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Abstract: Electrical impedance tomography (EIT) is a non-invasive means of imaging the
conductivity (or permittivity) distribution within an object. In the Bayesian
framework, computation of ‘solutions’ is performed using Markov chain Monte
Carlo (MCMC). Despite 20 years of development, the simplest single-site ran-
dom walk update still is viewed as most efficient in some present MCMC imple-
mentations for EIT. We report on experiments utilizing swap moves in MCMC
that significantly improve on the single-site update.

Keywords: Electrical impedance tomography, inverse problem, computational inference,
Markov chain Monte Carlo, single-site update, swap moves

1. INTRODUCTION

Electrical impedance tomography (EIT) is a
canonical inverse problem in which the electrical
property within an object is inferred from elec-
trical measurements on the surface of the object.
This leads to many potential applications, when
structures of interest have a contrast in electrical
properties, such as scanning for breast cancers and
measuring flow in milk-drying plants.

We denote the unknown electrical conductivity by
x and the (noisy) surface measurements of poten-
tial at electrodes by un. EIT is known to be a
severely ill-posed inverse problem [1]; that is, di-
rect inversion to give x in terms of un gives a so-
lution that is highly sensitive to errors on mea-
sured data, and to model errors. This can be un-
derstood in terms of the physics of electrical cur-
rents, since each measurement of surface potential
depends on all of the unknown conductivity; this
follows from Ohm’s law that states that current
follows all paths, in proportion to conductance of
each path1. Hence, measurements are most sen-
sitive to bulk properties of the conductivity, such
as the mean conductivity, while localized or ‘high
spatial frequency’ variations in conductivity have
little influence on measurements.

This sensitivity to bulk processes actually makes
EIT a good imaging mode for those situations
where we wish to non-invasively measure bulk

1The common saying that that electricity travels “by
the path of least resistance” is incorrect.

properties. One such application is the measure-
ment of total flow of the various constituents in
milk powder flowing in a pipe, which is an appli-
cation we are developing at Otago. In a sense, we
can think of EIT as a set of scales – that measures
the total mass of an object on the scales – though
with some low resolution spatial discrimination.

Here we consider a simple observation process, in
which noise-free measurements at electrodes u are
a known function of the conductivity x and mea-
surement noise e is additive and independent of x,
that is

un = u+ e. (1)

The functional relationship x �→ u is called the
forward map for EIT. In this paper we address the
problem of computing statistical answers to ques-
tions about x given measurements un, a known
forward map, and knowledge of the (statistical)
distribution over noise e.

2. A TEST PROBLEM

Figure 1 shows a phantom conductivity in a square
region that we will attempt to recover, from sim-
ulated noisy measurements. The conductance is
constant within each square pixel in a 24×24 pixel
grid. Measurements consist of injecting (unit) cur-
rent into each of 16 point electrodes in turn, with
current removed uniformly on all electrodes, and
measuring the potential ate each electrode with re-
spect to the average potential on electrodes. This
stylized problem has been studied previously in
[2, 3].
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Figure 1: Phantom conductivity distribution, hav-
ing conductance 3 (white) and 4 (black) in ar-
bitrary units. Sixteen point electrodes on the
boundary are numbered 1,. . . 16.

We use the same numerical computation of the for-
ward map for simulating measurements and per-
forming the inverse problem; hence we are cer-
tainly committing every possible ‘inverse crime’
and so recovered conductivity distributions need
to be viewed as overly optimistic. However, the
speed of performing the inference is our primary
concern here, and that is not affected by the in-
verse crime.

3. COMPUTING THE FORWARD
MAP

Simulation of forward map x �→ u involves solving
the boundary value problem (BVP)

−∇ · (x(s)∇u(s)) = 0 s ∈ Ω, (2a)

−x(s)
∂u

∂n
(s) = j(s) s ∈ ∂Ω. (2b)

We solve for u(s) that is the potential at location
s, while x(s) is the that is a given conductivity
distribution. We have not yet stated a potential
reference, though that is necessary to ensure the
solution of this BVP is unique. The current cross-
ing the boundary ∂Ω is denoted j(s), which must
satisfy

�
∂Ω

j(s)ds = 0 since current is conserved.

We solve the BVP (2) using a standard finite ele-
ment method (FEM) in which the pixels are taken
as elements, and potential is interpolated using bi-
linear interpolation (see [2, 3] for details). FEM
discretization results in a symmetric sparse system
of linear equations

Ku = f (3)

where the global stiffness matrix K is assembled
(by elements) as

K(x) =
n�

i=1

xiK
i (4)

where xi is the conductivity in pixel i and Ki is
the local stiffness matrix for pixel i. We solve

the sparse system (3) using a sparse Cholesky fac-
torization of the stiffness matrix K followed by
solution of the resulting triangular system.

4. PRIOR MODELING AND
POSTERIOR DISTRIBUTION

We follow [3] and model the conductivity as con-
tinuous valued in each pixel, restricted to the in-
terval [2.5, 4.5]. The ‘blocky’ nature of the image
is modeled by the prior distribution

πp(x) ∝ exp



β

�

i∼j

v(xi − xj)



 I[2.5,4.5]n(x) (5)

where

v(s) =

�
1
w

�
1− |s/w|3

�3
if |s| < w

0 otherwise
(6)

and I[2.5,4.5]n(x) is the indicator function for each
component of x being in the interval [2.5, 4.5]. The
sum is over all nearest neighbours on the pixel
lattice, denoted by i ∼ j. This prior encourages
neighbouring xi and xj to have similar values, but
once xi and xj are more than w apart, the penalty
does not grow. This allows occasional large shifts
between neighboring pixels. Thus, the effect is
to prefer images with connected regions with con-
stant value, separated by distinct jumps in con-
ductivity. The lumping parameter β is set to 0.5
and the separation value w is set to 0.3.

The likelihood function is

l(un|x) ∝ exp

�
− 1

2σ2
�un − u�2

�
(7)

when the noise e in Eqn 1 is iid (independent iden-
tically distributed) zero-mean Gaussian with vari-
ance σ2. As in [3], we set σ so that the resulting
SNR (signal to noise ratio) in the measurement
process is close to 1000:1 to mimick practical EIT
measurements.

By Bayes’ rule, the posterior distribution over con-
ductivity images is

π(x) ∝ l(un|x)πp(x). (8)

It is not possible to summarize the posterior dis-
tribution by analytic means, so we employ MCMC
(Markov chain Monte Carlo) to sample from this
distribution and evaluate summary statistics.

Figure 2 shows five samples drawn from the pos-
terior distribution. These samples are close to
each other and all resemble the original conduc-
tivity distribution, indicating that the posterior
distribution is supported around the true conduc-
tivity distribution. Figure 3 shows the posterior
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Figure 2: Five samples of the conductivity x drawn from the posterior distribution.
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Figure 3: Posterior mean (left), posterior variance (middle), and marginal posterior mode (right).

mean, posterior variance, and the marginal pos-
terior mode (MPM) (see [4] for a discussion on
the MPM). As can be seen, the marginal poste-
rior mode gives a useful estimate of the true con-
ductivity distribution. The variance image shows
that the primary uncertainty is in the location of
boundaries of the regions of constant conductivity,
while the conductivity values are well determined.

The results presented in this section were evalu-
ated using samples drawn by the standard single-
site Metropolis MCMC as in [3] that had run for
1.2× 105× 576 iterations. In the following section
we consider improved proposals.

5. SWAP MOVES

As the name implies, the swap moves simply swap
the conductivity value in a pair of nearby pixels.
We consider three specific swap moves as shown
in Figure (4). They are (b) 1 × 2 swap between
the two-nearest neighbours, (c) swap between the
diagonal pixels within a 2× 2 block, and (d) swap
between two components within a 3 × 3 block as
shown. Swap move (b) was used previously in
[5, 2], while moves (c) and (d) are special cases
of moves used in [5, 6], though in the context of
a discrete representation. Also shown is (a) the
single site update move.

Each of these swap moves provide a localized up-
date that leaves approximately invariant the pos-
terior distribution in Eqn 8. When these moves
are chosen with probabilities p1, p2, p3, p4, and the
Metropolis-Hastings (MH) accept/reject rule ap-
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Figure 5: Traces of conductivity at three represen-
tative pixels for the swap move (with probabilities
(0.1, 0.1, 0.4, 0.4)) and single-site Metropolis.

plied, the resulting transition kernel is

A(x, y) =

4�

i=1

piAi(x, y) (9)

where Ai(x, y) is the transition kernel resulting
from a MH algorithm using just the i-th proposal.
Since kernel A1(x, y) associated with the single-
site move is irreducible and we set p1 > 0, the
resulting chain is also irreducible.

We tested eight sets of move probabilities listed
in Table 1 and ran the resulting algorithms for
1.2 × 105 × 576 iterations. During each run, the
state-variable was recorded every 10×576 updates,
while log-likelihood and log-prior were recorded
every 576 updates. As in [3], three representa-
tive pixels were selected (marked by red, blue and
green circles in Figure 3) and their trace plots
were used for qualitative assessment of how well
the Markov chain mixed. From the traces shown
in Figure 5 it is clear that using the swap moves
significantly improves performance of the MCMC.
As in [3], we also evaluated the integrated auto-
correlation time (IACT) [7] at the ‘blue’ pixel as
a quantitative measure of the performance of the
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Figure 4: Probability tree for moves: (a) random scan single-site update, (b) 1× 2 swap, (c) 2× 2 swap
and (d) 3× 3 swap, that are selected with probabilities p1, p2, p3, p4, respectively.

Table 1: Estimated IACT at ‘blue’ pixel τblue with
various swap move probabilities.
(p1, p2, p3, p4) τblue(×10×m)
(0.1,0.1,0.7,0.1) 9.5± 2.1
(0.1,0.1,0.1,0.7) 8.3± 1.8
(0.1,0.7,0.1,0.1) 7.5± 1.5
(0.1,0.1,0.4,0.4) 5.6± 1.0
(0.1,0.4,0.4,0.1) 6.5± 1.2
(0.1,0.4,0.1,0.4) 11± 2.6
(0.1,0.3,0.3,0.3) 7.3± 1.5
(0.1,0.9,0.0,0.0) 20± 6
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Figure 6: Estimated normalized ACF at xblue us-
ing swap move and single-site Metropolis.

MCMC sampler, also listed in Table 1.

We were not able to accurately estimate IACT at
the ‘blue’ pixel using the Markov chain with just
the single-site update, even after 1.6 × 105 × 576
iterations. Instead we show in Figure 6 the nor-
malized ACF at at the ‘blue’ pixel using singl-site
update and the swap move (as in Figure 5). As
can be seen, the normalized ACF decays to zero
about 10 time faster for the swap move algorithm
compared to the single-site algorithm. This con-
firms the qualitative assessment, and shows that
the swap move is about ten times more efficient
than the single-site Metropolis.
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