fast approxi-
mation to the forward map can be achieved using the ‘delayed acceptance’ algo-
rithm [131]. This algorithm allows a state-dependent approximation 7} (+|d) to the
posterior distribution calculated using a cheap approximation to the forward map.
Once a proposal is generated, to avoid calculating 7(z’|d) for proposals that are
rejected, the algorithm first tests the proposal using the approximation 7% (z’|d) to
create a second proposal distribution that is then used in a standard MH algorithm.
Approximations based on local linearizations [131], coarse partitioning in BEM [140],
and coarsened solutions available in a multi-level (multigrid) solver [127], have been
used, in the context of inverse problems.

Adaptive MCMC'. Adaptive MCMC algorithms optimize performance by learning
better proposal distributions from the past output of the chain [149, 150]. Recent
developments in the theory of adaptive algorithms have produced simplified require-
ments that ensure ergodicity, allowing wide-ranging application [151], including au-
tomatic tuning of proposal windows [152].

11 Further topics

In standard inference problems, such as the conventional parameter estimation prob-
lems, the end task is to obtain, say, a point estimate or a few estimates as well as
some information on the spread of the variables. However, very often the choice of
unknown parameters is dictated by the structure of the forward problem and not
by the end objective of the overall task. Although it might be interesting to view
the time-varying temperature distribution in a target volume visually, the end task
might, however, be to use these state estimates and their distribution as a control
input to the process. The end objective in such a case would probably be the yield
of the process, or prevention of a system failure.

In this section, we treat some additional topics and types of problems, for which
the Bayesian approach provides a natural framework. In particular, outside the
Bayesian framework, these may not be accessible at all. As an example, problems
with variable (unknown) dimensions are practically impossible to formulate as a
feasible optimization problem. Another example is that of model selection, often
between two possible prior models.

In Bayesian statistics, these are more or less standard topics. With inverse prob-
lems, however, many of these possibilities have seldom or never been investigated,
yet. Partly, this is due to the special structure of inverse problems, the often great
dimensionality and/or the poor information content of the measurements.

In addition to the topics treated in this section, several important ones, such as
model validation, robustness to prior design and invariance, have been omitted in
this paper. As general references to this section, including the topics that are not
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discussed here, see [153, 26, 154, 61].

11.1 Predictive inference

Assume that instead of finding out the unknown =z, the final goal is actually pre-
dicting a random variable g, possibly a future observation, with weather forecasting
serving as a natural example. Assume further that data (measurements) d has been
obtained to estimate x, that is, to obtain the posterior distribution m(x|d). We can
often assume that the random variables d and ¢ are mutually independent.

The traditional (non-Bayesian) approach would be to compute a point estimate
for z and then estimate g based on this point estimate. In the Bayesian framework,
however, this is handled differently since there is uncertainty in x (even) given d
[26]. Thus, assuming mutually independent d and g and using the Bayes theorem
repeatedly, we get

wwwz/mmmmwm

which gives the uncertainty in g given the only available data d and the associated
likelihood and prior models. The predictive distribution 7 (g|d) implicitly incorpo-
rates the uncertainty in the unknown x. As mentioned in Section 4.5, note that

m(g|d) # m(g|z.)

generally for any fixed xz,, including z, = E(z|d), and also that the posterior uncer-
tainty proposed by m(g|z,) is usually significantly too optimistic.

11.2 Combining data from different experiments

Assume that we carry out two different experiments with the unknowns x and p,
which experiments carry complementary information on the unknowns. Let y and d
be the (mutually independent) data and 7(d|z, ) and 7m(y|x, 1) be the associated
likelihoods.

Then, it is straightforward to see that

m(x, puld,y) < w(y|z, p)w(d|z, p)m(z, 1)

that is, the product of the two likelihood and the prior models. This is the optimal
and natural way to combine data and to take into account the information provided
by the experiments, as well as the relative uncertainties.

Sometimes one experiment can be arranged so that the associated likelihood
depends only on one of the unknowns, for example, 7(y|z,u) = 7(y|p). Assume
further that we are primarily interested in z, so that we write

ﬂﬂ&@u/%@mwume@wmu
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which may yield itself to computationally efficient implementations, possibly via the
approximation approach in Section 8.5. Again, 7(z|d,y) # 7(x| ., d,y) for any u.
and the same comments as in Section 11.1 apply here.

11.3 Optimization of experiments

First, we make a reference to the philosophy of deterministic regularization ap-
proaches. In these methods, regularization is forced to make the computation of
the solutions possible in the first place. Thus, the measurement model, such as
d = Ax + e comes first and regularization is arranged to counter the ill-posedness of
the operator A.

In the Bayesian framework, we first have to model the uncertainty in unknowns,
that is, we construct the prior model 7(z) or m(z, ). Then, the measurements
are carried out and the posterior uncertainty is assessed. If this uncertainty is too
large or the posterior model is improper, we don’t go back to the prior model and
adjust it to make the posterior model “nicer”.!> As noter earlier, one of the most
appealing topics in the Bayesian framework is that the modelling of the uncertainties
is separate from the modelling of the measurement process

What we can adjust in Bayesian statistics, is how the measurements are carried
out, and furthermore, how to do this so that the measurements convey maximally
complementary information relative to the prior uncertainty. Note that how the
measurements are made fixes the model A.

To illustrate this idea, consider the standard case of linear Gaussian likelihood
and prior model:

d=Ax+e, e~N(0,T.), x~N(z.Ty)
with mutually independent (e, ). The posterior covariance is
Ty = (ATT7A+T;1)

see Section 4.3. In the worst case, assume that A and I',! have the same null space.
Then, the matrix ATT;'A + T';! is not invertible and the posterior distribution
is improper. In other words, the posterior uncertainty is infinite in the following
sense: there is at least one vector 2’ of unit norm so that 7w(x + ca’|d) = 7(z|d) for
arbitrarily large c.

The task is to make such measurements that the uncertainty in the likelihood,
which is determined (in the above simple example) by the joint structure of A and T',

15 At least when Bayesian inference is carried out honestly. Some Bayesians interpret the notion of
“subjective probability” in the sense that they can do this. It has also been claimed that employing
“too good physical models” is no longer Bayesian because there is not enough room for subjectivity.
See [61, Chapter 11] for a brief discussion on this topic.
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is complementary to the prior uncertainty. We need a measure for this uncertainty,
such as the product of posterior variances, that is, 8 = IL,I';4(k, k). We would
then try to optimize the measurements, and thus A, so that N is minimized, or at
made least tolerably small. See [100] and [155] for an impedance tomography related
example in stationary and nonstationary cases, respectively.

11.4 Models of variable dimensions

Consider the case where we know the unknown physical coefficient to be piecewise
constant, but that we don’t know the number of subdomains nor the boundaries.
In such a case the unknown naturally assumes a representation whose dimension is
variable.

As an example, let there be p models My, &k = 1,...,7r. Let us fix the prior
probabilities of these models as p, = P(My,) with >, pr = 1, and where P(-) denotes
probability. We write

M, - dN’/Tk(d‘xk), T € A

As an example, consider the reconstruction of a spatially one-dimensional variable
x(t) which we discretize in N points. We know that z(t) is usually a spatially smooth
function but that occasionally there can be a number & of significant jumps. Thus,
we model z(t) as the combination of a spatially smooth process z(¢) and a jump
process. In such a case, we can set xy = (21,...,2n,t1,...,tk, 01, .., Bk), where t;
specify the locations of the jumps, 5, the jumps and £ is the number of jumps. Thus
X, CRN*2 k=0,...,p— 1 and the physical variable x(t) can be written as

x(t) = 2(t) + /Z Bed (T — tp) dr. (57)

Thus, the models My, correspond to different numbers of jumps.

It is clear that for such a model we cannot compute a conventional optimization
type solution, not to speak of posterior uncertainty of z;. Thus, sampling using the
reversible jump MCMC formulation seems to be the only option here.

It is to be noted that even when we have computed the samples, we cannot
compute the posterior mean of x; since they are of different dimensions. We can,
however, easily compute the conditional mean of (57) a well as spread estimates.
See [93] for an example of such a procedure.

11.5 Model selection

This topic is closely related to that of Section 11.4, but the objective is different. As
an example, assume that we carry out measurements on a target and the objective
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is to determine whether the target is faulty, that is, the objective is quality control.
Assume also that we have constructed prior models 7 (z) and my(x) for faulty and
intact targets, respectively. If we carry out exploration fixing either of these two
models as a prior, we will obtain estimates that conform to the employed prior. If the
model my(x) corresponds to a spatially smooth function and we use this prior model,
we get smooth reconstructions. Correspondingly, if the prior model 7 (x) allows for
jumps, we are likely to obtain jumps whether the actual target contains jumps or
not. Rather than reconstructing the variable x, the objective here is to determine
which of the models 7 (z) or my(x) is better supported by the measurements, that
is, to select the (prior) model.

More generally, let there be p competing models which we denote by My, k =
1,...,p. Let the prior probabilities of these models be p, = P(My). As in Sec-
tion 11.4, these models may not allow for parametrizations of the same type and the
parametrizations often have different dimensions. For example, let x represent the
inhomogeneous thermal conductivity and let M; be a model in which x is constant
in two different subdomains while in M, there is a third subdomain. Furthermore,
let M3 be a model with x(7) = 320 x3(£)p(7) with spatially smooth o;(7), and
SO on.

The task is then to select a model which is best supported by the measurements
d. First, note that formally

m(z, M) = m(z| M)p(M)

and also
m(x) = Zﬂ(ﬂf\Mz)P(Me)-
¢
Let the prior model for My, be 7. The posterior (M |d) is a discrete distribution,
and we have
Pr ka Wk(d‘l’k)ﬂ'k(l’k) da:k
>epe [y, me(d|we)me(e) dae

The natural choice is to select the model for which P(M|d) is highest, that is, the
discrete MAP estimate. It is clear that the conditional mean E(M |d) does not make
any sense here.

Again, the most feasible approach to carry out model selection is usually via
MCMC. The posterior probabilities of the models are then obtained simply from the
dwell times on the models along the chain. The construction of a feasible reversible
jump transition kernel, however, may be a tedious task. For general accounts on
Bayesian model selection and validation, see for example [61, 154].

P(M = My |d) =
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12 Review of Bayesian treatises on inverse heat trans-
fer problems

While there is a relatively small body of existing work in Bayesian analyses of
problems in inverse heat transfer, the literature already contains several quite so-
phisticated applications and is well worth consulting [133, 156, 157, 158, 36, 159,
35, 160, 161, 162, 163, 101, 42].

In [133], examples are given of building surrogates to a complex forward map
based on measured data, integrated with analytical and numerical modelling, for an
application in thermal design of wearable computers, see Section 10.3. These sur-
rogates use ‘kriging’, that is, fitting of Gaussian process models, to allow fast simu-
lation of the forward map for subsequent inference, including parameter estimation
in inverse heat transfer, see Section 7.2 for some details on Gaussian processes.

Modelling and recovery of thermal history is considered in [156]. The work
considers both simulated and real measurements in developing and implementing
MCMC based inference. Prior modelling, data modelling, and interpretation of
estimates, are prominent in this well executed example of Bayesian methodology
applied to a scientific question.

In the series of articles [157, 158, 36, 159|, recent methods in computational
Bayesian inference and spatial statistics are applied to a range of problems in inverse
heat transfer, with emphasis on inverse heat conduction problems. These articles
provide a thorough development of formulation of the likelihood, prior distribution
modelling including hierarchical modelling and the use of hyperpriors, formation of
the posterior distribution, and design of efficient MCMC samplers. In [157], appli-
cation to the THCP of boundary heat flux identification in one and two dimensions
is given, with demonstration of the methods using simulated data. The accuracy
of point estimates with quantification of uncertainties is considered in [158], along
with model reduction, with application to detecting heat sources. Extensive discus-
sion of hierarchical methods in Bayesian modelling is presented in [36], to model
uncertainties in sensor location as well as the primary unknowns of boundary flux
and heat sources. Notable is the use of conjugate priors over hyperparameters. Pos-
terior mean and uncertainty estimates are presented that demonstrate the value of
the Bayesian approach that is taken. In particular, the value of using ‘conjugate’
hyperpriors is established. In Sections 3.1 and 8.4 we have highlighted the use of
‘reference’ hyperpriors that can have additional desirable properties, see [57]. In
these articles, the unknowns are represented using the same FEM basis used for
numerical simulation with GMRF priors for unknowns, as discussed in section 7.2.

Steady-state heat conduction problems are considered in [161, 162] using a hi-
erarchical Bayesian approach, as in [36], to explore the posterior distribution over
unknown thermal conductivity and unobserved boundary temperature. Estimates
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with uncertainties and marginal distributions over hyperparameters are presented,
clearly showing the method and results. Efficiency of the MCMC sampling is fur-
ther developed in [162], through the use of two surrogate models achieving model
reduction. The (reciprocal of) the TACT is plotted as a function of proposal window
as a diagnostic for efficiency, see Section 10.5.

Parameter estimation of the heat conduction in orthotropic media is developed
in [134], using an eigenfunction expansion for the forward map, and MCMC sampling
to perform the estimation of parameters and uncertainties. Results using simulated
data show that estimates of heat conduction are accurate, and provide very good
estimation of true temperatures, effectively implementing model-based smoothing
of data.

Transient data has been considered in [164, 165] in which thermophysical param-
eters and the boundary heat flux have been estimated simultaneously. Simultaneous
estimation of thermal conductivity and heat capacity is presented in [160], based on
transient data at boundaries and modelling the unknowns as Markov random fields.
In that paper, the reconstruction is fully tomographic and no layer type structures
are forced. A state estimation approach to estimate inhomogeneous thermal diffu-
sivity was carried out in [166] related to ultrasound induced heating and magnetic
resonance based thermal mapping.

An interesting study of forward modelling and hierarchical prior modelling for
the estimation of specific heat is presented in [101]. Bayesian inference from mea-
sured data is effected by MCMC sampling. A detailed comparison of least squares,
regularized least squares, and Bayesian inference is presented in [37] in the practical
case where experimental conditions are somewhat uncertain and nuisance variables
are required in the prior modelling. The value of applying Bayesian inference is
clearly displayed.

13 Discussion

We have discussed the Bayesian framework for modelling inverse problems as an
alternative to the common (regularized) data fitting approach. In particular, we
have pointed out some of the potential pitfalls in least squares, minimum norm and
the related regularization methods.

There are several inverse problems that are moderately stable in the sense that
the measurements carry out adequate information on the unknowns, and with which
regularization approaches work perfectly well. But this may also be due to the
parametrization of projection of the unknowns, such as when an unknown function
is approximated, for example, as a second order polynomial. The interpretation
of the results then lies heavily on the associated assumption that then unknown
really is that smooth. But even if this were true, the posterior distribution of the
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coefficients and/or the physical coefficient might have long tails. The answers to
probabilistic questions would especially in such cases call for sampling methods.

Another central topic in this review is the importance of the feasibility of the
models. This calls for, at least at some stage of the overal process, the construction
of computationally accurate forward models, and the modelling of all uncertainties.
If the models are not feasible, it is not sensible to embark on accurate inference.
Of course, the same applies also to regularization approaches: if the models are not
feasible and consistent with the real measurements, the computation of the mini-
mizers of regularized functionals is in vain. On the other hand, if we have a feasible
posterior model but no practically feasible and efficient methods for exploration, we
have gained very little.

In the Bayesian framework, all uncertainties are modelled using distributions.
However, it is important to remember that all models are just models, that need to
be tested, validated, and improved if necessary. The cost of not including uncer-
tainties in models can be overly optimistic estimates from simulated data, and the
impossibility of recovering true parameter values from real data.

One of the most appealing properties of the Bayesian framework is that the
modelling of the measurement process is completely separate from the modelling of
all uncertainties. Another motivation for adopting the Bayesian framework is that
probabilistic questions can be answered. On the other hand, Bayesian inference is
almost invariably much more tedious than implementing regularization methods.
The deciding factor is what kind of questions one has to answer, and what are the
specifications for the accuracy of the answers. If one only needs to have a visual clue
on what an unknown might look like, especially the coarse structure, the authors of
this paper would probably use some regularization method.

Although Bayesian computation comes with a heavy computational cost, its
ability to handle uncertainty in primary unknowns and other model parameters
makes it the best option for quantitatively accurate solution of inverse problems.
With increased computing power and improved algorithms, this cost is becoming
less and less expensive. And, again, to give answers to questions that have been
posed in terms of probabilities, the Bayesian framework is the only alternative.

We have also considered such topics that cannot be casted in the regularization
framework, such as model selection and variable dimensional problems. It may be
possible that old problems can be cast in such a way that existing measurements and
measurement, systems may provide information that has been hitherto considered
inaccessible.
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Figures

Figure 1: The joint distribution (density) m(x,d), the marginal density m(x) that
describes the prior uncertainty in z, and the conditional densities corresponding to
two different observations m(z|d = 0.2) and 7(z|d = 0.8).

Figure 2: The posterior distribution 7(c|d) over ¢ for one measurement set.

Figure 3: Output traces for ¢ from 2000 steps of a random-walk MCMC using
different window sizes.
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