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Abstract—Electrical Capacitance Tomography is an ill-posed invers problem that aims at recovering the spatial permittivity
distribution of an inhomogeneous medium from capacitance masurements at the boundary. We consider the problem of fast
robust estimation of inclusion shape and position in binarymixtures. The boundary of the inclusion is represented impkitly
using a radial basis function representation. The inverse mblem is formulated as Bayesian inference, with Markov chan Monte
Carlo sampling used to explore the posterior distribution. An affine approximation to the forward map built over the state space
significantly reduces reconstruction time, while introduéng minimal extra error. Numerical examples are presented ér synthetic
data sets, avoiding all inverse crimes.

Index Terms—Electrical capacitance tomography, model reduction, MCMC sampling, statistical inversion

I. INTRODUCTION Whereas regularization gives point estimates, Bayesian

. ) ) ) “methods present averages over all solutions consisteht wit
Electrical Capacitance Tomography (ECT) is a noninvasiyge data. This leads to a marked improvement in robustness

method that aims at recovering the spatial permittivityridiga- ;¢ properties calculated from solutions, since the regzidar

tion within an object from measurements of the .Capacitancgaution is typically unrepresentative of the bulk of fdssi

between electrodes at the boundary of the object [1]. Thi§|ytions in high dimensional nonlinear problems. Howgver

measurement process can be modeled as the better results achieved by Bayesian methods come at the
cost of greater modeling and computational effort.

The primary cost in computational implementations of

whered denotes the measured datare parameters representBayeSia” inferenpe is the repeatgd evaluation of the farwar
ing the the permittivity, and” denotes the forward map that™a@pP £ when using Markov chain Monte Carlo (MCMC)
is the deterministic mapping from parametéro noise-free 2/90rithms, that we discuss in section Ill. Hence, an efficie
data. Measurement noise is denoted by the random variabldmplementation of the forward map is mandatory to obtain
Deterministic solution methods vary the paramefeto res_ults within an gcceptable time. In this paper we use a fast
minimize some norm of the difference between the mod@llin€. approximation td" to accelerate the MCMC sampling.
output F(#) and measured datd. Due to the ill-posed Recently, two approaches have been developed to allow the
nature of the problem, the norm has to be augmented byge of approximate forward maps within statistical invemsi
regularization term to obtain a stable solution. The batanghile maintaining the accuracy of calculated uncertamfiéne
between the data misfit term and the regularization term @ghanced error model augments the noise model by a Gaussian
controlled by a regularization parameter. Typically geadi model for the difference between accurate and approximate
or even Hessian information about the mapare used to forward maps [2], and has been shown to drastically reduce
accelerate the convergence of the optimization procedure. computation time at the expense of a small increase in uncer-
Bayesian statistical inversion follows a different apmtoa tainty. The second is the delayed-acceptance MCMC [3] that
Uncertainties are included as probabilities, to give atposr’ modifies the MCMC algorithm, to sample from the correct
probability distribution over parameters that are coesist Posterior distribution while avoiding computation of theaet
with measured data, thereby quantifying uncertainty in tf@rward map for most steps.
solution. Solutions to an ill-posed inverse problem arenthe The paper is structured as follows: The next section briefly
well determined problems of statistical inference over thatroduces the physical forward problem of ECT and the
posterior distribution. This paradigm has many advantagesdeling of closed contours used to represent material in-
over deterministic approaches, such as giving robust astsn clusions. Section Il addresses the formulation of ECT in a
and the ability to treat arbitrary forward maps and errddayesian framework, and the MCMC algorithm. Section IV
distributions. One non-obvious advantage is the abilityde introduces two strategies for accelerating the MCMC algo-
a wide range of representations of the unknown permittivitithm. Reconstruction results and a comparison of the aebie
including parameter spaces that are discrete, disconts)jus improvement in terms of computational effort are preseimed
even variable dimension. section V.

d=F()+n (1)



[l. FRAMEWORK FOR ELECTRICAL CAPACITANCE sets) and parameterized shape models (e.g. spline models,
TOMOGRAPHY Fourier descriptions). In this work we use a shape desoripti
A. The forward problem based on radial basis functions (RBFs) [5]. With the RBF
approach an object is represented in implicit form given by
f(x;) = 0, wherex; represents the Cartesian coordinates of
a point on the boundary of the shape. The functjois of
form

N
fla:) = Zwmwi - ¢l)) (6)

where ¢; represent given locations on the boundary of the
object (i.e. scatter data) and the functignincludes the
individual RBFs. We use the thin plate splines

¢(r) = r? - log(r), (@)

wherer is the Euclidean distance between two points. The
weights \; can be found by forming the constraifitec; =
¢;) = h;, leading to the linear system of equations
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Fig. 1. Schematic of an ECT-sensor.

Figure 1 shows a schematic of a typical ECT sensor for AX = h, (8)
process tomography application$gec electrodes are mounted i _ )
g/hlch can be solved foA. With thin plate splines, the set

on the exterior of a pipe. The whole problem domain i i i X i
bounded by an electrical shield. The aim is the reconstmcti®f Pasis functions needs to be augmented by a linear function
P((z,y)) = ax + by + ¢, with equation (6) is extended to

of the material distribution (i.e. the shape and positioranf

inclusion) in the pipe using20 independent measurements of N
the coupling capacitances between fkige. = 16 electrodes. fa:) =Y No(l|mi — ¢jl]) + Plai). 9)
The electrostatic field problem is modeled by the governing J
equation Equation (8) is extended to
V- (g0, V®) =0 A Q A1 Th ”
wheree( ande, denote the absolute and the relative permittiv- { QT 0 ] { cp } o [ 0 ] ’ (10)
ity, and ® denotes the electric scalar potential. The boundary T
conditions are of Dirichlet type and given by whereQ =[xz, 1]ande,=[a b c] . The contour
of an object can be determined by solving (10) fdw;) = 0
® = V¢ only ®3) given the locationsc,,, and asserting a nonzero value interior
d = 0 on I'r and Tshielq (4) to the object.

The reconstruction algorithm manipulates the boundary of

WhglieFT ;epreserr:ts;he bé)undar); Or]: the tra_msm|:t|ng eéeCtrg_EE inclusion through locations,. The permittivity is then
andl'r refers to the boundaries of the receiver electrodes. pped onto the finite element grid for computation of the

coupling capacitances between the active electrode arfd eA%ward problem
receiver electrode can be obtained by evaluating Gauss's la '

C. = _L/ i eVddl (5) [1l. STATISTICAL INVERSION
=

V1 Jrg The presence of uncertainties, such as ubiquitous mea-
for each receiver electrode. surement noise, means that the measurement and imaging

Equation (2) is solved by means of the finite element meth&iocesses are probabilistic and the inverse problem isaibtu
(FEM). For the computation of the forward problem in thi§ Stated as statistical inference. In the Bayesian forioulat

paper, a mesh with about 560 finite elements is used. inference abouf is based on the posterior distribution
0la) = "L o 2 (aoymio) a1
B. Shape description using RBFs " T @ T

The representation of unknowns within a reconstructiomhere 7(6) is the prior density expressing the information
algorithm forms a fundamental classification between dhifié about¢ independent of the measuremertsand 7 (d|6) is
algorithms. In general one can distinguish between algmst the likelihood function that shows how measurements affect
which either provide pixel or voxel images, that aim aknowledge about. The posterior distributionr(6|d) is the
recovering the shapes of objects. Since we are interested inprobability distribution ovep given the prior information and
constructing shape and position of piecewise constantriahtethe measurements. The solution of the inverse problemIysual
inclusions in an otherwise uniform background material, wiavolves summarizing the posterior distribution, thoughek-
use a contour model to describe closed boundaries. In deng@laratory analyses we often simply display several reconst
one can distinguish between non-parametric models (ivel letions drawn from the posterior distribution. The denomimnat



7(d) is a finite normalizing constant once measuremérase Algorithm 1 Basic Structure of MH MCMC

made. 1: Pick a valid initial state and the priorr(#) and likelihood
Given the posterior distribution, any statistics of inttre  7(d|0)

can be computed. Commonly used summary statistics are ttze for ¢ = 1 to Nucmc do

maximuma posteriori (MAP) estimate 3 Generate a proposal candid#@te
4: if 7(¢’) >0 then
Orap = argmax 7 (f|d) 12) o Computed’ = F(¢') and the acceptance ratio
. . w(d|6" )7 (6’
and the conditional mean 3(97 ') = m(ln (i, WIJM)
_ 6: raw u ~ (0, 1
bom = /97T(9|d)d9' 13 if u<af,0) then

. —_ Nl
In addition, statements on parameter variability and bélizg & =190

of solutions can be given. Another appealing feature isttiee t % () =7 (6') )
ease of taking into account prior information about paramset %" ) 7;<d|9) = m(d|¢)
end i

In the case of Gaussian measurement noise the likelihodH ‘
can be written as 12: end if

1 13: end for
m(d|f) o exp (—5

whereX denotes the covariance of the measurement noise. e efficiency of the MCMC sampler. As the shape of an object
a detailed review about this topic we we refer to [6]. is reconstructed, suitable moves are rotational and &tioshl
Analytic evaluation of integrals such as (13) is intractablmovements as well as scaling of the boundary [6].
in practical cases because the posterior distributionnsptex  Choice of the prior distributionr(9) is critical, as it has a
and a function of many variables. Hence, numerical methodBect impact on the results. If the true material distribathas
that draw samples fromr(d,,|¢) are used to explore thea low probability with respect to the prior distribution(6),
feasible solution space, and to evaluate integrals usingt&lothe bulk of feasible probability will be biased away from the
Carlo integration. true distribution. For a review on prior models we refer tp [4
and [6]. In the present work we use a prior which penalizes

A. Markov Chain Monte Carlo sampling with Metropolis Small contours, only allows contours wholly inside the pipe
Hastings Green kernel and penalizes local curvature in the boundary contour.

(d— F(0)T 5" (d F<9>>) . (9)

The efficient exploration of the posterior distribution
7(d,|0) becomes the major computational concern when IV. ACCELERATING MCMC METHODS
implementing Bayesian inference. Grid based exploratiah a To accelerate the used sampling algorithm a strategy has to
quadrature are only applicable if the spacefofs of low be found to decrease the number of costly evaluations of the
dimension. A very general class of algorithms for perforgninforward mapF in line 5 of the MCMC algorithm given in 1.
sample-based Bayesian inference are the Markov Chain Moptence, it seems obvious that an approximatio'dias to be
Carlo (MCMC) sampling methods, see e.g. [4]. introduced for the time-critical computation of the likediod

We use MCMC with Metropolis Hastings Green (MHG)of the proposal. However, the use of an approximation
kernel, summarized in algorithm 1. Starting from a candidatauses a model error

0, the MHG-MCMC algorithm proposes a new candidate ~ Lo

¢ and computes the acceptance probability(code line n=F()—F(®). (16)
5). The candidat®’ is accepted with probability, and is | geterministic inversion theory this error may become
otherwise rejected. The acceptance ratio includes theblTO cyitical. In the framework of Bayesian inversion the model

determinant error can be incorporated as an additional additive noise [2

!/ /
| Jm| = 88(99’7) (15) Assuming independence, the probability density functién o
(9.7) the sum of the two noises is given by
for the mapping from composite paramefery) to composite ~
parameter®’,~'). T(nsum) = 7(n) * 7(R), (17)

Although the algorithm is simple to code, the computationgjnich is the convolution of the model error and the mea-

burden is given by line 5, as the computationd¥’|d) re-  gyrement noise. The statistie$ii) of 7 can be obtained by
quires the computation of the forward problem. As the ””mb§émpling as we show later.

of sampling step®Vmcwmc is typically several thousand [4], [6].

The generation of a new candidate requires varying the pa- _
rameters) in a random way. We typically use several ‘moves” Deélayed acceptance algorithm
to make up the proposal distribution. A simple random walk The delayed acceptance Metropolis Hastings (DAMH) algo-
of a single randomly chosen control point, is used to rithm was introduced by A. Christen and C. Fox in 2005 [3],
guarantee convergence, though leads to inefficient sagplio gain advantage from a cheap state-dependent approgimati
by itself. We make further specific manipulations to inceea®f F for computing the likelihood function. In case of an



accepted state the accurate forward map is computed anflgorithm 2 Algorithm to draw samples,. ;.

modified acceptance probability used to ensure convergence 1: Set all elements in the FEM grid to permittivity value one
the correct posterior distribution. Hence, the DAMH algfom  2: Draw #;, ~ U({1,2,3})

shows an excellent performance gain in the case of a low: for i =1 to #;, do

acceptance rate. A simple approximation is the first-ordes: Draw (Zcenter s Yeenter) ~ U(iN ROI)
series expansion af’ 5: Draw e, ~ U(ermin; Er,maz)
OF 6: Draw riner ~ U(Tmin, Tmaz)
F(0') ~ F(0) + 20 AD, 18) 7
4 8: Map circular inclusion with parameters to FEM grid

where Af = 6’ — 6. Only a matrix operation has to be com- 9. end for

puted to evaluate the likelihood function of a new proposalo: Compute the forward problem
The second term in (18) denotes the Jacobiah wiith respect
to the elements of. We calculate the Jacobian with respect to

the material values, of the finite elements, and use mappingeast squares sense using the pseudo inverse. To evaleate th

from contouré to the finite element grid via the chain rule

: : . erformance of the map another set of samples ef ; has
to evaluate desired Jacobian. In this work we compute thé ~ ’

. : . - . ! €en generated, and the erfowas calculated.

Jacobian matrix using an adjoint calculation. The time for Fi 5 sh the trend of th d the standard
this calculation can be removed by maintaining the Green’ lgure 2 shnows Ine trend ol th€ meanan € stanhdar

functions of a self-adjoint version of the forward map, agsewatlona of n for all capacitances. Two relevant aspects

outlined in [3]. The local approximation given by (18) résis can be observed from the results depicted in figure 2. Firstly

proposal stateg’ to be close to the current stéfto keep the tShe me(;rptlhs aI{nozt Zgro? a_ncil_, h_er?ceﬂ,]the meSfl:Qb'taS?d‘l
approximation error low. econdly, the standard deviatiaris in the range of the typica

measurement error of our ECT sensor, which has a standard
) deviation of ¢ = 5 x 1073 [7]. The determined standard
B. Approximated forward model deviation is even smaller than that of a typical measurement
The use of the Jacobian for a local linear approximatiastror.
is reasonable from the physical point of view. However, any To verify the quality of the estimator, the signal to noise
approximation to the forward map may be used, even if ngdtio (SNR) of our ECT sensor were performed. Figure 3 il-
physically motivated. Typical examples for such approximaustrates the measured SNR and the SNR of the approximation
tions are neural networks or polynomial approaches, whigror. The SNR from the sensor was measured for an empty
coarse grid approximations are suggested by the numeriggl filled) sensor. One can see that the approximation has
computation. In the following we propose using an affingimost the same quality as the measurements.
transformation to approximate the accurate ECT forward.map Figure 4 depicts a specific distribution @ffor a particular

This is motivated by the procedure that we use to calibrae theasurement and an equivalent Gaussian distribution. The

offset and gain of the ECT sensor [6]. distribution (72) is slightly non symmetric and has a small
Hence we approximate, tail towards positive values af. For simplicity reasons, we
C = Pe, (19) used an equivalent Gaussian distribution given the medsure

mean and the standard deviation. Hence, the distribution of
wheree!. is the augmented permittivity vector given by

; = [ 1 6? }T (20) -3 Std. deviation and mean of approximation error
35210 : : ‘ ‘
wheree,. is the vector of relative permittivities on the finite -9
element mesh. The augmentation is required to obtain areaff 3 H
mapping.
To obtain the elements of the matri®, we use a least 25 )
squares fit of form o |
1 e,
b 15 1
o pi=e (21)
1, -
wherep, denotes the i-th row of the matri® andc; is the 0.5 i

corresponding capacitance. The vectors are representitive
samples of of expected permittivity distributions. Theaes e A e e e R e s S
ples could be drawn from the prior distributiari), however,

we decided to generate samplessof; using the procedure in % 50 100 150 200 250
algorithm 2. # of measurement

_U§in9. this approach to draw sqmplegj of th_e materi‘?‘l Fig. 2. Standard deviation and mean of the approximatiooreor the
distribution, a mapP can be established by solving (21) in al5x16=240 measurements.
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V. EVALUATION AND RESULTS
To evaluate the performance of the different algorithms,2%° 1
we performed two reconstruction tasks. In the first case ¢
circular object is reconstructed, in the second experimen1o0o ]
a more complex contour consisting of two merged circular S
bubbles is reconstructed. In order to avoid an inverse grime g 0% 1 15 VR % s
the reconstruction data was generated using a differen¢ fini inclusion area (m?) x10°

element mesh (2662 finite elements). In addition, the data wa s 1 " on of & cireular inid
corrupted with zero mean Gaussian noise with a varianced} 7~ Results from the reconstruction of a circular indas
02 = 1x107°. As initializing contour for all reconstructions,

we chose a circular inclusion in the center of the pipe. o : N .
scatter plot highlighting the posterior variability of Insion

shape. MAP and CM are in good accordance indicating a
A. Reconstruction of a circular contour distinct mode in the posterior distribution.

Figure 5 depicts the reconstruction results of the first Figure 6 depicts the MCMC output trace of the log-
example using the affine transformation to approximate thikelihood function and the autocorrelation function, wini
accurate forward map. In figure 5(a) the MAP state and tli® a measure of the statistical efficiency. The faster the au-
CM estimate are illustrated, while figure 5(b) depicts thecorrelation function decays the less correlation is leetw



consecutive states of the Markov chain and consequentlg m —True Gjec]
reliable estimates are obtainable. In particular, the Gorte- e
lation function should be after falling off smoothly to zerc ‘
distributed with some noise about the x-axis. Figure 7 sho
the distribution of inclusion area of the reconstructedusion

for 15000 MCMC steps.

B. Speed comparison

The identification of the test distribution in subsectiorAV- () MAP and CM estimates. (b) Scatter Plot.
was carried out with the delayed acceptance algorithm and
the full (accurate) forward model. The reconstruction tssu Fig. 8. Results afte20000 MCMC steps using the fast approximation model
are similar to the results presented in subsection V-A. &4bl (@ffiné transformation).
summarizes the computation times for the fir§60 MCMC
steps.tc denotes the cumulated computation time for solving
the forward problem ; is the cumulated computation time for )
calculating the Jacobiadi, which is necessary in the delayed /e have presented an accelerated Markov chain Monte
acceptance algorithm. As we noted previously, this cost c&irlo methods for performing sample-based inference in,ECT

be avoided using more sophisticated schemes for operafing45i"9 @n appropriate approximation of the forward modeé Th
the Jacobian, rather than forming HAccept represents the approximation consisted of an affine model to the forward

acceptance ratio, which is comparatively high, i.e. in [6] amap, best fit to sampled permittivity distributions that neep

acceptance ratio df — 5% is stated, when the Markov chainSent the type of inclusion we expect to fino!. Compared to an
reaches its equilibrium. However, in the starting phasenef tMCMC using the accurate electrical capacitance tomography

MCMC procedure, such a high ratio can occur causing a higifward problem, a reduction in computation time by a factor
computation time for the two stage algorithm. Compariag of 340 can be obtained using the affine transformation. We

for all three methods the advantage of the fast approxim:’;\tiB"’“’e de_monstrated that a tolerably srr_1a|| Increase in poster
uncertainty of relevant parameters (inclusion area, agnto

VI. CONCLUSION

is obvious. . i _ )
shape) is traded for a huge reduction in computing time
TABLE | without introducing bias in estimates. The proposed cheap
COMPARISON OF THE COMPUTATION TIMES FORS00 MCMCSTEPS 55 gximation indicates that accurate real-time inversio
Method "Accept | e | T capacitance data using statistical inversion is possible.
% s s
Accurate forwarq model  67.1 318 X REFERENCES
Two stage algorithm 61.1 244 | 397
Affine transformation 64.8 0.93 X [1] B. Brandstatter, G. Holler, and D. Watzenig, "Recoustion of inhomo-
geneities in fluids by means of capacitance tomography,lifamComp.
and Math. in Electrical and Electronic Eng. (COMPEL), voR, 2003,
pp. 508-519.
[2] J. M. J. Huttunen and J. P. Kaipio, "Approximation errgrsionstationary
C. Reconstruction of a more complex contour inverse problems”, in Jnl. of Inverse Problems and Imagimg, 1, no.

) 1, 2007, pp. 77-93.
In a second experiment, a more complex contour consistipg J. A. Christen and C. Fox, "MCMC using an approximatioit, Jnl. of

of two partially merged circular contours is reconstructed ngﬂg-loand Graphical Statistics. December 1, vol. 14, n0.0852pp.
The shapg offers Seve.ral dIﬁICUI_t'eS for the reconstrucép- %4] J. P. Ka.ipio and E. Somersalo, "Statistical and componal inverse
proach. First, the rotation move is an almost useless move, T~ problems”, New York: Applied Mathematical Sciences, Sgein 2004.
this shape. Second, the shape offers a characteristiactiptt  [5] K. Uhliir, J. Patera, and V. Skala, "Radial basis function methadsfo-

. : C - line extraction”, in Elect. Comp. and Informatics, 2004, g39-444.
placed in the center of the pipe, which is the region where t'[b? D. Watzenig and C. Fox, "A review of statistical modetiimnd inference

sensitivity is lowest. for electrical capacitance tomography”, in Jnl. of Meas. Sod Techn.,
Figure 8(a) shows the reconstruction results which were Vvol. 20, no. 5, 2009, 052002. )

obtained afte20000 MCNIC steps by the proposed algorithi”l & Wetzeni, G- Stener . Fucts, . 2ang) and o raster,

using the fast approximation model. We limited the spatial ECT’, in Jnl. for Comp. and Math. in Electrical and ElectroriEng.

resolution of the contour model to 20 control points (cosrar (COMPEL), vol. 26, no. 3, 2007, pp. 661-676.

contour). Given the challenging contour of the true objdwt,

posterior variability indicated by the scatter plot in figu8(b)

shows a reasonable variance. Calculated MAP state and CM

estimate match the true object quite well. The zigzag beavi

of the point estimates could be decreased by using more

control points or a stricter prior model regarding the angle

between the adjacent elements of contour. However, we note

that these represent preliminary results that could bedweat

upon by more comprehensive sampling.



