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Abstract—This paper discusses Monte Carlo Markov chain
(MCMC) as a tool for the analysis of bearing condition, using
vibration data from new and damaged bearings. Analysis done
using traditional time-domain and frequency-domain methods
indicates vibration signals can be used to estimate bearing
condition, but these methods give no information on the certainty
of such results. MCMC outputs give the probability distribution
of parameters – such as impulse frequency – so not only can this
frequency be estimated, but the accuracy of this estimate can also
be measured. Using data in the time-domain in MCMCs has some
advantages over frequency-domain analysis when separating the
individual sources of periodic vibrations.

I. INTRODUCTION

Rolling element bearings are widely used in rotating ma-
chinery [1], with single row deep groove ball bearings being
the most widely used type [2]. It is useful to monitor the
condition of bearings as bearing failure can be expensive, both
in terms of damaged machinery and lost production time [3].

In this paper we discuss the use of model based inference,
using Markov chain Monte Carlo (MCMC), as a method of
vibration analysis of deep groove ball bearings. Experimental
work involved periodically measuring vibrations from bearings
which have been run from new. This is compared to vibrations
from other bearings which have had defects seeded on their
races or balls. Initial analysis employed commonly used mea-
sures of bearing condition, and results were compared with the
physical state of bearings, which was found by cutting them
open.

An investigation was done to see if bearing condition can
be inferred from vibration data using MCMC and established
models of bearing behaviour. In particular, the investigation
asked does MCMC perform better than conventional methods
of analysis? Are issues faced due to limitations of models,
problems with data, or issues with the implementation of
MCMC?

This paper includes discussion on the signals used in
MCMCs, both synthetic and actual. These signals relate to
a mechanical system, and signal voltage is proportional to
acceleration at the sensor surface. The versatility of this
method means it could be applied to other signal sources using
an appropriate model.

II. MODEL BASED INFERENCE AND MCMC

A model of any physical system, A, can be used as a
forward map [4],

A : x 7→ y, (1)

that maps the true state of a system, x, to data from that
system, y. The solution to an inverse problem is to attempt
to reconstruct the true state of the system from the data, using
[4]

y = A(x) + N(0, σ), (2)

where A(x) is the action of the model on the system, and
N(0, σ) is some additive random noise with zero-mean and
standard deviation σ. MCMCs are a group of methods that
can give solutions to inverse problems, even when they are
ill-posed – that is even if there is a range of possible model
predictions that fit the data [4].

A. Adaptive Metropolis-Hastings

A Markov chain involves the drawing of random variables
from a state space, Ω, in order to estimate the target distribu-
tion. A state space may be discrete or continuous, and contains
all allowed states of the parameters that describe the model.
Each new drawing of a random variable depends only on the
previous value, and does not depend on any values drawn
before that. This is known as the Markov condition [5]. See
Gamerman [5] for more on the properties of a Markov Chain.

The random walk Metropolis-Hastings (MH) is a method
of generating a Markov chain that converge on the equilibrium
distribution as the length of the chain becomes large [6]. The
random walk begins in some prior state Xn = i, drawn from
Ω. A new state is proposed by making a random step from
this state. Steps used in these MCMCs have the form

j = i+ N(0,C), (3)

where C is the proposal covariance. This new proposal is then
accepted or rejected according to the acceptance probability
α(j | i). This can be expressed in terms of the Hastings ratio,
which for a symmetric proposal is [6]

α(j | i) = min

{

1,
P r(j | y)

Pr(i | y)

}

, (4)

where Pr(j | y) and Pr(i | y) are the probability of the jth

and ith states, given the data y. Pr(j | y) is calculated using
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Bayes Theorem, and in the unnormalised case this is given by
[4]

Pr(j | y) ∝ Pr(y | j)Pr(j), (5)

where Pr(y | j) is the likelihood, and Pr(j) is the prior
distribution of j. If accepted, Xn+1 = j, and if rejected
Xn+1 = i. The next proposed state is a random walk from
Xn+1. The Metropolis-Hastings algorithm can be applied to
a multi-dimensional distribution by proposing a change to all
variables at once, or by changing only one variable during each
proposal.

The adaptive Metropolis (AM) algorithm allows the pro-
posal covariance to be periodically updated from some initial
estimate, Co, using the covariance of the Markov chain, Σ [6],
[7]. At chain iteration t the proposal covariance is given by [7]

Ct =

{

Co t ≤ to
φ2

d
Σt−1 +

φ2

d
εI t > to,

(6)

where to is the initial non-updating period, φ is a scaling value,
d is the number of dimensions in Ω, I is a d×d Identity Matrix,
and ε is a small positive constant, chosen empirically to prevent
the chain becoming stuck. See Haario and references therein
[7] for more on AM, including the choice of φ and ε.

III. GATHERING THE BEARING DATASET

The experiment set-up is shown in Figure 1. An Associated
Electrical Industries AC motor is used to drive a shaft which
is held in place by two 6204.2 single row ball bearings – the
‘experiment bearing’ is housed furthest from the motor. A third
6006.2 bearing is used as part of the load set-up. Experiment
control is provided by a Xilinx Spartan-3 FPGA, using inputs
from an HEDS-9140 shaft encoder. Vibrations were detected
with a Brüel & Kjær accelerometer of type 4519-002, with
sensitivity of 10mV/g (where g = 9.81ms−2), attached to the
side of the bearing housing. Data logging was done using a
National Instruments ELVIS Development Board, connected
to a PC running National Instruments SignalExpress.

Thirty-one bearings were run in the “experiment bearing”
position. These are labeled in sets, according to defect type (or
lack of defect), as UD1-10, ID1-8, OD1-7 and BD1-6, where
UD=undamaged, ID=inner race defect, OD=outer race defect
and BD=ball defect. UD1-10 were run for 56 hours, with data
logged once per hour for 20 s. The other 21 bearings were
run in for 18.5 hours prior to the seeding of defects. A single
seeded defect was applied to each bearing according to the
labels above. A second defect was seeded on each of OD7
(ball), ID7 (ball) and ID8 (outer race). Bearings were run for
a further 36 mins, and data were gathered for 60 s at 25, 30
and 35 mins.

A range of defect sizes were seeded, and analysis of the
resulting signal in the time-domain indicated that vibrations
from some bearings were difficult to distinguish from those
from UD1-10, while others were clearly different. When defect
sizes were divided into “larger” and “smaller” categories there
was good agreement between vibration amplitudes and defect
sizes, but within each category correlation was less clear.
Reasons for this include variations in the state of bearings
before defects were seeded, balls also being damaged slightly
during the seeding of race defect, and defects of different types

Fig. 1. Experimental setup used in all experiments.

effecting vibrations in different ways – this is due in part to
differences in geometry between the inner and outer races [3].
In the case of ball defects, the contact time between defect(s)
and races vary with the orientation of the ball [8].

IV. ADAPTIVE METROPOLIS FOR BEARING ANALYSIS

AMs were run on selected data from each bearing, with
each data used in 2-4 separate MCMCs. A synthetic signal
is created during each iteration of the AM, with properties
that depend on the current state of model parameters. This is
compared with the bearing data, in order to create an empirical
likelihood function, L(y | xS), which allows Pr(j | y) to
be estimated using Equation 5. Uniform priors are used in
this investigation. Gaussian priors - selected in part from the
outcome of this investigation – are used in later MCMCs.

A. The Model

The bearing-race system can be modeled as a spring-
damper system [9], [10]. The mass and stiffness of the races
and rolling elements, as well as damping provided by lubri-
cation can be used to predict how the ball and races will flex
during bearing motion. Models predict that even an undamaged
bearing will generate periodic impulses as contact forces vary
when the balls rotate [11]. The outer [10] (or both [8]) races
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can be modeled to flex at their natural frequency, causing
resonance triggered by these periodic impulses. In addition,
when a bearing is damaged additional impulses are predicted,
and these also trigger resonance [12].

If it is assumed that there is no slippage between the
rolling elements and the races, then the geometry of the bearing
determines the impulse frequencies. It is common practice to
relate other frequencies to the shaft frequency, fs, the diameter
of the rolling elements, d, the cage diameter, D, and the contact
angle α [1], [8], [11]. Of interest in this investigation are the
cage rotation frequency (fc), the ball pass frequency (fbps) –
this is the frequency at which balls pass a fixed point, such as
the point of maximum load – and the defect frequencies. The
defect frequencies describe the rate at which balls impact with
a defect on the outer race (fod) or the inner race (fid), or the
rate a defective ball impacts with either race (fbd). Note that
fbps = fod for a bearing with a stationary outer race. Even
undamaged bearings are predicted to have impulses at fbps,
and fbps is used as the reference frequency in MCMCs rather
than fs.

We assume a simplified model with four sources of pe-
riodic impulses that trigger flexural vibrations at the natural
frequencies of the outer race. Each source is assumed to create
a damped periodic response. The sources, along with the prior
assumption of their frequency, are:

1) Balls passing in and out of the load zone (fbps).
2) Balls passing a small defect or surface imperfection

on the outer race (fod).
3) Impacts between races and a small defect or surface

imperfections on a single ball (fbd).
4) Balls passing a small defect or surface imperfections

on the inner race (fid).

The four resulting impulses each have a periodicity
(fIz, z ∈ 1...4), which may modulate by some amount (Mz),
at some frequency (fmz). Impulses also have an amplitude
(Az), and a pulse decay constant (τz). Sources 1 and 2 are
at the same frequency (i.e. fI1 = fI2), and have a phase
relationship (φ1,2). The noise term (effectively the sum of all
other vibration) can be modeled as Gaussian noise by the
central limit theorem [13], with N(0, σN ), where σN is a
dimension in Ω. This creates a 19 parameters in Ω, as source
1 is assumed to have no modulation.

B. Estimating Likelihood

The envelope method is a widely used method of recover-
ing the frequencies discussed in Section IV-A [1], [3], partic-
ularly the defect frequencies [12]. A signal x(t) is bandpass
filtered around a structural resonance frequency. The filtered
signal xf (t) is demodulated by taking the envelope, using
the Hilbert transform [11]. This leads to the instantaneous
amplitude | y(t) |, or envelope, of the filtered signal

| y(t) | =
√

xf (t)2 +H(xf (t))2, (7)

where H(xf (t))
2 is the Hilbert transform of xf (t).

The final stage of the envelope method, as it is used
in signal processing, is to take the Fourier transform of the
envelope in order to recover the frequency of any repeating
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Fig. 2. Comparison between data from BD6 (with a defect on a ball) and
synthetic signals from two MCMCs from the chain state corresponding to the
maximum log-likelihood for each. The first 0.5 s (of 1 s) of the portion of
data where the highest correction with the synthetic signal occurs is shown
for each. Chain 3 produces a lower posterior distribution for log-likelihood
than Chain 4, as the MCMC has become stuck at a local maxima.

periodic impulses [11]. When using this method it is not
possible to separate multiple sources that cause spectral peaks
at the same or similar frequencies without the further pre-
processing of data. Other methods of filtering and/ or pre-
processing in the frequency-domain, or analysis in the time-
frequency domain, can provide better resolution for particular
data. The envelope method (with selected filter) was found to
be the best performing overall for bearings in any condition, as
well as taking less processing time than many other methods.

The (enveloped) data y(t) is created by taking 3.33 s of data
from a selected bearing, and applying the envelope method,
after filtering around the n = 3 mode of flexural vibration
of the outer race. The synthetic data is filtered in the same
manner as the bearing data, to create the synthetic envelope
data xS(t) with length 1 s. The data and synthetic signal remain
in the time-domain. Figure 2 gives two examples of synthetic
signals created during the running of MCMCs using data from
BD6 (also plotted). These are discussed further in Section VI.

The Matlab [14] function xcorr is used to create the
normalised correlation, R(τ), between the synthetic and actual
data, considering only the portion of the correlation that
corresponds to xS(t) being fully overlapped with y(t). The
maximum normalised correlation, R(τmax) = sup(R(τ)) is
used in the calculation of L(y | xS).

Early trials of MCMCs indicated that impulse amplitudes,
Az , need to be limited, so an amplitude scaling term is
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introduced to achieve this:

AS =
Vrms(xS)

Vrms(yτmax
)
, (8)

where Vrms(yτmax
) is the root mean square voltage of the

section of y(t) corresponding to R(τmax).

A weighting term W = 30 is included in the empirical
likelihood giving

L(y | xS) ∝ exp
{

−W
(

1−R(τmax)
)

−
(

AS − 1
)2
}

. (9)

The 1−R(τmax) term is required for the acceptance probability
to increase as R(τmax) gets larger.

C. Updating the Proposal Covariance

The proposal covariance was updated using Equation 6.
Using φ = 2.4 is found to optimise mixing [7], [15]. In
addition, ε = 10−5 [16] and the number of dimensions,
d = 19, were used giving

Ct =
2.42

19
Σt−1 +

2.42

19
(10−5)I. (10)

The initial covariance was based on one used by Cui [6],

where Co = 0.12

d
I. All MCMCs used an initial non-updating

period of to = 100 samples, and Ct was updated every 100
samples from 100-20,000 samples. This was continued for
the entire chain (300,000 samples) for some MCMCs, and in
others Ct was updated every 300 samples from 20,000-300,000
samples. There was found to be no noticeable difference
between these options, and updating every 100 samples for the
entire MCMC became the default choice. Updating Ct more
often reduced the performance of chains, as occasional large
transitions had too great an effect on the covariance early in
an MCMC. This is consistent with Haario, who found that
updating the covariance every step was not useful [7].

V. RESULTS

In most bearings 1-2 sources dominated, and produced use-
ful posterior distributions. Other source(s) from each bearing
produce wide posterior marginal distributions for parameters
relating to frequency and posterior marginal distributions for
amplitude and pulse width with modes at (or close to) zero.
The assumed mapping of impulses to sources was not reflected
in all posterior distributions. This is discussed further in
Section VI. Sections V-A – V-C briefly discuss a selection
of MCMC outputs, showing the behaviour of different param-
eters.

A. Bearings with Outer Race or No Defects

Bearing models predict that impulses at fbps should not be
modulated except in the case of an unbalanced shaft [9] or cage
[11]. These MCMCs tested this assumption by setting M1 = 0.
Many of UD1-10 instead mapped impulse 2, with M2 6= 0,
to source 1 (balls passing the load). Figure 3 shows outputs
from UD3 and UD5. Note that M2 is indicated by colour
temperature. UD5 in particular has a narrow (but multi-modal)
joint posterior distribution for fI2 vs fm2 vs M2 that indicates
high modulation at frequencies that relate to combinations of
fs and fc. These are predicted in the case of shaft imbalance
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Fig. 3. Joint posterior distribution of fI2 vs fm2 vs M2 and marginal
distribution for φ1,2 for UD3 and UD5 at 50 hours and OD2 and OD7 after
the application of seeded defects to the outer race. M2 is indicated by colour
temperature. Note that fI2 is centred around similar values for all bearings,
but fm and φ1,2 vary between undamaged bearings and those with defects
on the outer race.

[11]. The outputs for fm2 are quite different for UD3 and
UD5 (and others of UD1-10) indicating that small changes in
operating conditions significantly effect this parameter.

UD1-10 all produce similar posterior marginal distributions
for φ1,2. These suggest a single vibration source with multiple
impulses per period, which is supported by the load zone
model. A version of the model that builds these features into
source 1 is being trialled. This updated model uses Gaussian
priors for all non-zero fIz and fmz parameters, including a
prior of N( 1

2
fs, 5)Hz for fm1 ( 1

2
fs ≈ 12.4Hz).

Signal processing in the frequency domain indicates that it
can be difficult to distinguish between impulses from undam-
aged bearings and those with outer race defects. The posterior
marginal distribution for φ1,2 for OD2 is multi-modal. There
are modes that are similar to the modes from UD3 and
UD5 (and other undamaged bearings), and in addition, there
is another mode at about 0.6π rad (and a smaller one at
about 1.4π rad). An interpretation of this is that the 0.6π rad
mode relates to the relative positions of the load and the
defect. Outputs from OD7 indicate it has a single source with
fI2 ≈ fod. Each MCMC produces modes of φ1,2 that are
close to 0 (or 2π) radians, suggesting that the rectangular defect
coincides with the position of the centre of the load zone, or
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Fig. 4. Marginal posterior distributions for fI1, fI3 and fI4 for ID1 and ID2.
Each has a seeded defect on the inner race, and a damaged ball. Both bearings
have modes at approximately fbd and fid, with the narrowest distribution
coming from the short, deep, inner race defect on ID2.

that impulses due to the defect dominates other vibrations.
Note also that OD2 and OD7 have low modulation. OD6 (see
Figure 5) does have modulation at 1

2
fod, but this frequency

is not highly probable in outputs from UD1-10 (or OD6 pre-
defect).

B. Bearings with Multiple Sources

Figure 4 shows the posterior distribution for all impulse
periodicities for ID1-2 (note that fI1 = fI2). These bearings
have multiple impulse sources, as in addition to the inner race
defects, each bearing had balls damaged during the defect
seeding process. This was noted during signal processing,
however the sideband frequency due to a moving inner race
defect is at a similar value to the ball defect frequency (i.e.
fid − fs ≈ fbd), so these sources were not well resolved in
the frequency domain. ID1 has wide distributions, with clear
modes at fbps, fbd and fid. At any particular chain iteration,
the MCMC is sampling near 1-2 of these modes.

ID2 has a narrow distribution for fI4, with ¯fI4 ≈ fid.
Bearings with short, deep, defects (such as ID2) tend to
produce narrower distributions at the relevant defect frequency
than those with longer defects (such as ID1). The middle plot
for ID2 has a clear mode near to fbd, but the top plot shows no
clear mode near fbps. This inability to find the periodicity at
fbps also occurs in other bearings with significant defects, and
may be due to this impulse being obscured by other vibrations
[3].

C. Amplitude and Impulse Width

Figure 5 shows outputs relating to the largest impulse for
four bearings. Colour temperature indicates modulation depth
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Fig. 5. Joint posterior distributions for fIx vs fmx vs Mx and Ax vs τx
vs Mx, for UD2 at 38 hours (x = 2), and OD6 (x = 2), ID8 (x = 4)
and BD6 (x = 3) after the application of seeded defects. Mx is indicated
by colour temperature, and these bearings all have evidence of moderate-high
modulation, with that from ID8 and BD6 being due to defects moving in and
out of the load zone [12].

M . UD2 is plotted as it has one of the highest amplitudes
at fbps of any of UD1-10. The amplitude of OD6 is similar,
but the pulse width (τ2) indicates a high probability of a much
longer impulse than any from UD1-10 (or most other bearings).
Outputs from all of OD1-7 indicate a relationship between
defect length and the posterior distribution of τ2. This does not
occur for inner race defects or most ball defects, which produce
posterior distributions for τ similar to those shown in Figure 5
for ID8 and BD6, irrespective of defect size. This is consistent
with findings from Al-Dossary [17], who found a relationship
between defect size and acoustic burst duration for outer race
defects, but not for inner race defects. The model assumes
that flexing of the outer race is the main contribution to a
bearing’s vibrations over the frequency band used. For defects
other than those on the outer race, it appears that impulses are
due to a single event – for example the initial impact with a
defect. One of the limitations of this model is that the impacts
between a ball defect and each race are assumed to have the
same properties, which may not be the case.

D. Frequencies of Interest

Discrepancies between measured and predicted values of
the frequencies of interest were noted during signal processing
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– these were investigated further using MCMC outputs. Figure
5 shows the marginal distribution for impulse 4 from ID8 –
this has narrow distributions for fI4 ≈ fid and fm4 ≈ fs.
Another MCMC from ID8, and two for ID2 had similar
narrow distributions. These outputs were used to make re-
estimates of the effective values of d, D, and α. This led to re-
estimates of the frequencies of interest, which were compared
to relevant posterior marginal distributions from other bearings.
These results suggest that race misalignment (α 6= 0) is the
physical cause of some, but not all, of this discrepancy. Other
contributions could be due to changes in the effective value
of bearings dimensions during the operation of the bearing.
When trying to make such re-estimates using data in the
frequency-domain or time-frequency domain, and traditional
signal processing methods, there are limitations. When using
the envelope method, these limitations include FFT bin width
and peaks being averaged over the length of data. In addition
it is difficult to map spectral peaks to individual impulse
source(s), and measurement uncertainty cannot be estimated.

VI. DISCUSSION AND CONCLUSION

This investigation indicated that MCMC is potentially a
useful tool in analysing a vibration data, but there are still
issues that need to be resolved. These include long running
times (in the order of hours), limitations in the model and
some problems with the method of calculating the empirical
likelihood function. Some MCMCs (18 out of 185 run) became
stuck at local maxima, where the synthetic signal had a
reasonable correlation with large peaks, but other peaks did
not correlate well. In some instances this occurred when the
impulse was at a sideband frequency, and modulation was at
the difference frequency. For example, chain 3 from BD6 has
fI2 ≈ fbd−fs, and fm2 ≈ fs, and a lower empirical likelihood
(and lower correlation) than other MCMCs (chains 1,2,4) run
from this data. Figure 2 shows a single synthetic signal from
each of chains 3 and 4. Also plotted is the portion of y(t) that
corresponds with the maximum correlation (R(τmax)). Chain
4 plots show a reasonable correlation between both larger and
smaller peaks.

Other issues faced included impulses not matching to
sources as defined in Section IV-A – so different MCMCs
run using the same data could not be easily combined. Some
outputs from bearings with seeded defects were difficult to
distinguish from UD1-10, but in all but one case these were
from bearings with only slight defects. Bearings with longer
defects on the inner race did not match the model well, but
most produced outputs that were different from UD1-10.

UD1-10 produced similar outputs from most MCMCs,
with some indication of variations relating to imbalance in
the shaft or cage of some of these bearings. Bearings with
seeded defects produced MCMC outputs that differed from
undamaged bearings in most cases. Bearings with shorter,
deeper defects fitted the model best and in some cases multiple
defect sources could be well resolved. These results led to
proposed adjustments to the model, including the introduction
of Gaussian prior distributions for some parameters.

The advantage of MCMC is that a probability distribution
is associated with each output, and poorly known parameters
have wide or multi-modal distributions. In addition, by using

data in the time domain, the sources of different spectral peaks
in the frequency domain could be separated. This separation al-
lowed some investigation into discrepancies between predicted
and actual values of frequencies of interest, including those
relating to impacts with defects.
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