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ABSTRACT
A two-dimensional hydrodynamic ice-slope interaction

problem is formulated in this paper. The solution of this elas-
tohydrodynamic problem will give the desired ice force. The
main objective is to determine the influence that ice sheet veloc-
ity, slope angle, and ice-structure friction have on the ice force.
A transition in failure mode is often observed to occur at a cer-
tain velocity (named the transition velocity) from predominantly
bending to predominantly crushing. In this paper, the solution is
provided for relatively slow interactions, to illustrate the validity
of the approach. The treatment is non-dimensional so that differ-
ent types of ice (model ice, freshwater ice and sea ice) can easily
be related.

INTRODUCTION
The first objective of this paper is to formulate an approach

which yields the ice forceN̄ as the solution of the problem
solved. Second, assuming the acceleration or velocity of the ice
sheet is explicitly included in the problem statement, it should
be possible to ascertain the functional dependencies of the fail-
ure strain, and breaking lengths, on the typical input parameters
(characteristic length,̀; flexural strength,σ f ; ice thickness,h;
ice velocity,v; ice-structure friction,f ). For the sake of simplic-
ity, the formulation and analysis are two-dimensional; for this
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reason, the influence of the structure width cannot be ascertained
(Timco, 1984; Frederking and Timco, 1985).

By solving one or two fully elastohydrodynamic problems,
it is hoped that an effective approximate technique can be de-
vised to include velocity-hydrodynamic effects that will thereby
facilitate the accurate solution of the more complicated three-
dimensional problems.

In this paper two closely related but necessarily idealized
problems (see Figures 1a and 1b) are examined to gain some
insight into the reasons for an observed transition in failure mode.
A non-dimensional formulation is presented. For this reason, the
analysis is applicable not just to model ice but also to freshwater
(river and lake) ice as well as sea ice.

ICE-SLOPE INTERACTIONS
Hayneset al. (1983) conducted a total of 64 tests in the

33.5-m long, 9.15-m wide and 2.4-m deep refrigerated test basin
at the U.S. Army Cold Regions Research and Engineering Lab-
oratory (USACRREL). Using urea model ice, 22 ice sheets were
pushed against a model sloping structure with varying slope an-
gles. During 31 of these tests, the velocity of the ice sheet was
increased at a constant rate from 0 to 10 cm/s over a period of 90
seconds. The horizontal force exerted by the ice on the structure
was measured. A transition in the failure mode was observed
to occur at a certain velocity (and named the transition velocity)
from predominantly bending to predominantly crushing. For the
given test duration studied (which involved 4.5-m of travel) this
transition occurred for relatively high slope angles only.



Figure 1. A semi-infinite ice cover impacting a sloping structure: fluid

movement beneath the structure is (a) unrestricted and (b) restricted.

PROBLEM DESCRIPTION
A semi-infinite ice sheet of thicknessh and widthB, floating

in water of constant depth̄H, is being forced against a sloping
structure, as portrayed in Figure 1. For timet � 0, the ice sheet
is unloaded and motionless with the weight of the sheet being
balanced by buoyancy. The associated immersed depth of the ice
is given byρwh0 = ρih, with ρw andρi being the densities of
the ice and water, respectively. The vertical deflection ¯w(x̄; t) of
the ice sheet fort > 0 is assumed to occur about the equilibrium
configuration occupied by the ice sheet fort � 0. Typically, the
influence of the hydrodynamic reaction on the subsequent deflex-
ions is significant, especially for early times. (Dempsey & Zhao
1993; Zhao & Dempsey 1996). The deflexions occurring prior
to breakup are generally much less than the ice sheet thickness.
Partial emergence of the ice sheet prior to fracture is therefore
not considered in the following analysis. Since a significant por-
tion of the ice sheet thickness is submerged prior to uplift by
the slope, a large deformation beam theory would be required
to model this partial emergence. In deriving the boundary con-
ditions governing the interaction between the ice sheet and the
structure, the ice sheet thickness is taken into account. However,
for the remainder of the formulation and analysis, the ice sheet
is assumed to be of zero thickness, occupying the semi-infinite
region 0� x̄< ∞,�B=2� ȳ� B=2, z̄= 0.

There are two types of ice sheet-sloping structure interac-
tions to be included in this paper. The first corresponds to
unrestricted flow of the water around the structure, in which
case the water will be assumed to occupy the region defined by
�∞< x̄<∞,�B=2� ȳ�B=2,�H̄ < z̄< 0 (see Figure 1a). Pos-
sible physical settings for this first type include river ice moving
against a bridge pier, sea ice being driven against the sloping
sides of an offshore lighthouse or oil recovery platform, and a
model ice sheet (in a test basin) being driven against a sloping
but narrow (in width) structure. The second type corresponds
to certain models basin studies in which the sloping structure is
as wide as the ice sheet being encountered (Yeanet al. 1981;
Hopkins 1995). In this latter case, only the water directly below
the ice sheet will be taken into account, occupying the region
0< x̄< ∞,�B=2� ȳ� B=2,�H̄ < z̄< 0 (see Figure 1b).

The bottom-surface pressure due to the acceleration of the
water is treated by assuming that the motion of the water is gov-
erned by two-dimensional potential theory (Kheisin 1967; Nevel
1970; Dempsey & Zhao 1993; Fox & Squire 1994). The water
velocity vectorv is expressed as the gradient of the velocity po-
tential φ̄(x̄; z̄; t). Assuming that the water is incompressible and
inviscid, conservation of water mass requires that

∇2φ̄ =
∂2φ̄
∂x̄2 +

∂2φ̄
∂z̄2 = 0; �∞ < x̄< ∞; �H̄ < z̄< 0: (1)

At the deformed ice-water interface, the vertical velocity of the
fluid is equal to the vertical velocity of the ice. Given that the
depthH̄ of the fluid is constant, the vertical velocity at ¯z=�H̄ is
zero. The horizontal velocity at ¯x= 0 in Figure 1b is zero. Phys-
ically, as x̄ approaches infinity, the water velocity is zero; cor-
respondingly,̄φ tends to a constant value which is arbitrarily set
to zero. The pressure ¯pi in (2) is given by Bernoulli’s equation,
the term proportional to the square of the vertical velocity being
omitted; the influence of this term is assumed to be insignificant,
although this assumption will be checked by comparing the en-
ergies of relevant quantities. The motion of the floating sheet is
modeled using Euler-Bernoulli beam theory. Thus, on the ice-
covered portion of the boundary (0< x̄< ∞, z̄= 0),

caρih
∂2w̄
∂t2 +E0Î

∂4w̄
∂x̄4 + N̄

∂2w̄
∂x̄2 � p̄i(x̄; t)+ρihg= q̄(x̄; t);

∂φ̄
∂z̄

=
∂w̄
∂t

; p̄i =�ρwgη̄�chρw
∂φ̄
∂t

+ρwgh0; (2)

whereE0 Î is the flexural rigidity per unit width of the ice sheet.
The notationE0 is introduced to treat both plane stress and plane
strain: E0 equalsE for plane stress andE=(1� ν2) for plane
strain, with with B equal to unity in the latter case.̂I equals
h3=12. The vertical deflection of the ice sheet from its unloaded
equilibrium position is denoted by ¯w(x̄; t) while q̄(x̄; t) represents
the external loading (pressure) applied to the top surface of the
ice sheet, ¯pi is the fluid-ice interface pressure exerted by the hy-
drodynamic reaction on the bottom surface of the ice sheet,N̄(t)
is the in-plane compressive ice force per unit width generated
by the ice sheet movement against the sloping structure. In (2)3

η̄(x̄; t) is the displacement at the ice-water interface; since the ice
sheet will fracture well before cavitation is a possibility, the latter
displacement is matched with the displacement of the ice sheet

η̄ = w̄; 0< x̄< ∞; z̄= 0: (3)



The coefficientsca and ch are introduced in (2) to enable this
problem description to include both the fully coupled elastohy-
drodynamic model and a uncoupled, somewhatad hocadded
mass model. For the elastohydrodynamic modelca = 1 and
ch=1 in (2)1 and (2)3, respectively; for the particular added mass
model considered here (Sørensen 1978; Sodhi 1987)ch = 0 but
ca is specifieda priori, the fluid interaction is not included, leav-
ing p̄i =�ρwgw̄. The effectiveness of added mass models of this
type (the type in which the mass density of the ice sheet is sim-
ply multiplied by somead hocnumber) versus the fully coupled
elastohydrodynamic analysis, for the problem being considered
in this paper, will be examined.

On the lower boundary ¯z=�H̄, in Figure 1a (for�∞ < x̄<
∞) or Figure 1b (for 0< x̄< ∞), the potential satisfies∂φ̄=∂z̄= 0
while on the boundary ¯x= 0,�H̄ < z̄< 0 in Figure 1b,∂φ̄=∂x̄=
0. The free surface boundary in Figure 1a requires that (Fox &
Squire 1994)

∂2φ̄
∂t2 +g

∂φ̄
∂z̄

= 0; �∞ < x̄< 0; z̄= 0: (4)

At any section in this ice sheet, the bending moment per unit
width M̄(x̄; t) and the vertical shear force per unit width̄Q(x̄; t)
are given (noting the sign convention portrayed in Figure 2) by

M̄ = E0 Î
∂2w̄
∂x̄2 ; Q̄=

∂M̄
∂x̄

+ N̄
∂w̄
∂x̄

: (5)

With the slope angleα as indicated in Figure 2, and with the
coefficient of friction being denoted byµ= tanϑ, it is evident
that

M̄(0; t) =� f
h
2
fRx(t)+Rz(t)

∂w̄
∂x̄

(0; t)g; Rx(t) = N̄(t);

Q̄(0; t) = Rz(t); Rz(t) = N̄(t)= tan(α+ϑ); (6)

in which Rx andRz are the horizontal and vertical components
of the time-varying force applied to the ice sheet at ¯x= 0; f is a
factor to account for crushing at ¯x= 0 (for no crushing,f = 1).
This ‘contact factor’f may range betweenf = +1 (z̄= �h=2)
and f = 1 (z̄= h=2). Luk (1987) introduced a similar contact
factor. Especially for columnar freshwater or sea ice, this range
on f seems rather unrealistic. While crushing is expected to ini-
tiate at the right-angle corner that first meets the slope, the high
compressive strength of ice under combined loading conditions

(a) (b)

Figure 2. Contact forces and sign conventions.

means that a relatively small crushed area generates a significant
uplift force. Moreover, given the relatively brittle behavior of
ice, the magnitude of the vertical displacement is expected to be
small relative to the ice sheet thickness. The influence of the
value of f will be investigated.

Note that for the critical slope angleα = αcr = π=2�ϑ, the
vertical end forceRz= 0. The equations in (6) hold forα � αcr.
For slope angles greater than or equal toαcr the ice sheet will
not move up the slope (unless the under-ice fluid motion causes
an upward motion of the ice sheet end, overriding the frictional
restraint), and the ice will fail either by buckling and/or crushing.
Note that the elastostatic buckling load for a semi-infinite ice
sheet is given bȳNb = (ρwgE0Î)1=2 (Hetényi 1946). Forα < αcr

the ice will move up the slope and fail due to bending, although
at high values ofα failure has been observed to be caused by a
combination of buckling and bending (Hayneset al. 1983).

The time-varying in-plane forcēN(t) is given by (5)2 and
(6)2 as

N̄(t) = E0 Î
∂3w̄
∂x̄3 (0; t)

��
1

tan(α+ϑ)
�

∂w̄
∂x̄

(0; t)

�
: (7)

In the experiments conducted by Hayneset al. (1983), the
ice sheet is pushed against the sloping structure at a constant ac-
celerationa0 from zero initial velocity; the end of the ice sheet is
therefore forced to move up as

w̄(0; t) = a0t
2 tanα =2; (8)

subject to the end moment specified via (6),

M̄(0; t) =� f
h
2

N̄(t)

�
1+

∂w̄
∂x̄

(0; t)= tan(α+ϑ)
�
: (9)

In the above experiments, the ice sheet is actually 10 to 20 meters
long; the far-field acceleration is uniform and controlled. In other
words, the acceleration of the ice sheet is controlled, not the in-
plane ice-force,̄N(t).



Given that the compressive strength̄σc of ice is generally
much greater than the tensile or flexural strength (as is typical
of quasi- brittle materials), any maximum in the ice forceN̄(x̄; t)
must be associated with a peak in the axial stressσ̄(x̄; t) when
the amplitude of this peak matches the flexural strengthσ̄f of the
ice. Correspondingly, the failure criterion for the axial stress at
any point (x̄; z̄) is given by

�σ̄c � σ̄(x̄; z̄; t) =�
N̄
h
�

M̄(x̄; t) z̄

Î
� σ̄f ; 0< x̄< ∞; z̄= 0

(10)

NON-DIMENSIONAL NOTATION
It is useful to introduce non-dimensional quantities and co-

ordinates, as follows. Let

x= x̄=`; z= z̄=`; w= w̄=h;

φ = φ̄=h
p

g`; τ = t=
p
`=g; H = H̄=`;

N = N̄=N̄b; M = M̄=N̄bh; Q= (Q̄=N̄b)(`=h);

σ = σ̄h=N̄b; σc = σ̄ch=N̄b; σf = σ̄fh=N̄b; (11)

in which

N̄b = (ρwgE0 Î)1=2 = ρwg`2; and `=

�
E0 Î
ρwg

�1=4

: (12)

As has already been noted,̄Nb in (12) is the ice force per unit
width at a the semi-infinite floating ice sheet will buckle, if the
end atx = 0 is loaded solely by a vertical concentrated force
(Hetényi, 1946);` is called the characteristic length of the ice
sheet (Sodhiet al. 1982).

RELATIVELY SLOW INTERACTIONS
If the ice sheet motion were to be slow enough to substan-

tially diminish the role of the fluid, the problem reduces to the
solution of

d4w
dx4 +N

d2w
dx2 +w= 0; 0< x< ∞; z= 0; (13)

in which

N =
d3w
dx3 (0)

��
`

h
1

tan(α+ϑ)
�

dw
dx

(0)

�
; (14)

subject tow(x! ∞) = 0, w0(x! ∞) = 0, and

w(0) =
a0

2g
tanα

`

h
τ2;

d2w
dx2 (0) =� f

N
2

�
1+

h
`

1
tan(α+ϑ)

dw
dx

(0)

�
: (15)

The solution to (13), (14) and (15)2 is given by

w(x) = exp(�λx)(Acosκx+Bsinκx); (16)

in which

λ = (2�N)1=2=2; κ = (2+N)1=2=2; (17)

A=

�
2`
hT

λN�
f
2

N�
f

2T2 N2
�
=D;

B=

�
f
2

λN�
`

2hT
N2
�

f
2T2 λN2

�
=κD;

D = 1�N�
f h
`T

λN; T = tan(α+ϑ): (18)

By examining the equationD = 0, it is found that an accurate
approximation to the normalized buckling load is provided by

Ncr =
2

2+ξ
; with ξ =

f h
`T

: (19)



The movement (uplift) of the ice sheet is specified by (15)1; this
condition implies that

N
4λ�ξT2�ξN
1�N�ξλN

=
a0T
`

t2 tanα: (20)

This equation may be solved to provide N. For later use note that

dw̄
dx̄

(0) =�N
�
1�ξT2λ

�
=DT: (21)

Proceeding from equation (10) (with the time dependence
removed), it is evident that the maximum stress will occur for
w000(x) = 0; this condition gives the predicted breaking distance
xb to be

xb =
1
κ

arctan

�
4κ(1�ξηλN)

4λ�2ξT2+ξηN2

�
; with η= sec2(α+ϑ):

(22)

HYDRODYNAMICS
Valanto (1992) states: ‘The first force peak in the test with

presawn ice sheet is mainly caused by inertia related to the ini-
tial acceleration of the floating ice sheet and the surrounding
water. In the test with unbroken ice, work is also done to pro-
duce the flexural failure in the ice sheet. This is a dynamic phe-
nomenon and the difference between the initial force peaks of
unbroken and presawn ice peaks increase with increasing speed
of advance.’ Valanto (1989, 1992) constructed idealized 2D ice-
breaking experiments, and found that the maximum ice force in-
creased steadily, while the length of the broken slab decreased
steadily, with increase in velocity of the icebreaking model. The
elastostatic solution for the piece lengths given in (22) does not
predict this behavior. The dynamic response due to edge forc-
ing has been studied previously by Sørensen (1978) and Sodhi
(1987). In these studies each author included the hydrodynamic
factors by an added mass factor. Dempsey and Zhao (1993), Fox
(1993) and Zhao and Dempsey (1996) have illustrated that such
an approach is not realistic. Because of the complexity associ-
ated with the hydrodynamics, the 3D problems solved to date do
not accurately include the influence of ice velocity.

Valuable information remains to be harvested, should it be-
come feasible to solve the 3D problems of interest. For instance,
suppose an accurate scaling could be ascertained relating the ice
velocity and structural diameter.

CONCLUSIONS
A two-dimensional hydrodynamic ice-slope interaction

problem has been formulated. The solution of this elastohydro-
dynamic problem will give the desired ice force. An analytical
solution has been provided for the case of relatively slow inter-
actions. The importance of truly hydrodynamic solutions was
emphasized.
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