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Abstract: We present an example of reconstruction in a toy example of electrical impedance

tomography. Reconstructed images are computed using Bayesian inference by

Markov chain Monte Carlo (MCMC) sampling implemented using a single-site

Metropolis-Hasting algorithm.
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1 INTRODUCTION

Figure 1 shows a phantom conductivity that we use to gen-

erate a toy example of imaging. The imaging problem

is to recover the spatially varying electrical conductivity

from boundarymeasurements of current and voltage, often

called electrical impedance tomography (EIT). The phan-

tom occupies a square region, and has pixel-wise constant

values of 4 (black) and 3 (white) in arbitrary units of con-

ductivity. Measurements are made at 16 point electrodes

(i.e. of no width) on the boundary (see Figure 2). This is

same setup as used in [8].

In EIT, we normally inject a set of currents
{

ji
E , i = 1, 2, . . . , k

}

in different pattern through these

electrodes and measure the resulting potentials at elec-

trodes
{

ui
E , i = 1, 2, . . . , k

}

. The set of measurements

is the current-voltage pairs
{(

ji
E ,u

i
E

)

, i = 1, 2, . . . , k
}

.

The imaging problem is to estimate the conductivities

from these measurements [5].
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Figure 1: The phantom conductivity used in the toy exam-

ple of EIT

Figure 2: Diagram showing a point electrode

2 MCMC

In the Bayesian approach to EIT, the conductivity σ is

treated as a random variable. The posterior probability

distribution over σ, given measurements of current and

potential f (σ | uE , jE), is the focus of subsequent infer-
ence [5] [3].

Here, we employ a single-component Metropolis-

Hastings algorithm [7] [9] to explore the posterior distri-

bution and to obtain a set of samples σ1,σ2, . . . ,σn from

this multivariate distribution. The algorithm is comprised

of iterations σk =
(

σ
(k)
1 , σ

(k)
2 , . . . , σ

(k)
m

)

−→ σk+1 each

of which involves the following three steps

1 σk → σ′ =
(

σ
(k)
1 , σ

(k)
2 , . . . , σ

(k)
i−1, σ

′

i, σ
(k)
i+1, . . . , σ

(k)
m

)

.

Here σ′i = σk
i + zi, with zi ∼ N(0, σzi

)
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2 compute acceptance probability a(σ,σ′) =
f (σ′ | uE , jE)

f (σ | uE , jE)

3 accept update σ(k+1) = σ′ with probability

min{1, a(σ,σ′)}.

Note that the normalization constant in the posterior dis-

tribution is not needed for the computation of acceptance

probability, since

f (σ | uE , jE) =
f (uE | σ, jE) · f(σ)

∫

f (uE | σ, jE) · f(σ)dσ

hence,

a(σ,σ′) =
f (uE | σ

′, jE) · f(σ′)

f (uE | σ, jE) · f(σ)
(1)

The prior distribution f(σ) here [6] is

f(σ) ∝ exp







β
∑

i∼j

s(σi − σj)







, σ ∈ [2.5, 4.5]m

(2)

where s(.) is the tricube function [2]

s(d) =

{

1
d0

(

1− |d/d0|
3
)3

if− d0 < d < d0

0 if|d| ≥ d0
.

The notation i ∼ j in the summation in equation 2 in-

dicates an edge in the graph of Markov random field, as

depicted in Figure 3. Figure 4 shows a realization from

this prior distribution. We can see that this model allows

abrupt changes of intensity in the image, which is a impor-

tant feature for this application.

Figure 3: Graph of first order Markov random field corre-

sponding to the pixel lattice

Evaluating the likelihood term f (uE | σ
′, jE) involves

solving a boundary value problem (BVP) in order to com-

pute the forward map.

3 FORWARD MAP

If noise in the forward map is modeled as

uE = u0E (σ, jE) + n (3)

Figure 4: A realization from the prior showing typical

properties

where n ∼ N(0, σnI), then the likelihood function is

f(uE | σ, jE) = exp

{

−
1

2σ2n
‖uE − u0E (σ, jE) ‖22

}

(4)

up to a constant of proportionality that does not depend on

σ. Here u0E (σ, jE) is potential at electrode u|E , in which
the potential u is the solution of the BVP

−∇ · σ∇u = 0 Ω

−σ
∂u

∂n
= jE ∂Ω

We use the finite element method (FEM) to solve this BVP.

The weak form of the BVP is

∫

Ω

(∇ · σ∇u) · v = 0 (5)

where v is the test function. Applying Green’s identity we
have

∫

Ω

σ∇u · ∇v =

∫

∂Ω

σ
∂u

∂n
· v. (6)

The associated quadratic form gives the forms for the com-

ponents in the stiffness matrix K and load vector f in the

FEM system

Ku = f . (7)

They are

Kij =

∫

Ω

σ∇φi∇φj =

E
∑

e=1

∫

Ωe

σ∇ψi∇ψj

and

fi =

∫

∂Ω

σ
∂u

∂n
φi =

∑

b

∫

Γb

σ
∂u

∂n
ψi.

We use bilinear elements to interpolate within each

(square) pixel. The 4× 4 local stiff matrix is

[∫

Ωe

∇ψiψj

]

=
1

6









4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −2
−1 −2 −1 4









.
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The force vector f depends on the current pattern injected.

In this paper, we inject a current at one of the 16 electrodes

and extract the current uniformly around the boundary.

This procedure is repeated 16 times with each electrode

taking turn as being an injector. So there is 16 sets of mea-

surements overall, so we assemble the force vectors into

the matrix F having 16 columns, with each column corre-

sponding to a set of measurements. If I amount of current
is injected and there arem number of nodes on the bound-

ary, the nonzero element of the ith column of F , are at the

entry of boundary nodes, and of value 1/m, except for the

entry of injector being m−1
m

.

The steps required for a computation of the acceptance

ratio a (σ,σ′) are illustrated in the diagram in Figure 5.

Figure 5: Diagram of computational steps for the accep-

tance ratio

4 NUMERICAL RESULTS

We started the chain at σ0 = (3, 3, . . . , 3), and didn’t stop
until 80, 000×m simulations had been completed. During

the time, we recorded the state ofσ every 10 scans (10×m
iterations).

We also adjusted the step size σzi
in the proposal step to

make sure that the acceptance rate for each pixel is within

[30%, 70%]. Specifically, σzi
for the pixels near electrodes

are set to be relatively small and get larger for the pixels

towards the centre. The exception is those pixels at the

four corners, which have the biggest step size. An image

of step size is show in Figure 6.

Figure 6: Image of step size as a function of pixel. Bright-

ness is proportional to σzi

It is easy for us to provide a rough estimate of burn-in

from the trace plot of log-prior (Figure 7) and that of log-

likelihood ( Figure 8), which is about first 40, 000 samples.
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Figure 7: Trace of log-prior
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Figure 8: Trace of log-likelihood
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Four realizations after the burn-in, which are separated

by 1, 000 scans (1, 000×m iterations), are shown in Fig-

ure 9.

Figure 9: Four samples from the posterior distribution

Traces of the conductivity at three pixels in the image

are shown in Figure 10. The location of the three pixels

are depicted as red, blue, and green circles in Figure 14.

We see that the sampler moves closely around desired low

conductivity during the course, while it is jumping up and

down from time to time in the dimension of the other two

pixels. This is in accordance with the marginal distribu-

tions for these pixels (Figure 11 12 13). The marginal dis-

tribution for pixel red has only one mode, while the other

two marginal distributions are bimodal.

All these results show that single-site Metropolis-

Hasting algorithm did not do a bad job in sampling this

high-dimensional distribution.

If any single estimator of conductivity is of interest, pos-

terior mean (Figure 14) and marginal posterior mode (Fig-
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Figure 10: traces of three pixels during the MCMC run

2.5 3 3.5 4 4.5

Figure 11: Sample marginal distribution for pixel red

2.5 3 3.5 4 4.5

Figure 12: Sample marginal distribution for pixel blue

ure 15)are two popular choices [4]. As we see in Figure 14,

most of the uncertainty is about boundary of high conduc-

tivity region. The discrepancy between marginal posterior

mode (Figure 15) and original one (Figure 1) happens to

be around the same place.

However, note that 80, 000 iterations had been done to

achieve the above result, and it took quite a few days to run
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2.5 3 3.5 4 4.5

Figure 13: Sample marginal distribution for pixel green

Figure 14: Posterior mean conductivity

Figure 15: Marginal posterior mode

this long simulation in Matlab. We also mention that about

99% of CPU time had been spent on solving the system of

linear equation in FEM stage for the forward map.

5 CONCLUSION AND FURTHER WORK

Single-site Metropolis-Hasting algorithm can be used to

sample the posterior distribution arising in Bayesian infer-

ence in EIT, as long as speed is not a top priority. Future

work could focus on alternative MCMC algorithms which

are more efficient and fast in this appplication, e.g. de-

layed acceptance MCMC [1].
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